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SUMMARY

Many of the fundamental concepts in studying infectious diseases are rooted in population ecology. We describe the
importance of population ecology in exploring central issues in infectious disease research including identifying the drivers
and dynamics of host-pathogen interactions and pathogen persistence, and evaluating the success of public health policies.
The use of ecological concepts in infectious disease research is demonstrated with simple theoretical examples in addition to
an analysis of case notification data of pertussis, a childhood respiratory disease, in Thailand as a case study. We stress that
further integration of these fields will have significant impacts in infectious diseases research.

Key words: Population ecology, spatio-temporal dynamics, persistence, pertussis.

INTRODUCTION

While they may superficially appear to be distantly
related, research on the epidemiology of infectious
diseases encompasses a wide range of concepts from
population ecology, which is concerned with the
abundance of organisms in space and time, arising
from both biotic interactions and with their environ-
ment. Since the classic work of Anderson and May
(1979), the link between ecology and epidemiology
has been increasingly recognized and the cross-talk
has been mutually beneficial. Epidemiology has
benefited from the adaptation of concepts and
analytical tools developed in population ecology,
while providing some of the most exciting test-beds
of ecological theory (May and Anderson, 1977; Earn
et al. 1998).

We begin by describing some of the key concepts
from population ecology and discuss their relevance
to infectious disease systems, with emphasis on
persistence mechanisms and spatio-temporal popu-
lation dynamics. This description is coupled with
simple theoretical models to demonstrate the appli-
cability of some of the key concepts from population
ecology. Finally, we describe several metrics derived
from ecology that have been used in recent years to
interrogate infectious disease data; we provide em-
pirical examples of these methods using time series

incidence data for pertussis, or whooping cough, in
Thailand.

CONCEPTS FROM POPULATION ECOLOGY

Temporal dynamics and periodicity

The pattern of temporal changes in, for example,
species abundance in a given region can provide
insight into the underlying drivers of population
dynamics. A historically important demonstration of
this claim comes from the study of measles. While
studying the case reports of measles in Glasgow
in early 20th Century, Soper (1929) noted a striking
contrast. On the one hand, the theoretical constructs
proposed to explain measles transmission within
a population predict an equilibrium prevalence in
the long run (Hamer, 1906). On the other hand,
the epidemiological data from Glasgow and other
locations exhibited large amplitude fluctuations.
This discord led Soper to examine the data in a bid
to identify the key, missing ingredient in mathemat-
ical models. He concluded that measles transmission
is strongly seasonal, with most transmission occur-
ring during the autumn/winter months and that
annually occurring factors, such as the congregation
of children in schools, were the most likely expla-
nations for such a ‘seasonal influence’.

Since the classic work of Soper, the contribution of
seasonality to the transmission dynamics of infectious
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diseases has become well established (London and
Yorke, 1973; Dietz, 1976; Altizer et al. 2006; Grassly
and Fraser, 2006). A variety of mechanisms may lead
to seasonality in transmission. In directly transmitted
infectious diseases, for example, seasonal variation
in social behaviours can generate temporal patterns
in host contact rates (Fine and Clarkson, 1982;
Finkenstädt and Grenfell, 2000; Ferrari et al. 2008;
Metcalf et al. 2009; Mantilla-Beniers et al. 2010;
Bharti et al. 2011). Vector-borne diseases, on the
other hand, commonly exhibit seasonal variation
resulting from changes in vector biology. For
example, climatic factors including rainfall and
temperature may affect mosquito (1) abundance, (2)
the gonotrophic cycle, or (3) the extrinsic incubation
period, thereby shaping seasonal trends in the
transmission of pathogens such as malaria and
dengue (Watts et al. 1987; Hoshen and Morse,
2004). In other infectious disease systems, seasonality
may be generated via differential pathogen survival
(e.g. influenza viruses circulating in humans; Shaman
et al. 2010), pulsed host breeding (avian influenza
viruses; Breban et al. 2009) or host susceptibility,
perhaps modulated by photoperiod (Dowell, 2001).
In addition to varying incidence seasonally, a

number of infectious disease systems exhibit multi-
year inter-epidemic periods – defined as the time
between successive large epidemics (Cummings
et al. 2004; Metcalf et al. 2010; Rohani and King,
2010). For example, prior to mass immunization
programmes,measles incidence inEngland andWales
exhibited a biennial period (Bolker and Grenfell,
1996; Rohani et al. 1999; Earn et al. 2000). Similarly,
pertussis incidence is usually characterized by multi-
ennial fluctuations with inter-epidemic periods
ranging from 2–5 years (Hethcote, 1998; Rohani
et al. 1999; Broutin et al. 2005). To demonstrate the
epidemiological processes generating these multi-
ennial periods, we used a simple seasonally forced
deterministic model following the Susceptible
(S)-Infected (I )-Recovered (R) framework (Dietz,
1976; Anderson andMay, 1991; Keeling and Rohani,
2008) with parameters that loosely correspond
to pertussis. A schematic diagram of this model is
provided in Fig. 1. From theory, we know that
epidemic growth requires the fraction of the popu-
lation in the susceptible pool to be greater than a
critical threshold, given by the inverse of the basic
reproduction number, R0 (Anderson andMay, 1991;
Keeling and Rohani, 2008). In Fig. 1A, we observed
the transient dynamics beginning when the fraction
of susceptibles (grey line) falls above its critical
threshold (thin black line), thereby allowing epidemic
take-off. While the fraction susceptible individuals
remains above the threshold, prevalence continues
to increase and peaks at the point in which the
susceptible fraction (S/N) intersects its threshold
level. The epidemic depletes the susceptible pool,
and with replenishment, via susceptible births, takes

longer than one year, thereby generating multiennial
cycles (Keeling and Rohani, 2008).
Epidemiological theory has also shown that the

time between each epidemic, or the inter-epidemic
period, increases following the roll-out of immuniz-
ation (Anderson and May, 1991; Keeling and
Rohani, 2008). This is because immunization pro-
grammes effectively slow down the rate at which the
susceptible class is replenished, resulting in a longer
waiting time before the susceptible threshold is
reached. This concept is demonstrated in Fig. 1B,
where we examined the same model as in Fig. 1A,
but introduced vaccination with uptake of 50%,
implemented by simply discounting the birth rate
accordingly. In the absence of vaccination, an inter-
epidemic period of *3·1 years is observed and
following the introduction of vaccination, the inter-
epidemic period rises to *4·4 years; a result that has
been confirmed empirically. For example, Broutin
et al. (2010) showed that in a number of countries for
which incidence data are available prior to and after
the introduction of routine infant immunization
programmes that, on average, the inter-epidemic
period of pertussis increases by 1·27 years.
Anticipating our analysis of pertussis in Thailand

as a case study, we point out that periodicity in
infectious disease systems is determined by a com-
bination of the amplitude of seasonality β1 the
vaccination coverage p and the pathogen transmission
potential, as quantified by the basic reproductive
ratio, R0, (Bailey, 1975; Anderson and May, 1991;
Bauch and Earn, 2003; Keeling and Rohani, 2008).
Focusing on the former two, we used global wavelet
analysis (described in greater detail in subsequent
sections) to determine the dominant, statistically
significant period of model output over various
values of p and β1 (Fig. 2). For low levels of
seasonality, as vaccine uptake increases, there is a
clear increase in the inter-epidemic period, consistent
with empirical observations (Rohani et al. 2000;
Grenfell et al. 2001; Broutin et al. 2005, 2010).
Importantly, when seasonality is strong, multiennial
epidemics give way to annual outbreaks, providing an
example of ‘harmonic oscillation’.
Understanding the periodicity of infectious dis-

eases has clear public health implications – the timing
of epidemics could directly affect the design and
effectiveness of vaccination programmes. In the
model presented in this section, we considered only
routine vaccination such that some fraction p of
newborns were vaccinated. An alternative method
that has been proposed is pulsed vaccination, which
recommends episodic vaccination campaigns that
ensure the fraction susceptible is always below the
epidemic threshold. This approach has been dis-
cussed as a potential strategy for eliminating diseases
including measles and polio (Nokes and Swinton,
1997) and the current World Health Organization
strategies for controlling polio are heavily centered
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on administering vaccines annually on a designated
national immunization day (Heymann and Aylward,
2004). However, as shown by Choisy et al. (2006),
under some circumstances, a pulse vaccination
strategy can result potentially in increased numbers
of infectious individuals. Further, these authors
stress the importance of accounting for many aspects
of the disease dynamics, including seasonal trans-
mission.

Pathogen persistence, synchrony and spatial
interactions

Persistence is a fundamental concept in population
ecology, with long-standing contentious debates on

the central determinants of population regulation.
This concept is especially important in applied
ecology, where conservation biologists aim to under-
stand those factors that promote the persistence of
endangered populations, or may limit the spread
of invasive species in their non-native habitats.
Therefore, commonly addressed questions in many
ecological contexts include the determinants of
persistence, the relevant spatial scale of dispersal
and the appropriate spatially structured intervention
strategies to ensure conservation of endangered
species and the management of pest or invasive
species. There is an obvious connection between
spatial ecology and infectious disease systems
(Nee, 1994; Grenfell and Harwood, 1997). Studies

A

B

Fig. 1. A. The number of susceptible (grey) and infectious individuals (red) with vaccine uptake P=0, generating an
interepidemic period of *3·1 years. B. Same as A but with P=0·5, increasing the interepidemic period to *4·4 years.
In both, the thin black line is the mean critical threshold for S to allow epidemic growth, or N/R0 where R0=β(t)/γ and γ
is the duration of the infectious period. The number of susceptibles is indicated by a dashed line when S falls above the
threshold and solid elsewhere. We note that this represents the transient stage of the deterministic dynamics, resulting in
a damping of the oscillations. A schematic representation of the SIR model used is provided on the right; parameters
roughly correspond to pertussis with weak seasonality where seasonality is modeled as a sinusoidal curve β0(1+β1sin
(2πt)) (parameters are day−1): γ=1/21, β0=1 (corresponding to an R0 of 16), β1=0·01, N=1×10^5, μ=1/(60*365)
(i.e. mean lifespan is 60 years).
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of infectious diseases have a central goal of finding
determinants of pathogen persistence within a host
population and ultimately utilizing these findings
to attempt to prevent epidemics and control the
pathogen. Further, host-pathogen interactions op-
erate on multiple spatial scales, making it essential
to consider persistence dynamics at the appropriate
scales.
First introduced in 1957 by Bartlett, the Critical

Community Size (CCS), or the population size below
which a particular pathogen exhibits frequent ex-
tinctions, is a central concept in disease persistence
(Bartlett, 1957). The CCS is expected to increase
following the onset of vaccination, indicating fre-
quent extinctions in large populations as a conse-
quence of reduced pathogen transmission. For
example, Rohani et al. (2000) demonstrated that
following the onset of pertussis immunization pro-
grammes in England andWales, there was a dramatic
increase in the observed CCS. Similar findings
have been documented for pertussis in Niakhar,
Senegal (Broutin et al. 2004). Importantly, estimat-
ing the CCS can identify populations that are less
likely to exhibit stochastic extinctions and conse-
quently inform vaccination strategies (Grenfell et al.
2001).
One method of quantifying the CCS is by

identifying the relationship between population size
and the mean number of fade-outs, or stochastic

extinctions, per year. Stochastic SIR-type models
provide a means to estimate the CCS; however, the
resulting CCS will vary depending on model
assumptions and parameters (Conlan et al. 2010).
We illustrate these concepts by implementing a
simple SIR model with stochastic infectious imports
for three different levels of vaccine uptake. Defining
a fade-out is disease specific and depends on the
characteristic generation length (the time to recovery
once an individual contracts an infection) of that
pathogen. Pertussis, for example, has a latent period
of *8 days followed by a mean infectious period
of 14–21 days (Crowcroft et al. 2003; Wearing and
Rohani, 2009). Here, it is reasonable to assume that a
fade-out had occurred and the chain of transmission
was broken when no cases were reported for at least
one month. Averaging over 100 stochastic realiz-
ations of the model, we estimate the mean number of
fade-outs per year over 50 years for various different
population sizes. To obtain an approximation of the
CCS, an exponential curve is fitted to the output and
in the absence of vaccination it is estimated that the
CCS is *600,000 for the specified per capita birth
rate (Fig. 3, black line). When vaccine uptake reaches
40%, the CCS increases to *8×105 (Fig. 3, red line)
and when vaccine uptake is increased to 80% the CCS
is in excess of 106 (Fig. 3, blue line).
Importantly, in the absence of importation of

infectious individuals, the pathogen would remain

Fig. 2. Dominant statistically significant multiennial period from the global wavelet spectrum for various levels of
vaccine uptake and amplitude of seasonality. Black regions indicate that the only significant period is annual, and in this
example there are no parameter combinations that result in a dominant 2-year signal. The model is the same used in
Fig. 1 with γ=1/21 and the initial number of susceptible individuals (S0) chosen to fall above its critical threshold.
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extinct. This highlights the importance of under-
standing the patterns of spatial synchrony. Crucially,
asynchrony in the timing of epidemics between
neighbouring populations facilitates this reseeding
of infections to prevent local extinction, known as the
rescue effect in ecology (Brown and Kodric-Brown,
1977). The importance of synchrony and the rescue
effect is demonstrated in measles dynamics in
England and Wales. Prior to vaccination, fade-outs
were only observed in rural communities, with a
critical community size of 250,000–300,000. In this
era, therewas also strong spatial synchrony inmeasles
epidemics across England and Wales (Bolker and
Grenfell, 1996; Rohani et al. 1999). The introduction
of national pediatric vaccination led to a dramatic
decline in measles incidence, but, paradoxically, did
not increase the critical community size as would
be expected from theory (Bolker and Grenfell, 1996).
A potential explanation for this surprising phenom-
enon lies in the spatial ecology of measles.
Specifically, it has been shown that the onset of
immunization coincided with a significant decline
in spatial synchrony across populations (Bolker and
Grenfell, 1996; Rohani et al. 1999), which may have
promoted the persistence of measles at the national
scale (Earn et al. 1998; Rohani et al. 1999; Grenfell
et al. 2001). This example demonstrates that patterns
of synchrony can shed light on important though
paradoxical behaviour of infectious disease dynamics.
Moreover, it stresses the importance of spatial

synchrony in the context of disease control and
eradication.

The rescue effect falls under the umbrella of
metapopulation dynamics and these concepts are
tightly bound to understanding the drivers of move-
ment of individuals between populations, which, in
turn, allows for local persistence via the rescue
effect. Incidence of dengue virus in Thailand, for
example, is characterized by strong annual variability
(Cummings et al. 2004). It is likely shaped by several
interacting factors including climatic patterns which
influence vector dynamics, thereby initially compli-
cating the identification of clear spatio-temporal
patterns. Cummings et al. (2004) however, analysed
the spatial synchrony of multiennial epidemics
finding that spatial synchrony largely declined with
distance. This decline in synchrony with distance
indicated diffusive spread originating in Bangkok, the
country’s capital and largest city. Such spatial
hierarchies have also been observed in other contexts.
For example, spatial signatures may arise from
gravity coupling or the concept that the degree of
host migration is proportional to the product of the
population density of their locations divided by the
square of the distance between them. This is parallel
to the concept of source-sink dynamics in that high-
density population centres (or sources) can reseed
infection in low-density populations (or sinks).
Work-flow patterns, rather than geographical dis-
tance, have been demonstrated to exhibit this type of
gravity coupling with seasonal influenza spread
significantly correlated with work-flow (Viboud
et al. 2006). Clearly, understanding these dynamics
has implications in both predicting and targeting
high-risk regions in vaccination programs.

PERTUSSIS IN THAILAND AS A CASE STUDY

Pertussis is a highly infectious respiratory disease
caused by the Gram-negative bacterium Bordetella
pertussis and is transmitted directly via aerosol
droplets between infected and susceptible individ-
uals. Pertussis vaccination programmes were intro-
duced in many developing countries in the 1940s and
1950s, leading to a substantial decline in incidence.
However, a rise in incidence has been recently
reported in many highly vaccinated countries,
including the United States and several European
countries (Bass and Stephenson, 1987; Celentano
et al. 2005). Moreover, the burden of pertussis
remains significant and is a major public health
priority accounting for nearly 300,000 pediatric
deaths worldwide, primarily in developing countries
(Crowcroft and Pebody, 2006).

In the following sections, we apply several metrics
founded in the ecological concepts outlined in the
previous sections to a high-resolution dataset of
pertussis incidence in Thailand from 1981–2000.
The data were obtained from the Ministry of Public

Fig. 3. Mean number of disease extinctions per year over
100 realizations of 50 years using Gillespie’s algorithm to
simulate a basic SIR model. Parameters are identical to
those used in Fig. 1 with transmission held constant at β0
and a stochastic import rate of 2 per 105 individuals per
year. Black holds vaccine uptake p at 0, red at 0·4, and
blue at 0·8. The lines represent the best fit exponential
curve and the shading indicates the standard errors. The
horizontal grey dashed line is the extinction threshold and
the vertical black and red dashed lines represent the CCS
for P=0 and P=0·4, which are found to be *6×105 and
*8×105, respectively. The CCS when P=0·8 is greater
than 106.
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Health and are comprised of monthly case reports
over the duration of the time period for each
of Thailand’s 72 provinces. We additionally utilize
population data obtained from the National
Statistical Office of Thailand (1980, 1991, 2001).
In Thailand, mass vaccination efforts began in

1977 with the National Expanded Programme on
Immunization (EPI) (Bhunbhu, 1989). We separate
the data into two distinct vaccine periods: from
1981–1989 where vaccine uptake had a low of 26% in
1982 and continued to rise throughout the decade,
and from 1990–2000 when vaccine uptake main-
tained levels greater than 90%. This level of vaccine
uptake was maintained across all provinces. Over the
duration of these two eras, pertussis incidence
declined at the national level (Fig. 4A) as well as the
provincial level (Fig. 5). This dataset allows for a
comparative analysis of pre-vaccine versus vaccine
era dynamics.

Temporal dynamics and periodicity

Seasonal transmission patterns have clear impli-
cations in infectious disease research, as described
in previous sections. Given a time series of incidence
data, a time series SIR (TSIR) model has been
proposed as a method of estimating seasonal trans-
mission parameters β(t) (Finkenstädt and Grenfell,
2000; Finkenstädt et al. 2002). These methods have
been used to determine seasonal transmission rates
in several other infectious diseases, including
measles, mumps and pertussis (Finkenstädt et al.
2002; Metcalf et al. 2009; Mantilla-Beniers et al.
2010). Using similar methods, Fig. 4B displays the
estimated seasonal transmission of pertussis in
Thailand (see ESM for details). Interestingly, the
Thailand data exhibit very strong seasonality, as
characterized by the high estimated seasonal ampli-
tude. This strong seasonality is evident by observing
the incidence dynamics during the 1980s (Fig. 4A).

The peak of transmission occurs between May and
June, which corresponds to both the beginning of the
rainy season in addition to the start of the school year
and consequently, one of these factors may drive this
seasonal pattern.
We explore the periodicity of pertussis in Thailand

using the Fourier transform (Chatfield, 1996). Here,
a time series is transformed into its frequency domain
and the power at a particular frequency (the inverse of
the period) can be quantified. This approach assumes
that the time series is stationary, or that a particular
periodic signal remains constant throughout the
course of a time series. Infectious diseases, however,
generally exhibit non-stationarity, especially when
comparing pre- and post-vaccination eras. For
example, pre-vaccine measles in England and Wales
was characterized by a biennial period but in the post-
vaccine era the epidemics were significantly smaller
with a longer multiennial period (Bolker and
Grenfell, 1996; Rohani et al. 1999). As previously
discussed, the onset of vaccination usually corre-
sponds to an increase in the interepidemic period
by depleting susceptible recruitment, resulting in
a longer waiting time before a successive epidemic.
Such increases in inter-epidemic period have pre-
viously been reported in pertussis dynamics (Rohani
et al. 2000; Broutin et al. 2005, 2010; Wearing and
Rohani, 2009).
To account for non-stationarity in disease dy-

namics, wavelet analysis is a popular alternative
approach and has been used to study periodicity in
many infectious diseases including dengue fever,
measles and pertussis (Broutin et al. 2005; Johansson
et al. 2009; Mantilla-Beniers et al. 2010; Thai et al.
2010). In summary, wavelet analysis uses a family of
functions to decompose the time series into time-
frequency space so that local variation in periodicity
can be studied. Furthermore, analogous to the
Fourier transform, the global wavelet spectrum can
be computed by averaging the wavelet spectrum over

Fig. 4. A. Time series of pertussis incidence in Thailand (black) and annual vaccine uptake (red). B. Monthly
transmission parameters estimated using the TSIR framework. Parameters are normalized to have zero mean.
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time. We perform wavelet analysis by implementing
the methodology and wavelet software provided by
Torrence and Compo (1998a,b).

Fig. 6 provides a wavelet analysis of the national
incidence time series in Thailand, with thick black
lines identifying statistically significant periods.
From this, it becomes evident that there were only
significant annual epidemics prior to 1990. After this
period (and after vaccine uptake reached levels
>90%), the annual periodicity is no longer significant.
Importantly, there are no significant multiennial
periods. We submit that this is a direct consequence
of the high amplitude of seasonality observed in
Fig. 4B. As demonstrated in Fig. 2, when the seasonal
amplitude is large the epidemiological dynamics are
characterized by annual outbreaks.

Pathogen persistence, synchrony and spatial
interactions

The CCS is an important metric used to determine
the population size below which a pathogen exhibits
frequent extinctions. Using the same definition of
a fade-out as that used in Fig. 3, we estimated a CCS
of*7·7×105 in the beginning years of immunization
programmes in Thailand from 1981–1989 (Fig. 7).
In contrast, from 1990–2000 the CCS cannot be
identified because frequent extinctions occur for
all population sizes of provinces in Thailand. This

indicates a much larger CCS, providing indication
that increased vaccine uptake has successfully re-
duced transmission.

Several mechanisms can drive spatio-temporal
patterns in disease incidence and synchrony plays a
large role in identifying these spatial patterns. A
commonly used indicator of spatial synchrony
is through the non-parametric spatial covariance
function, which provides a quantitative measure of
spatio-temporal dependence between time series
when plotted against distance between locations
(Bjørnstad and Falck, 2001). We determined the
synchrony of pertussis in Thailand using the time
series of pertussis case notification for each of
Thailand’s 72 provinces (Fig. 8). The figure displays
a smoothed spline fit to the correlation coefficients,
with the 95% confidence region in blue and a
correlation coefficient of one corresponds to strong
synchrony and a value of zero indicates no corre-
lation. Here there is initially a small decline in
synchrony with distance –which can indicate diffu-
sive spread – but more critically there is a strong
baseline synchrony between provinces in that,
regardless of distance, provinces maintain roughly
the same level of synchrony. Moreover, the baseline
level of synchrony is higher than previous studies of
pertussis. Specifically, we documented a baseline
synchrony of 0·28, while the comparable value was
only 0·14 in the pre-vaccine era in England andWales

Fig. 5. Log transform of mean annual incidence in each of Thailand’s provinces from 1981–1985 (top left), 1986–1990
(top right), 1991–1995 (bottom left), and 1996–2000 (bottom right). This demonstrates a decline in incidence across all
provinces corresponding the increases in vaccine uptake.
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(Rohani et al. 1999). Again, we consider this to be due
to the strong seasonal forcing of pertussis trans-
mission in Thailand (Fig. 4B) – the seasonality
generates epidemics throughout the provinces of
Thailand that peak in similar months. This consist-
ency throughout Thailand diminishes the impact of
spatial interactions.
As described in previous sections, it has also

frequently been found that diffusion emanating
from large population centres can promote global
persistence. Declining synchrony with distance from
a population centre can indicate this type of spatial
spread (e.g. Grenfell et al. 2001; Cummings et al.
2004; Viboud et al. 2006). To determine the presence
of this type of spatial hierarchy, we additionally
determined synchrony as a function of distance from
Bangkok, which is the capital of Thailand and also
has the largest population. Again we see a similar
pattern to that observed in Fig. 8, indicating that
highly synchronized annual epidemics limit the
existence of spatial hierarchies (Blackwood et al.
unpublished data).

DISCUSSION

Integrating concepts from population ecology
into infectious disease research has led to a large
body of literature dissecting the determinants of

observed host-pathogen spatio-temporal dynamics.
Importantly, a mechanistic understanding of epide-
miological dynamics permits inferences to be made
about the potential impacts of changes, be they the
implementation of novel vaccination schemes, secu-
lar trends in population demography or pathogen
biology. We have attempted to motivate the use of
ecological concepts in disease research through
simple theoretical explorations in addition to em-
pirical examples of ecological metrics applied to
case notification data of pertussis in Thailand.
Importantly, each of the described concepts has
implications in evaluating immunization pro-
grammes and minimizing the mortality and morbid-
ity associated with disease.
While we have emphasized the spatio-temporal

patterns that shape pathogen persistence and the
periodicity of epidemics, other population-level
facets affect disease dynamics. For example, demo-
graphic changes directly affect the recruitment rate of
susceptibles which, in turn, affects the force of
infection by modulating the proportion of the
population in the immune class. These impacts of
birth rate on the force of infection have been shown
to have important consequences on the transmission
of dengue in Thailand, which underwent a demo-
graphic transition to lower birth rates resulting in a
lower force of infection (Cummings et al. 2009).

Fig. 6. Wavelet analysis of pertussis in Thailand. The thin black line indicates the ‘cone of influence’, regions inside of
which are not influenced by edge effects (a consequence of using a finite time series) (Torrence and Compo, 1998b). The
thick black circles indicate statistical significant periods, and the colour map indicates power with dark red representing
the highest observed power. Periods are statistically significant if their power falls above the red noise spectrum. A
significant annual period is observed in the early 1980s and becomes damped following the onset of vaccination.
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Furthermore, integration of ecology and epidemiol-
ogy is not limited to well-established infectious
diseases of humans as we emphasize here; the threat
of emerging and re-emerging infectious diseases
in humans and wildlife poses challenges to our
current understanding of host-pathogen interactions.
Ecological mechanisms driving ‘emergence events’

are largely unknown, presenting unpredictable
threats to human health. It is therefore a public
health priority to identify these mechanisms, illus-
trating the urgency in fostering collaboration be-
tween ecologists and epidemiologists.

Multidisciplinary approaches to deciphering in-
fectious disease dynamics have successfully improved
our understanding of host-pathogen interactions, but
infectious diseases remain a major source of mortality
and morbidity worldwide. Collaboration will help to
break new ground and confront future challenges
caused by both pre-existing and emerging infectious
diseases. Concerted efforts are required to obtain the
necessary data (e.g. high resolution case notification
and demographic data) to identify patterns and
trends in the dynamics of host-pathogen interactions.
This provides a test-bed for ecological theory, and
importantly also provides a means to develop our
understanding of the consequences of vaccination or
other control measures on disease. Many challenges
remain in infectious disease research, and we stress
that the integration of ecology and epidemiology has
critical implications in public health.
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