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The colour of noise in short ecological time series data
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The statistical properties of ecological time series data and general trends therein have
historically been of great interest to ecologists. In recent years, there has been a focus
on establishing the relative importance of ‘memory’ in these data. The classic study
by Pimm & Redfearn (1988Nature, 334, 613–614) has been extremely important in
establishing within the ecological community the idea that population time series are
generally ‘red-shifted’ (dominated by long-term trends). This conclusion was reached by
exploring the relationship between observed variability and census length in ecological
data and comparing them with those for artificially generated data. Here, we highlight some
subtle problems with this approach and suggest possible alternative methods of analysis,
especially when the time series of interest are short.
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1. Introduction

Ecologists have long been interested in the statistical properties of time series data and
what these may reveal about underlying ecological mechanisms (Elton, 1927; Ito, 1978;
Royama, 1992; Gaston & McArdle, 1994; Inchausti & Halley, 2001; Akcakayaet al.,
2003). One of the key findings of recent years, which has become broadly accepted within
the ecological community, is that populations tend to exhibit ‘reddened’ spectra, namely
that fluctuations in density combine a mixture of high frequency (short-term) variability
with a dominant long-term ‘memory’ or trend. More intuitively, reddened dynamics imply
that successive points in a time series of population densities are more correlated than
would be expected purely by chance. Successive entries in a time series may also be
uncorrelated, in which case they are referred to as ‘white’ noise. In the rare case of negative
correlation between these terms, the data are said to be ‘blue’ (Schroeder, 1991).
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The ecological importance of these distinctions has been established by theoretical
studies that have shown how the statistical properties of time series (notably the colour)
can have profound effects on expected extinction likelihoods (e.g. Ripa & Lunberg, 1996;
Halley & Kunin, 1999). The colour of time series has also been useful in generating
debate concerning whether commonly used ecological models are good descriptors of the
systems they attempt to portray given their general inability to produce reddened dynamics
(Cohen, 1995; Sugihara, 1995; Whiteet al., 1996; Kaitala & Ranta, 1996; Miramontes &
Rohani, 1998; Balmforthet al., 1999). More importantly, if population time series really
are ubiquitously reddened, then we may need to evaluate the usefulness of the ‘equilibrium-
based’ deterministic approaches that have dominated theoretical ecology for much of the
last century.

Arguably, the most influential ecological study in this area has been the classic work of
Pimm & Redfearn (1988), who detected redness in 100 population time series. Although
there have been other studies of ecological time series in which red-shifted dynamics
have been reported (e.g. Sumiet al., 1997; Miramontes & Rohani, 1998; Petchey, 2000;
Inchausti & Halley, 2001), because of the range of taxa and number of datasets analysed,
the Pimm & Redfearn (1988) paper remains the most influential and frequently cited study
in this field.

The exploration of the colour of a time series in the physical sciences usually involves
the Fourier analysis of the data (Handel & Chung, 1993; Pilgrim & Kaplan, 1998).
Essentially, it can yield a relationship (called a power spectrum) between a range of
frequencies and their relative importance (or power) in a given time series. This approach
works most effectively for relatively long data, consisting of around 1000 or more points
(Pilgrim & Kaplan, 1998). Pimm and Redfearn argued, however, that ‘population data are
rarely long enough for sensible spectral analyses’, hence they relied on a surrogate method
of detecting long-term trends. In their analysis, Pimm and Redfearn instead calculated
the observed population variability (measured as the standard deviation of logarithmic
abundance or SDL; McArdleet al., 1990) as a function of census length. For artificially
generated reddened noise, variability was shown to increase dramatically with the length
of the census period, while for white noise there was no systematic trend (Fig. 1(a)). Pimm
and Redfearn repeated their analysis for the time series of 100 populations, encompassing
insects, mammals and birds and observed patterns consistent with a red noise process (but
see McArdle, 1989).

The generality of Pimm and Redfearn’s findings has been widely accepted by the
ecology community. Here, we report significant and unexpected qualitative errors in the
diagnostic capabilities of Pimm and Redfearn’s methods. In particular, we show that their
approach may give rise to both type I and type II errors when dealing with a single short
time series. This would suggest that perhaps a detailed re-anlysis of their data may be
appropriate, and we propose two robust methods that may be more reliably used to achieve
this.

2. Methods

To investigate the robustness of different methods of colour detection we applied each
statistical technique to artificially generated pink and white noise data, using two different
methods in each case. Note that pink noise is a special class of red noise where the
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FIG. 1. (a) Pimm and Redfearn’s Fig. 1(d), showing changes in population variability as a function of the length
of census period for a white (blue line) and a red (red line) noise process. (b) Our analysis of three realizations
of an artificially generated (RPD) pink noise process (β = 0·69), showing qualitatively different patterns. In one
case, there is a pronounced increase in SDL with census length, while in another there is no trend; the third case
shows a clear decline. The inset shows the slope of the linear regression of SDL on census length for 10 000
replicate pink time series. While in general there is an initial increase in SDL with census length, in more than
20% there is no change and in 10% there is a significant initial decline.

log(power) (power is the squared magnitude of the Fourier spectrum) scales linearly with
log(1/frequency) (Schroeder, 1991; Pilgrim & Kaplan, 1998). We stress that our results
are only determined by the colour of the generating process and not by the method of
generation.

2.1 Pink noise

The first method, the results of which we call the relaxation process data (RPD), uses the
following recursive relationship to generate a time series:

Xt+1 = βXt + (1 − β)εt , (1)
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whereεt is normally distributed with mean 0 and variance 1. The key parameter isβ,
which defines the strength of autocorrelation and hence the colour of the data. Note that
this method does not produce perfect 1/ f noise since correlations between two points
decay exponentially (rather than as a power law) and typically the scaling breaks down at
very low frequencies; for our purposes, however, these are an acceptable approximation
to 1/ f data (Miramontes & Rohani, 2002). For all RPD, the first term of the series was
assigned a uniformly distributed random value (X0 ∼ U [0, 1]) and in order to run off
transients we discarded the first 100 values.

The second method of generating a coloured noise time series of lengthN relies on
summing upN/2 sine waves, with phases randomly and uniformly distributed between 0
and 2π (Cohenet al., 1998). More precisely, we use

Xt =
N/2∑
i =1

sin

(
2π t

i
+ φi

)
× S( f ), (2)

whereφi ∼ U [0, 2π ] defines the phase shift. The termS( f ) determines the amplitude of
the component sine waves as a function of the frequency,f , which is defined as the number

of cycles perN points. To generate pink noise, we setS( f ) = √
1/ f (henceS( f ) =

√
i
N

in (2)) and refer to the data generated using this method as sinusoidal pink noise (or SPN).

2.2 White noise

Two different white noise data were used in this study: (i) normal and (ii) uniformly
distributed. They were obtained both by using the built-in random number generators in
Matlab, and by employing theran2 andgasdev routines from Numerical Recipes (Press
et al., 1988). No significant differences between these different random number generators
were observed.

Note that when applying the Pimm and Redfearn method to our various data sets, we
used their ‘nested’ algorithm, in which SDL is successively calculated for the firsti points,
wherei = 2, 3, . . . , n. The use of their ‘non-nested’ algorithm gives rise to very similar
results.

3. Results

As stated earlier, Pimm and Redfearn showed that variability increased for data with a
reddened spectrum (Fig. 1(a)). Our numerical explorations have shown, however, that this
need not always be the case. For different realizations of the same artificially generated
pink noise process (whether RPD or SPN), it is possible to observe no change, an initial
decline in variability with length of census period, or the expected increase (Fig. 1(b)).
To document how often we may observe these contrasting patterns, we generated 10 000
replicate pink noise time series data using (1) and (2). For each time series, we first
carried out a linear regression of SDL versus census length—the frequency distribution of
regression slopes for RPD is presented in Fig. 1(b) (inset). Next, we explored the frequency
histograms of variability as a function of census length. The distribution of the slope of
the linear regressions provides an indicator of the frequency with which SDL shows a
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FIG. 2. (a) We plot the frequency with which 10 000 replicate RPD are detected as red, white or blue. This
is achieved by carrying out a linear regression of SDL (calculated using Pimm and Redfearn’s nested method)
against census period length and determining whether the slope is statistically different from zero (at the 95%
level). (b) The same procedure is repeated for white noise data, generated by a normal distribution, with mean
0 and variance 1. To ensure all series are positive, the value of 100 was arbitarily added to the data, which were
then detrended and had the mean subtracted.

systematic trend with census length. We found that in around 10% of cases there is a
statistically significant initial decline (at the 95% level) in variability with census length,
independent of the algorithm used to generate the data. More importantly, however, in
more than 20% of cases, the slope is not significantly different from zero. This is shown
in Fig. 2(a), where for 10 000 pink noise time series of various lengths, the probability of
the generated data being significantly red, white or blue are calculated. Hence, using this
method, it is clearly unwise to attempt to infer the colour of a time series based on a single
(or a very few) replicate(s). Once the output from a very large number (10 000) of replicate
time series are averaged, however, a pronounced and consistent increase in variability with
length of census period can be detected (Fig. 3, navy blue and green lines).

Our analyses also suggest there are subtleties involved when the data are generated by
a white noise process. Given data with uncorrelated successive terms, variability should,
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FIG. 3. Patterns of change in SDL with census length for a variety of white and pink noises for the means of
10 000 replicate time series (using Pimm and Redfearn’s nested method). The figure clearly demonstrates that the
qualitative behaviour observed is independent of the precise method used to generate the data. All white noise
data show a dramatic initial increase in SDL but level out for reasonable census lengths of eight or more points
(see main text). For uniformly distributed white noise, we used Matlab’s in-built random number generator (red
line) and theran2 routine (light blue line) from Numerical Recipes (Presset al., 1988). We generated Gaussian
white noise both according to the iterated methodgasdev (purple line) outlined in Presset al. (1988, pp. 288–
290) and the in-built generator in Matlab (gold line). To generate 1/ f noise, again we used two different methods,
as outlined in the main text. The results for SPN data are represented by the navy blue line and RPD are plotted
in green. All data are treated as outlined in the legend of Fig. 2.

in theory, be independent of census period. We found, in contrast, that for both uniform
and normally distributed random noise, there is (at the 95% level) a statistically significant
initial increase in variability with census length (Figs 2(b) and 3). The explanation for
these findings is straightforward. When the census length is short, the sample mean is not
an accurate estimate of the underlying mean, resulting in underestimation of the sample
variance (i.e. there is small sample bias). The implication of these results are clear: not all
data that demonstrate an initial increase in variability with census length are necessarily
reddened.

We explored this issue further by modifying Pimm and Redfearn’s algorithm. Rather
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FIG. 4. Results of the segmentation method outlined by Miramontes & Rohani (2002) as applied to one white
(uniformly distributed) and one pink (RPD) time series. Each time series consists of only 64 points. For each
census lengthi , we have plotted the mean scaling exponent (α) estimated and the associated standard error.

than plotting the SDL for the first 2, 3, . . . , n points, we estimated the SDL for all pairs,
triplets, quadruplets etc. in the data. For example, if we have a time series of length 32, then
at census length 2 we calculate the mean SDL of 31 pairs of consecutive numbers. Using
this technique to analyse pink noise time series, we havealwaysobserved a statistically
significant increase in SDL as census length increases, even for a single time series.
Similarly, when data generated by a white noise process were analysed in this manner,
a statistically significant trend in SDL with census length is never observed. Indeed, if
we were to reproduce Figs 2(a) and (b) for this modified technique, we would observe
purely red and purely white panels for pink and white noise, respectively. This approach
is generally acknowledged as a more reliable indicator time series colour and has already
been successfully applied to various data sets (Mandelbrot & Wallis, 1969; Cyr, 1997;
Inchausti & Halley, 2001).

Elsewhere (Miramontes & Rohani, 2002), we have proposed an alternative frequency-
based method for estimating the colour of short time series. This method is based on
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splitting any given time series of lengthN into n smaller segments of lengthN +1−n. For
each segment, the power spectrum is calculated and a linear regression is carried out on the
log(power) versus log(frequency). This yields the scaling exponentα from the relationship
P( f ) ≈ f α. Thus, for each segment length, we haven (non-independent) estimates ofα,
the average of which provides an accurate indication of the time series’ inherent colour (for
further details, we refer the reader to Miramontes & Rohani, 2002). An illustration of this
technique is provided in Fig. 4, where the scaling exponent is estimated for white (α = 0)
and pink (α = −1) time series data consisting of 64 points. The figure shows that when
the segments are really short (n = 4), the method cannot reliably distinguish between pink
and white noise. When the data are split into segments consisting of eight or more points,
however, there is a significant difference between the estimated scaling exponents and the
method correctly detects the underlying colour of the data. This approach is similar in spirit
to that adopted by Inchausti & Halley (2001), with the key difference being the averaging
of the exponent estimated from each segment.

4. Discussion

The accurate detection of the inherent colour of ecological datasets remains an interesting
and topical issue. Recently, Inchausti & Halley (2001) have made an important contribution
to this subject by analysing a large number oflong population time series from the Global
Population Dynamics Database. They concluded that more than 80% of these are red-
shifted. The technique Inchausti & Halley (2001) employed is robust and their study
clearly reinforces Pimm and Redfearn’s findings. We believe, however, that important
methodological issues remain over how one may explore temporal variability in relatively
short time series. Unfortunately, the method Pimm and Redfearn applied to data may
incorrectly detect ‘redness’ in time series generated using a white noise process, or attribute
‘whiteness’ to data from an autocorrelated process.

In this paper, we have suggested that one possible solution may be to investigate the
relationship between SDL and all census segments of sizei , for i = 2, . . . n (Cyr, 1997;
Inchausti & Halley, 2001). This method, even for a very small number of replicates, gives
much more consistent results and may be more reliable when attempting to detect the
colour of a short time series, although greater care is needed when discussing the statistical
significance of the averaged results. We have also proposed that Fourier analysis of such
multiple segments may also be used to establish the inherent colour of time series. This
approach has been shown to give very accurate results, even for very short time series
(Miramontes & Rohani, 2002).

While we do not believe that the discrepancies and subtleties highlighted above cast
doubt on the qualitative conclusions of Pimm & Redfearn—notably that many ecological
processes are reddened—our results suggest that a careful re-examination of their data may
be advisable. While there remain significant technical complications, the two approaches
briefly outlined above may represent appealing alternatives.
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