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As an emergent infectious disease outbreak unfolds, public health response is

reliant on information on key epidemiological quantities, such as trans-

mission potential and serial interval. Increasingly, transmission models fit

to incidence data are used to estimate these parameters and guide policy.

Some widely used modelling practices lead to potentially large errors in par-

ameter estimates and, consequently, errors in model-based forecasts. Even

more worryingly, in such situations, confidence in parameter estimates and

forecasts can itself be far overestimated, leading to the potential for large

errors that mask their own presence. Fortunately, straightforward and com-

putationally inexpensive alternatives exist that avoid these problems. Here,

we first use a simulation study to demonstrate potential pitfalls of the stan-

dard practice of fitting deterministic models to cumulative incidence data.

Next, we demonstrate an alternative based on stochastic models fit to raw

data from an early phase of 2014 West Africa Ebola virus disease outbreak.

We show not only that bias is thereby reduced, but that uncertainty in esti-

mates and forecasts is better quantified and that, critically, lack of model fit

is more readily diagnosed. We conclude with a short list of principles to

guide the modelling response to future infectious disease outbreaks.
1. Introduction
The success of model-based policy in response to outbreaks of bovine spongiform

encephelopathy [1] and foot-and-mouth disease [2,3] established the utility of

scientifically informed disease transmission models as tools in a comprehensive

strategy for mitigating emerging epidemics. Increasingly, the expectation is that

reliable forecasts will be available in real time. Recent examples in which

model-based forecasts were produced within weeks of the index case include

severe acute respiratory syndrome (SARS; [4,5]), pandemic H1N1 influenza [6],

cholera in Haiti and Zimbabwe [7], Middle East respiratory syndrome (MERS;

[8]), and lately, Ebola virus disease (EBVD) in West Africa [9,10]. In the early

stages of an emerging pathogen outbreak, key unknowns include its transmission

potential, the likely magnitude and timing of the epidemic peak, total outbreak

size, and the durations of the incubation and infectious phases. Many of these

quantities can be estimated using clinical and household transmission data,

which are, by definition, rare in the early stages of such an outbreak. Much inter-

est, therefore, centres on estimates of these quantities from incidence reports that

accumulate as the outbreak gathers pace. Such estimates are obtained by fitting

mathematical models of disease transmission to incidence data.

As is always the case in the practice of confronting models with data,

decisions must be made as to the structure of fitted models and the data to

which they will be fit. Concerning the first, in view of the urgency of policy

demands and paucity of information, the simplest models are, quite reasonably,
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Figure 1. Results from simulation study fitting deterministic models to stochastically simulated data. Five hundred simulated datasets of length 39 weeks were
generated by the stochastic model described in §5 at each of three levels of the measurement error overdispersion parameter, k. The deterministic model was fit to
both raw (blue) and accumulated (red) incidence data. (a) Estimates of R0. True value used in generating the data is shown by the dashed line. (b) Estimates of error
overdispersion, k. (c) Widths of nominal 99% profile-likelihood confidence intervals (CI) for R0. (d ) Actual coverage of the CI, i.e. probability that the true value of R0

lay within the CI. Ideally, actual coverage would agree with nominal coverage (99%, dashed line).
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typically the first to be employed. With even the simplest

models, such as the classical susceptible–infected–recovered

(SIR) model, the choice of data to which the model is fit can

have significant implications for science and policy. Here, we

explored these issues using a combination of inference on

simulated data and on actual data from an early phase of the

2013–2015 West Africa EBVD outbreak. We find that some

of the standard choices of model and data can lead to poten-

tially serious errors. Since, regardless of the model choice, all

model-based conclusions hinge on the ability of the model to

fit the data, we argue that it is important to seek out evidence

of model misspecification. We demonstrate an approach based

on stochastic modelling that allows straightforward diagnosis

of model misspecification and proper quantification of

forecast uncertainty.
2. Deterministic models fit to cumulative
incidence curves: a recipe for error and
overconfidence

An inexpensive and therefore common strategy is to formulate

deterministic transmission models and fit these to data using

least squares or related methods. These approaches seek par-

ameters for which model trajectories pass as close to the data

as possible. Because, in such an exercise, the model itself is
deterministic, all discrepancies between model prediction and

data are in effect ascribed to measurement error. Implicitly, the

method of least squares assumes that these errors are indepen-

dent and normally distributed, with a constant variance. This

assumption can be replaced without difficulty by more realistic

assumptions of non-normal errors and, in particular, an error

variance that depends on the mean. As for the data to be fit,

many have opted to fit model trajectories to cumulative case

counts. The incompatibility of this choice with the assumptions

of the statistical error model has been pointed out previously

[11–13]. In particular, the validity of the statistical estimation

procedure hinges on the independence of sequential measure-

ment errors, which is clearly violated when observations are

accumulated through time (see electronic supplementary

material, appendix B). To explore the impact of this violation

on inferences and projections, we performed a simulation

study in which we generated data using a stochastic model,

then fit the corresponding deterministic model to both raw

and cumulative incidence curves. We generated 500 sets of simu-

lated data at each of three different levels of measurement noise.

For each dataset, we estimated model parameters, including

transmission potential (as quantified by the basic reproduction

number, R0) and observation error overdispersion (as quantified

by the negative binomial overdispersion parameter, k). Full

details of the data generation and fitting procedures are given

in electronic supplementary material, appendix A. The resulting

parameter estimates are shown in figure 1.
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Figure 2. Likelihood profiles for R0 based on the stochastic model fit to raw
data (blue) versus the deterministic model fit to cumulative incidence data
(red). Each point represents the maximized log likelihood at each fixed
value of R0 relative to overall maximum. The maximum of each curve is
achieved at the maximum-likelihood estimate (MLE) of R0; the curvature is
proportional to estimated precision. The horizontal line indicates the critical
value of the likelihood ratio at the 95% CI. While the (improper) use of
cumulative data produces relatively small differences in the MLE for R0, it
does produce the illusion of high precision.
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Recognizing that quantification of uncertainty is prerequi-

site to reliable forecasting, we computed parameter estimate

confidence intervals and investigated their accuracy. Figure 1a
shows that, in estimating R0, one finds considerable error but

little evidence for bias, whether raw or cumulative incidence

data are used. Although in general one expects that violation

of model assumptions will introduce some degree of bias, in

this case since both the raw and cumulative incidence curves

generically grow exponentially at a rate determined by R0, esti-

mates of this parameter are fairly accurate, on average, when data

are drawn, as here, from the early phase of an outbreak.

Figure 1b is the corresponding plot of estimated overdispersion

of measurement noise. Using the raw incidence data, one

recovers the true observation variability. When fitted to cumu-

lative data, however, the estimates display extreme bias: far less

measurement noise is needed to explain the relatively smooth

cumulative incidence. The data superficially appear to be in

very good agreement with the model.

To quantify the uncertainty in the parameter estimates, we

examined the confidence intervals. The nominal 99% profile-

likelihood confidence interval widths for R0 are shown in

figure 1c. When the model is fit to the simulated data, increas-

ing levels of measurement error lead to increased variance in

the estimates of R0. However, the confidence interval widths

are far smaller when the cumulative data are used, superfi-

cially suggesting a higher degree of precision. This apparent

precision is an illusion, however, as figure 1d shows. This

figure plots the achieved coverage (probability that the true

parameter value lies within the estimated confidence interval)

as a function of the magnitude of measurement error and the

choice of data fitted. Given that the nominal confidence level

here is 99%, it is disturbing that the true coverage achieved

is closer to 25% when cumulative data are used.

When a deterministic model is fit to cumulative incidence

data, the net result is a potentially quite over-optimistic esti-

mate of precision, for three reasons. First, failure to account

for the non-independence of successive measurement errors

leads to an underestimate of parameter uncertainty (figure

1c). Second, as seen in figure 1b, the variance of measurement

noise will be substantially underestimated. Finally, because

the model ignores environmental and demographic stochasti-

city—treating the unfolding outbreak as a deterministic

process—forecast uncertainty will grow unrealistically slowly

with the forecast horizon. We elaborate on the last point in §4.
3. Stochastic models fit to raw incidence data:
feasible and transparent

The incorporation of demographic and/or environmental sto-

chastic processes into models allows, on the one hand, better

fits to the trends and variability in data and, on the other,

improved ability to diagnose lack of model fit [14]. We

formulated a stochastic version of the susceptible–exposed–

infectious–recovered (SEIR) model as a partially observed

Markov process and fit it to actual data from an early phase

of the 2013–2015 West Africa EBVD outbreak. We estimated

parameters by maximum likelihood, using sequential Monte

Carlo to compute the likelihood and iterated filtering to maxi-

mize it over unknown parameters [15]. See electronic

supplementary material, appendix B for details.

Figure 2 shows likelihood profiles over R0 for country-level

data from Guinea, Liberia and Sierra Leone. We also wanted to
explore the potential for biases associated with spatial aggre-

gation of the data. Hence, we fit our models to regional

data, encompassing all reported cases from the three West

African countries just mentioned. In line with the lessons of

figure 1c, estimated confidence intervals are narrower when

the cumulative reports are used. The ‘true’ parameters are, of

course, unknown, but, as in the earlier example, this higher

precision is probably illusory. The somewhat, but not dramati-

cally, larger confidence intervals that come with adherence to

the independent-errors assumption (i.e. with the use of raw

incidence data) lead to a quite substantial increase in forecast

uncertainty, as we shall see. Finally, the ease with which the

stochastic model was fit and likelihood profiles computed

testifies to the fact that, in the case of outbreaks of emerg-

ing infectious diseases, it is not particularly difficult or

time-consuming to work with stochastic models.

We took advantage of the stochastic model formulation to

diagnose the fidelity of model to the data. To do so, we simu-

lated 10 realizations of the fitted model; the results are plotted

http://rspb.royalsocietypublishing.org/
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Figure 3. Model diagnostics. The time series plots show the data (blue) superimposed on 10 typical simulations from the fitted model (grey). While the overall trend is
captured by the model, the simulations display more high-frequency (week-to-week) variability than does the data. The insets confirm this, showing the autocorrelation
function at lag 1 week (ACF(1)) in the data (blue) superimposed on the distribution of ACF(1) in 500 simulations (grey). For Guinea, Liberia and the aggregated regional
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in figure 3. While the overall trends appear similar, the model

simulations display greater variability at high frequencies than

do the data. To quantify this impression, we computed the cor-

relation between cases at weeks t and t – 1 (i.e. the

autocorrelation function at lag one week, ACF(1)) for both

model simulations and data. For Guinea, Liberia, and the

region as a whole (‘West Africa’), the observed ACF(1) lies in

the extreme right tail of the model-simulated distribution, con-

firming our suspicion. For Sierra Leone, the disagreement

between fitted model and data is not as great, at least

as measured by this criterion. These diagnostics caution against

the interpretation of the outbreaks in Guinea and Liberia as

simple instances of SEIR dynamics, and call for a degree of scep-

ticism in inferences and forecasts based on this model. On the

other hand, the Sierra Leone epidemic does appear, by this

single metric, to better conform to the SEIR assumptions

when the data are aggregated to the country level.

Figure 4 suggests why the present Ebola outbreak might

not be adequately described by the well-mixed dynamics of

the SEIR model. The erratically fluctuating mosaic of localized

hotspots suggests spatial heterogeneity in transmission, at

odds with the model’s assumption of mass action. As an

aside, this heterogeneity hints at control measures beyond

the purview of the SEIR model. While the latter might provide

more or less sound guidance with respect to eventual overall

magnitude of the outbreak and associated demands for hospi-

tal beds, treatment centres, future vaccine coverage, etc., the

former points to the potential efficacy of movement restrictions

and spatial coordination of control measures.
4. Discussion
To summarize, we have here shown that the frequently

adopted approach of fitting deterministic models to
cumulative incidence data can lead to bias and pronounced

underestimation of the uncertainty associated with model

parameters. Not surprisingly, forecasts based on such

approaches are similarly plagued by difficult-to-diagnose

overconfidence as well as bias. We illustrated this using the

SEIR model—in its deterministic and stochastic incarna-

tions—fit to data from the current West Africa EBVD

outbreak. Emphatically, we do not here assert that the SEIR

model adequately captures those features of the epidemic

needed to make accurate forecasts. Indeed, when more

severe diagnostic tests are applied (electronic supplementary

material, figure B1), it seems less plausible that the Sierra

Leone data appear are a sample from the model distribution.

Moreover, we have side-stepped important issues of

identifiability of key parameters such as route-specific trans-

missibility, asymptomatic ratio and effective infectious

period. Rather, we have purposefully oversimplified, both

to better reflect modelling choices often made in the early

days of an outbreak and to better focus on issues of statistical

practice in the context of quantities of immediate and obvious

public health importance, particularly the basic reproduction

number and predicted outbreak trajectory. Figure 5 shows

projected incidence of EBVD in Sierra Leone under both the

deterministic model fit to cumulative incidence data (in red)

and the stochastic model fit to raw incidence data (in blue).

The shaded ribbons indicate forecast uncertainty. In the

deterministic case, the latter is due to the combined effects

of estimation error and measurement noise. As we showed

above, the first contribution is unrealistically low because

serial autocorrelation among measurement errors have not

been properly accounted for. The second contribution is

also underestimated because of the smoothing effect of data

accumulation. Finally, because the model ignores all process

noise, it unrealistically lacks dynamic growth of forecast

uncertainty. By contrast, the stochastic model fitted to the

http://rspb.royalsocietypublishing.org/
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raw incidence data show much greater levels of uncertainty.

Because measurement errors have been properly accounted

for, confidence intervals more accurately reflect true uncer-

tainty in model parameters. Because the model accounts for

process noise, uncertainty expands with the forecast horizon.

Finally, we recall once again that, because the process noise

terms can to some degree compensate for model misspecifica-

tion, it was possible to diagnose the latter, thus obtaining

some additional qualitative appreciation of the uncertainty

owing to this factor.

The increasingly high expectations placed on models as

tools for public policy put an ever higher premium on the

reliability of model predictions, and therefore on the need

for accurate quantification of the associated uncertainty. The

relentless trade-off between timeliness and reliability has

with technological advance shifted steadily in favour of

more complex and realistic models. Because stochastic

models with greater realism, flexibility and transparency

can be routinely and straightforwardly fit to outbreak data,

there is less and less scope for older, less reliable and more

opaque methods. In particular, the practices of fitting deter-

ministic models and fitting models to cumulative case

report data are prejudicial to accuracy and can no longer be

justified on pragmatic grounds. We propose the following

principles to guide modelling responses to current and

future infectious disease outbreaks:
(1) models should be fit to raw, disaggregated data when-

ever possible and never to temporally accumulated data;

(2) when model assumptions, such as independence of

errors, must be violated, careful checks for the effects of

such violations should be performed;
(3) forecasts based on deterministic models, being by nature

incapable of accurately communicating uncertainty,

should be avoided; and

(4) stochastic models should be preferred to deterministic

models in most circumstances because they afford

improved accounting for real variability and increased

opportunity for quantifying uncertainty. Post hoc com-

parison of simulated and actual data is a powerful and

general procedure that can be used to distinguish

model misspecification from real stochasticity.

In closing, we are troubled that screening for lack of

model fit is not a completely standard part of modelling pro-

tocol. At best, this represents a missed opportunity, as

discrepancies between the data and off-the-shelf models

may suggest effective control measures. At worst, this can

lead to severely biased estimates and, worryingly, overly con-

fident conclusions. Fortunately, effective techniques exist by

which such errors can be diagnosed and avoided, even in

circumstances demanding great expedition.
5. Material and methods
(a) Data
Weekly case reports in Guinea, Liberia and Sierra Leone were digi-

tized from the WHO situation report dated from 1 October 2014

(http://www.who.int/csr/disease/ebola/situation-reports/en/)

(figure 3). To compare our predictions to those of previous reports

[16], we also aggregated those data to form a regional epidemic

curve for ‘West Africa’. In Guinea, this outbreak was taken to

have started in the week ending 5 January 2014 and in Sierra

Leone in that ending 8 June 2014. In Liberia, the outbreak was

http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.who.int/csr/disease/ebola/situation-reports/en/
http://rspb.royalsocietypublishing.org/
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notified to WHO on 31 March 2014 (http://www.afro.who.int/

en/clusters-a-programmes/dpc/epidemic-a-pandemic-alert-and-

response/outbreak-news/4072-ebola-virus-disease-liberia.html),

but few cases were reported until June; therefore, the week ending

1 June was deemed the start of the Liberian outbreak for simu-

lation purposes. The data in figure 4 was downloaded from the

repository maintained by C. M. Rivers (https://github.com/cmri-

vers/ebola) and ultimately derived from reports by the health

ministries of the republics of Guinea, Sierra Leone and Liberia.

(b) Model formulation
The models used were variants on the basic SEIR model

(figure 6), using the method of stages to allow for a more realistic

(Erlang) distribution of the incubation period [17,18]. The

equations of the deterministic variant are

dS
dt
¼ �R0gSI

N
,

dE1

dt
¼ R0gSI

N
�maE1,

dEi

dt
¼ ma(Ei�1 � Ei), i ¼ 2, . . . , m,

dI
dt
¼ maEm � gI

and
dR
dt
¼ gI:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

Here, R0 represents the basic reproduction number; 1/a, the

average incubation period; m, the shape parameter for the incu-

bation period distribution; 1/g, the average infectious period;
and N, the population size, assumed constant (electronic

supplementary material, table B1).

The stochastic variant was implemented as a continuous-

time Markov process approximated via a multinomial

modification of the t-leap algorithm [14] with a fixed time step

Dt ¼ 1022 week.

To complete the model specification, we model the obser-

vation process. Let DNE!I(t1,t2) denote the total number of

transitions from latent to infectious class (Em to I ) occurring

between times t1 and t2. Between times t2Dt and t, where Dt rep-

resents the reporting period, we write Ht ¼ DNE!I(t 2 Dt,t) for

the complete number of new infections during that time

period. When we are fitting to cumulative case counts, we

change the definition accordingly to Ht ¼ DNE!I(0,t). When

using either type of data, we modelled the corresponding case

report, Ct, as a negative binomial: Ct � NegBin(rHt,1/k). Thus,

E[CtjHt] ¼ rHt and Var[CtjHt] ¼ rHt þ kr2H2
t , where r is the

reporting probability and k the reporting overdispersion.

Descriptions of the methods used in the simulation study

and in the model-based inferences drawn from actual data are

given in the electronic supplementary material.
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