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In spite of medical breakthroughs, the emergence of pathogens continues to pose

threats to both human and animal populations. We present candidate approaches

for anticipating disease emergence prior to large-scale outbreaks. Through use of

ideas from the theories of dynamical systems and stochastic processes we develop

approaches which are not specific to a particular disease system or model, but

instead have general applicability. The indicators of disease emergence detailed

in this paper can be classified into two parallel approaches: a set of early-warning

signals based around the theory of critical slowing down and a likelihood-based

approach. To test the reliability of these two approaches we contrast theoretical

predictions with simulated data. We find good support for our methods across

a range of different model structures and parameter values.
1. Introduction
Tipping points—where small changes in circumstances precipitate dramatic shifts

in state—are a feature of many natural systems. These sudden transitions can have

devastating consequences, for example, irreversible climate change [1] or ecologi-

cal collapse [2]. Forewarning, with sufficient time to act, is of clear importance.

In principle, careful scientific research and detailed mechanistic understand-

ing could lead to the formulation of predictive models capable of anticipating

such transitions. However the combination of nonlinearity, non-stationarity,

noise and data availability is a barrier to mechanistic modelling for many

natural systems. There has been a trend towards looking for alternative

methods of anticipating transitions, which do not rely on an empirically vali-

dated model [3]. One promising avenue is the development of early-warning

signals (EWS) [4], which are summary statistics derived from dynamical

systems theory and are calculable directly from observed data.

Dynamical systems theory states that as a stable system approaches a tipping

point, the time taken to recover after a perturbation increases; ultimately diverging

at the transition [4]. This phenomenon, known as critical slowing down, is expected

to be observable in systems which are continually subject to shocks—whose origin

can be either extrinsic (for instance, environmental fluctuations) or intrinsic (such

as demographic noise). The effects of critical slowing down are manifest in the time

series, leading to systematic changes in the summary statistics. For example, due to

the persistence of perturbations the time series becomes increasingly correlated,

which can be measured by the autocorrelation and correlation time. Because

EWS are informed by generic properties derived from dynamical systems theory

they have a key advantage over model fitting approaches: detailed calibration is

not required. EWS have been applied to anticipate transitions in a range of complex

systems, including ecosystem collapse in lakes and microbial communities [5,6],

desertification in arid ecosystems [7] and changes in climate [8].

Identifying reliable warning signals is especially timely for emerging infectious

diseases. Examples of pathogens with pandemic potential include influenza virus

[9] and SARS-like coronaviruses [10]. Similarly, pathogens which have been

successfully controlled can re-emerge, for example, pertussis [11].
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Figure 1. (a) Simulation of disease elimination through vaccination. At time
T ¼ 8 years the vaccine threshold for elimination is reached. Weekly data
were generated using the SIR model with birth and death [20]. The mean
infectious period 1/g ¼ 14 days, the death rate m ¼ 0.02 yr21, R0 ¼ b/
(g þ m) ¼ 5 and the population size N ¼ 4 � 105. The birth rate of sus-
ceptible individuals is affected by vaccination via n ¼ m(1 2 v), where v is
the vaccine uptake, which linearly increases from 0 to 1 over the 10 year
period. The elimination threshold is passed when v ¼ 1 2 R21

0 ¼ 0.8.
(b) Simulation of disease emergence through increasing infectiousness. Simu-
lations were performed using an SIS model with 1/g ¼ 7 days, N ¼ 103 and
with R0 ¼ b/g increasing linearly from 0 to 1.25 over the 10 year period.
Susceptible individuals acquire infection from external sources with
per capita rate z/N ¼ 7 � 1024 d21. All simulations in this paper are
performed using the NRM algorithm [25,26]. (Online version in colour.)
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Constructing validated models for emerging diseases is

complicated in part by complexity, and also by virtue of

the pathogen’s novelty in a new host. Key epidemiological

determinants, such as the infectious period, the mode of trans-

mission, infectiousness and rate of spillover, are typically

unknown or poorly quantified. This makes them a prime can-

didate for model-free approaches, such as EWS. To date, work

on anticipating disease emergence has predominantly focused

on specific systems and models, for instance, in studies on the

effects of climate change on disease emergence [12], with a

previous attempt at applying EWS to simulated data finding

the approach to emergence difficult to detect [13].

The scenario considered in this paper is based on the slow

emergence of a pathogen. This can occur for a variety of

reasons: as a result of changing immunological landscape

(increasing the susceptible pool—cf. monkeypox [14] or

measles [15]), pathogen adaptation to new host [16],

immune evasion [17,18] or long-term transient dynamics

(the ‘honeymoon effect’ [19]). These mechanisms all lead to

increasing inter-individual transmission of the pathogen—

characterized by an increase in R0, a threshold quantity.

The primary concern for disease containment is averting

the tipping point which occurs when R0 ¼ 1.

Formally, R0 is defined as the average number of second-

ary infections caused by an infectious individual [20]. From

theory we know that if R0 , 1 transmission is subcritical

and the pathogen is incapable of long-term persistence.

Instead, continued circulation can only be sustained through

repeated reintroduction from an external reservoir. In this

regime, the transmission dynamics are characterized by

what are known as ‘stuttering chains’ [21]. On the other

hand, if R0 . 1 the disease will typically invade successfully

and grow in a fully susceptible population, leading to a large-

scale outbreak and possible endemicity [22]. Such dynamics

are referred to as supercritical. It is this transition, from

subcritical to supercritical, that we seek to anticipate.

The birth–death–immigration (BDI) process can be viewed

as the simplest possible model of emerging diseases with direct

transmission, modelling spillover of a pathogen from an exter-

nal source, together with secondary chains of transmission fed

by a large susceptible pool. A major benefit in using the BDI

process is that it has a known analytical solution [23], which

we use as the basis for the two approaches presented. For

the first approach, we derive key metrics which may be used

as EWS. The second approach uses a likelihood-based

method to formally test emergence as a hypothesis.

As they are derived from a very generic model of disease

emergence, the approaches are expected to have applicability

across directly transmitted emerging disease systems. We test

the robustness of measures to changes in model structure,

simulating disease emergence using the SIS and SIRS com-

partmental models subject to varying immunology and

demographics. Additionally, we comment on how the

speed at which the transition is crossed affects the reliability

of the two approaches, something which has been considered

poorly understood in previous work on EWS [24].
2. Early-warning signals using the birth –
death – immigration process

Previous work exploring EWS for infectious disease

dynamics has shown that performance depends on the
direction the critical transition is traversed, with the two con-

trasting cases shown in figure 1 [13]. In studies employing a

combination of analytical results and simulated data, EWS

have successfully been identified for diseases approaching

elimination—for instance, due to increasing vaccine

uptake—where R0 approaches the critical transition from

above [13,27]. The case of disease emergence has thus far

proven more challenging [13].

This challenge can be understood from a theoretical per-

spective. The conventional theory of EWS, as detailed, for

example, by Scheffer et al. [4] and used by O’Regan &

Drake [13], relies on the presence of critical slowing down,

presupposing that the system is at a stable fixed point and

subject to exponentially decaying perturbations. When the

number of infectious individuals is sufficiently large

the transmission dynamics can be well approximated as a

linearized system subject to Gaussian noise [28,29].

For endemic diseases prior to elimination the number

of infected individuals is large enough for this approxima-

tion to be valid, and EWS perform well [13]. Conversely,

for subcritical emerging diseases there are typically very

few infected individuals present in the population. This

means that the effects of demographic stochasticity feature

strongly in the dynamics [29]. The stochastic dynamics

are highly non-Gaussian and the conventional theory of

critical slowing down is invalid. In the light of these find-

ings, we instead develop EWS starting from an alternative

model, the BDI process, which explicitly incorporates

transmission between individuals. By starting from a

model which captures the conditions preceding disease

http://rsif.royalsocietypublishing.org/


Table 1. Measurable quantities calculated from the BDI process. All
expressions are valid for 0 � R0 , 1. See equations (A 3), (A 4) and (A 7)
for details.

early-warning signal formula

mean m1 ¼
z=g

1�R0

variance s2 ¼ z=g

(1� R0 )2

coefficient of variation s/m1 ¼ (z/g)21/2

index of dispersion s2=m1 ¼ 1
1� R0

correlation time �t ¼ 1
(1� R0 )g

autocorrelation AC(t) ¼ exp (�t=�t)
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emergence, we show how EWS can be expected to behave

for this class of transition, and assess their prospects as

generic indicators.

The BDI process is one of the simplest models of a

subcritical disease [23]. It neglects the effects of suscepti-

ble depletion, assuming that only a small fraction of

the population are infected at any one time, and that the

pool of susceptibles is replenished with sufficient speed.

The BDI process focuses on three simple transitions:

(i) an infected individual is introduced into the popula-

tion, (ii) the infection can spread to other individuals with

a rate proportional to the number of infected individuals

present, and (iii) infected individuals may recover from

the disease.

We assume that at a constant rate z individuals import

the infection due to contact with external sources, for

example a zoonotic reservoir. We focus on diseases which

are emerging due to changes in the transmission rate of

the disease, b(t). If there are n infected individuals pre-

sent in the population, then the total force of infection

is l(t) ¼ b(t)n þ z, and the rate of recovery is gn. Through-

out the paper we assume that changes in b(t) occur on a

much slower time scale than the typical duration of an

infection, 1/g.

The transition rate Tm,n is defined as the probability per

unit time of transitioning from a state with n infected individ-

uals to a state with m infected individuals. The BDI process is

a one-step stochastic process which consists of two possible

transitions; for infectious diseases these are infection and

recovery. Respectively, the transition rates for infection and

recovery are

Tnþ1,n ¼ ðbnþ zÞ,
Tn�1,n ¼ gn:

�
ð2:1Þ

In the BDI process, the chain of transmission stemming from

a particular introduced index case is given by a branching

process [30]. A particular outbreak can be considered as a

superposition of the separate chains of transmission

caused by each introduced case during the outbreak [31].

The basic reproductive number is defined as the average

number of secondary cases, R0 ¼ b/g, found using the

offspring distribution of the associated branching

process [30,32].

The probability of n individuals being infected at

time t is Pn(t). The change in probability with time is

found by solving the master equation, a set of coupled

linear differential equations built from the transition rates.

For the BDI process,

dPnðtÞ
dt

¼ Tn,n�1Pn�1ðtÞ þ Tn,nþ1Pnþ1ðtÞ
�½Tnþ1,n þ Tn�1,n�PnðtÞ 8 n . 0,

dP0ðtÞ
dt

¼ T0,1P1ðtÞ � T1,0P0ðtÞ:

9>>>>=
>>>>;

ð2:2Þ

The advantage in considering such a simple model is that

the master equation, which determines how the probabi-

lity distribution of the number of infectious individuals

changes in time, can be solved exactly without the need for

any approximations [23]. This can be achieved through use

of the moment generating function, Z(c, t) ¼ E[ecn(t)].

The variable c is used to find the moments and correlation

functions of the stochastic process via differentiation, for

example, the ith moment, mi ¼ E[ni] ¼ @iZ=@cijc¼0. We find
from the master equation that Z(c, t) solves the partial

differential equation

@Z
@t
¼ ðec � 1Þ b

@

@c
þ z

� �
Z

þ ðe�c � 1Þg @Z
@c

: ð2:3Þ

Further details of the master equation calculation are

presented in appendix A.

Using that R0 ¼ b/g, the mean-field behaviour of the

system solves dm1/dt ¼ (R0 2 1)gm1 þ z. If R0 . 1 then m1

grows exponentially, whereas if R0 , 1 the disease persists

at a low level, m1 ¼ (z/g)/(1 2 R0), sustained by immigration.

Table 1 shows the list of candidate EWS calculated from

the moment generating function of the stationary BDI process

which will be considered in this paper. The mean, variance,

index of dispersion (also known as the variance to mean

ratio), and correlation time all diverge as R0! 1. The auto-

correlation approaches one, whereas the coefficient of

variation remains constant below the transition.

The correlation time gives a measure of the persistence of

correlations. Its divergence as R0! 1 implies that correlations

persist for extremely long times, and is the mathematical defi-

nition of critical slowing down. Intuitively, critical slowing

down can be understood by considering the lengths of trans-

mission chains. Although on average each imported case will

infect fewer than one individual (as R0 , 1), there is a possi-

bility that a large chain of secondary cases is sparked, which

then takes a long time to die out. As R0 increases, the probability

of larger chains of transmission increases, in turn leading to an

increasingly autocorrelated dynamics. The increased prob-

ability of larger chains of transmission also causes an increase

in the mean and variance of the number of infected.

In addition to the EWS derived from the BDI process pre-

sented in table 1 we also study two signals from information

theory: the Kolmogorov complexity, and the Shannon

entropy [33]. The Kolmogorov complexity is a measure

whose origin lies in the length of the minimal computer pro-

gram needed to reproduce the sequence of data, with longer

computer programs implying more complex data [33–35].

The increased correlation near the transition may therefore

result in a decrease in complexity, which can serve as an

EWS. The Shannon entropy is a measure of the information

content of the time series. As R0 approaches one, the prob-

ability of rare large outbreaks increases, which suggests the

entropy will also increase near the transition. For details of

how these two measures are computed, see appendix B.

http://rsif.royalsocietypublishing.org/
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Figure 2. EWS for the stationary SIS and SIRS models. Red lines correspond to the theoretical results found from the BDI model (table 1). Symbols depict the results
of simulations with the duration of immunity as indicated in the figure. Independent simulations are performed for each value of R0. EWS are calculated by time
averaging over 4 � 103 weeks of data (see appendix D). The force of infection in the SIS and SIRS models is l ¼ (bn þ z)/N, where n is the number of infected
and N the total population size. The remaining model parameters are g ¼ 1 and z ¼ 1 week21. The autocorrelation is calculated at lag one week, AC(1). (Online
version in colour.)
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Two simplifying assumptions are implicit in the model.

Firstly, the BDI process neglects susceptible depletion.

Secondly, the speed with which b changes is ignored, assum-

ing that it varies infinitely slowly. The effects of relaxing the

first of these assumptions will be investigated in the next sec-

tion. Disease emergence over faster time scales will be

investigated in §5.
3. Comparison with models featuring susceptible
depletion

For EWS to be useful they must be robust to changes in

model structure, and not just specific to the BDI process.

Using results from simulations of common disease models,

in this section we explore the sensitivity of the EWS to a

range of demographic and immunological properties.
The SIS model is a model of infectious disease spread in

which individuals move from the susceptible class to the

infected class upon infection, and then return to the suscep-

tible class when they cease being infectious. The total

population size is assumed constant. The SIRS model is

similar to the SIS model, but in addition the pathogen

confers temporary immunity to reinfection, which wanes at

rate r [20]. The dynamics of both models can be represented

using a master equation, as with the BDI process. Exact

numerical realizations of these models can be obtained

using the next reaction method (NRM) algorithm [25,26].

The candidate EWS for the SIS and SIRS models are shown

in figure 2. The results for the BDI process listed in table 1

are also plotted.

The only additional parameter in the SIS model is the

population size, N, allowing the effects of susceptible

depletion on EWS to be studied in isolation (figure 2a). We

find that typically, the effect of reducing the population size

http://rsif.royalsocietypublishing.org/
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is to decrease the responsiveness of a signal to increases in R0.

The mean and variance always increase prior to the tran-

sition; however, the magnitude of the increase is reduced.

The value of R0 for which the variance is maximized is

seen to increase. A similar effect is also observed for the

index of dispersion, autocorrelation and correlation time.

These three EWS all peak around R0 ¼ 1 for large population

sizes, but for N ¼ 102 there is a noticeable shift in the peak

position and height to the right. For the coefficient of vari-

ation, decreasing the population size smooths the abrupt

change in value at R0 ¼ 1. The Kolmogorov complexity falls

as the transition is approached, in line with the increased cor-

relation: if there is a fluctuation above (or below) zero within

the detrended data it is more likely to be sustained in further

data points. Regular sequences allow for increased use of the

copy operation (see appendix B), reducing the complexity of

the time series. Perhaps counterintuitively, the complexity of

the time series is lower near the transition for larger popu-

lations. The entropy has a very similar behaviour to the

variance, peaking in the vicinity of the transition. Overall,

the results from the BDI process appear to provide an

upper bound on the values of the EWS in the SIS model.

Figure 2b,c shows results from the SIRS where the mean

duration of immunity, 1/r, is 5 and 25 years. For the smallest

population size, N ¼ 102, the mean number of infected indi-

viduals is less than one, irrespective of R0. As might be

expected, EWS vary little with R0 and do not display the

trends observed for the BDI process. For larger population

sizes, the behaviour of some EWS above the transition is

markedly different from the SIS model, for example, the auto-

correlation remains close to one and the complexity decreases

with R0. Below the transition, the opposite is the case for N .

102, with the EWS having similar behaviour to the BDI pro-

cess. For a given population size, the responsiveness of the

EWS decreases with immune duration, cf. the similarity in

the index of dispersion and Kolmogorov complexity for

N ¼ 104 in the SIS model and N ¼ 106 in the SIRS model.

Apart from the coefficient of variation, the BDI process

results again provide upper bounds on the EWS, as with

the SIS model.

Below the transition, decreasing the population size and

increasing the immune duration reduce the responsiveness

of the EWS. This can be understood by returning to the

theory of critical slowing down. As the susceptible pool is

depleted the probability of further disease transmission is

diminished, reducing the probability of extremely long

chains of transmission. The impact of susceptible depletion

is greater for smaller population sizes. Increasing the dur-

ation of immunity means individuals who acquire the

infection are absent from the susceptible pool for longer,

magnifying the impact of susceptible depletion. The longer

the duration of immunity the larger the susceptible pool

required for agreement with the BDI results.

Below the transition each EWS behaves similarly regard-

less of the model, provided that the population size is large.

This independence of model structure supports the general

applicability of BDI results to more complex dynamics. We

note that there is a large distinction in behaviour between

models above the transition; for instance the coefficient of

variation strictly decreases for the SIS model, whereas for

the SIRS model it may decrease, increase or remain approxi-

mately flat depending on the model parameters. The

generality of the EWS is strictly for disease emergence.
4. Cox’s d: a likelihood-ratio test
An alternative model-specific approach to detecting critical

transitions has been proposed by Boettiger and Hastings,

focusing on anticipating the loss of stability of fixed points

[24]. They propose likelihood-ratio testing, using a statistic

they refer to as Cox’s d. The test determines whether the

dynamics are approaching a transition or are instead station-

ary. Each hypothesis is represented by a model, and a

maximum-likelihood estimate (MLE) for the data is found.

The value of Cox’s d provides a measure of how much dis-

ease emergence is favoured. The procedure by which Cox’s

d is calculated also allows for an estimation of the time

remaining until the transition is reached.

Boettiger and Hastings assume that the Ornstein–

Uhlenbeck (OU) process is an appropriate model for the

dynamics. The OU process is a continuous-time stochastic

process in which there is deterministic reversion to the

mean, with Gaussian white noise perturbing the system

[28]. It has a known mathematical expression for the likeli-

hood of a time series, which Boetigger and Hastings use to

efficiently calculate Cox’s d and thereby determine whether

the system is approaching a transition [24].

A barrier to using Cox’s d as a method for anticipating

disease emergence is this reliance on the OU process to calcu-

late the likelihood. Dynamically, the OU process does not

constrain the number of infected individuals to be a non-

negative integer. When there are a small number of infected

individuals present in the data, this means biologically

impossible paths are included in the likelihood calculation.

The problem can be overcome by instead using the BDI pro-

cess, which presents a more biologically plausible model of

disease emergence.

An exact solution to the transition probability exists for

the BDI process from which the likelihood of a time series

can be constructed (see appendix C). We assume R0(t) can

be decomposed into two parts, a baseline which is set as

R0(0) and a linear trend, DR0, i.e.

R0(t) ¼ R0(0)þ DR0t: ð4:1Þ

For the test hypothesis (the disease is emerging), the MLE is

calculated from a likelihood surface allowing both of these

parameters to vary. In calculating the MLE for the null

hypothesis (no emergence), we fix DR0 ¼ 0, still allowing

R0(0) to vary. For an observed time series fngT
t¼0, the

log-likelihood of the MLE for the test model is

LTest ¼ max
R0(0),DR0

XT�d
t¼0

ln PBDI(ntþd jnt, R0(t)) ð4:2Þ

and for the null model is

LNull ¼ max
R0(0)

XT�d
t¼0

ln PBDI(ntþd jnt, R0(0)): ð4:3Þ

The expressions for PBDI are presented in appendix C.

Cox’s d statistic is defined as twice the difference in the

log-likelihoods of the MLEs for the two nested models,

d ¼ 2(ln LTest � ln LNull): ð4:4Þ

Because the models are nested d�0. Increasingly positive d

implies stronger support for the test model over the null

model. A d . 2 is taken as the criterion for concluding that

the disease is emerging, on the basis of the AIC score [24].

http://rsif.royalsocietypublishing.org/
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Figure 3 shows the log-likelihood surface calculated using

the BDI process for a time series generated using the SIS

model. The MLE of the test model is R0(0) ¼ 0.00 and

DR0 ¼ 1.83 � 1023 week21. The critical transition is predicted

to occur after 10.52 years, very close to the true value of 10

years. Cox’s d statistic is 10.78, implying that the hypothesis

of disease emergence is statistically supported [24]. One

caveat is that this strong result has been achieved under ideal-

ized model conditions, assuming knowledge of the rates of

immigration and recovery, and calculated using a long

sequence of data (312 weeks of data). In the following section,

we explore further the reliability of Cox’s d at anticipating

transitions and compare with the EWS.
5. Impact of time scale on reliability of
predictors

In §3, we presented results for stationary dynamics, appropri-

ate for a disease emerging over an extremely long time scale.

In practice, we are interested in anticipating disease emer-

gence over faster time scales, as shown in figure 3. In this

section, we investigate how the EWS and Cox’s d perform

as indicators of disease emergence. Results for the EWS are

shown in figures 4 and 5, and results for Cox’s d are shown

in figures 6, 7 and 8.
Figure 4 shows the EWS calculated for the SIS model,

with the stationary BDI process results also shown for com-

parison. The EWS are calculated from the time-series data;

for simplicity, we use unweighted moving averages

(see appendix D). The time series were generated by an SIS

model with linearly increasing R0; from 0 to 2 over T ¼ 10,

20, 30 and 40 years. The moving window average is

calculated using three window sizes: W ¼ 100, 200 and

300 weeks.

As shown in figure 4, all EWS bar one have a clear

response to the approaching transition as long as the time

scale is longer than 10 years (T . 10). For instance, the var-

iance increases for all window sizes and speeds prior to

R0 ¼ 1, in line with predictions. The exception is the coeffi-

cient of variation, which performs poorly as an indicator of

transitions, remaining largely unchanged until R0 . 1. It is

also highly sensitive to the choice of window size, the

sharp peak following the transition observed for T ¼ 10 and

20 years increases with window size. The autocorrelation per-

forms particularly well, reaching AC(1) . 0.85 for T ¼ 20, 30

and 40 years. It does not appear particularly sensitive to

window size below the transition.

As the speed of emergence is increased, the lag behind the

BDI process results increases. Overall, we see that the tran-

sition speed has three notable effects which adversely

impact all EWS. The first effect is dynamical: the incidence
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level is continually responding to the changing equilibrium

resulting from increasing R0, leading to a lag between the

values of the EWS calculated at equilibrium and those

observed in the time series. Combined with demographic sto-

chasticity, this leads to an apparent ‘bifurcation delay’ as the

transition is traversed [36,37].

The second effect arises in computing the EWS. The

theoretical results for the EWS are calculated by finding the

moments and autocorrelation of a stochastic process.

Owing to the absence of multiple replications, these are calcu-

lated over a moving window [4]. However, when the disease

emerges over a finite time scale, the process is non-stationary,

and therefore also non-ergodic, due to changing R0(t). In

practice, this means that averages are calculated using data

points which were generated at different values of R0; for

example, if T ¼ 10 years and W ¼ 100 weeks, the difference

in R0 between the start and end of the window is 0.38. This

reduces the responsiveness of the EWS, also contributing to

the lag behind the BDI process results. Furthermore, there

can be other artifacts arising from non-ergodicity, for
instance, increased variance of the data. Increasing both the

window size and transition speed exacerbates these effects

due to the larger range in values of R0.

Thirdly, there is Monte Carlo error due to the limited

number of data points used. This is manifest in the stochastic

variation of the observed EWS as R0 changes. This is particu-

larly apparent in the first column of figure 4, where a chance

drop in prevalence immediately prior to R0 ¼ 1 leads to a fail-

ure of most EWS to behave as theory predicts. Increasing the

size of the window has the effect of reducing this error (evi-

denced by the smoother curves for W ¼ 300), however, at the

expense of the signal’s responsiveness, as detailed above.

Given the existence of Monte Carlo error, to quantify the

performance of the EWS further, we compute 90% CIs for

the EWS for disease emergence over 20 years and over 100

years using a window size of 52 weeks (figure 5a). A measure

of how effective an EWS is at detecting emergence is the

range in R0 over which a specific reading of an EWS lies

within the 90% CI. A wide range means that the EWS gives

little information about the value of R0. For the variance, a
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reading of s2 ¼ 40 falls within the 90% CI for 0.8 � R0 � 1.1,

implying a strong chance that the system is near the tran-

sition. A reading of K ¼ 0.8 for the Kolmogorov complexity

falls within the 90% CI for all values of R0 shown, implying

a poor predictive power.

To quantify this further, figure 5b shows an estimate of

probability that R0 . 1 given a particular reading of an

EWS, y (appendix E provides details on how this estimate

is calculated). The sensitivity of P(R0 . 1 j y) to changes in y
depends heavily on the EWS. Large values for the mean, var-

iance and entropy strongly indicate that transmission of the

pathogen is supercritical. On the other hand, for EWS

which peak near R0 ¼ 1, such as the index of dispersion,

autocorrelation and correlation time, there is low indication

whether the disease is supercritical or not, unless the

observed value is especially large.

Because of their narrow confidence intervals, the variance

and entropy are exquisitely sensitive, with P(R0 . 1 j y)
increasing from near 0 to 1 over a small range of y. Others,

such as the index of dispersion and autocorrelation, have an

intermediary range of values of y where P(R0 . 1 j y) � 0.5.

We see a trade-off between how reliable an EWS is at clas-

sifying whether R0 . 1 and the range of values of R0 over

which P(R0 . 1 j y) notably increases. A practical conclusion

from this is that sequential readings of an EWS are needed

to ascertain whether a disease is emerging.

Using a moving window, in figure 6 we show Cox’s d cal-

culated for the same set of time series studied in figure 4. As

the transition is approached Cox’s d typically increases in sig-

nificance, with large responses for window sizes W ¼ 200 and

300 weeks. There are spurious increases in Cox’s d for the

stationary time series, due to the intrinsic variability of the

dynamics, but these are dampened by using a larger window.

To test its reliability as an indicator of disease emergence,

figure 7 shows the probability that d . 2 as the transition is

approached.
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Large window sizes lead to an improved performance, as

does a faster speed of emergence. For faster speeds of emer-

gence (T � 20 years) and larger windows (W � 200 weeks),

Cox’s d performs well, with P(d . 2) . 0.75 prior to the tran-

sition. From figure 7, the recommendation is to use the largest

window size feasible given the data.

The effect of the speed of emergence and the window size

on the performance of Cox’s d is more subtle than for the

EWS shown in figure 4. For EWS, the performance improves

when the disease emerges at a slower rate due to the smaller

change in R0 between the start and end of the window. The

opposite is the case for Cox’s d. Instead, slower emergence

reduces the difference in likelihood between the emerging

and non-emerging models, reducing the power of Cox’s d.

From the estimates of the baseline R0 and DR0 the time to

emergence can be estimated (figure 8). The mean estimated

time to emergence generally does agree well with the true

value, with typically marginally better agreement for smaller

window sizes. However, the 95% CIs are large, in line with

the variation in the MLE of DR0 seen in figure 6. Increasing

the window size reduces to the confidence intervals, with a

more pronounced reduction in the probability of underesti-

mating the time to emergence, cf. the difference between
W ¼ 100 and 300 weeks for T ¼ 20 years. With sufficiently

large window size given the speed of emergence, the

estimated time to emergence can be taken as an overestimate.
6. Discussion/conclusion
This work is intended to provide a theoretical base for the

development of methods to anticipate disease emergence.

We have presented two parallel approaches by which this

may be accomplished. The first approach is to extend the bur-

geoning literature on EWS, reformulating them in a manner

appropriate for emerging diseases. The second approach

makes use of Cox’s d, a likelihood-ratio test for emergence.

For both approaches, the application to emerging diseases

is achieved through use of the BDI process, a well-understood

model from the theory of stochastic processes.

Both the EWS and Cox’s d perform best when calculated

using a large number of data points as this reduces statistical

uncertainty. The time scales imposed by real-world disease

emergence likely mean that available data are more limited.

We therefore apply both approaches to weekly time series

data of diseases emerging over a range of different intervals.
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We find that—apart from the coefficient of variation—all

EWS undergo similar behaviour regardless of the time scale

of emergence. More advanced time averaging methods may

be needed for very fast emergence to detect a strong signal.

Although larger window sizes do reduce uncertainty they

are typically not necessary, with W ¼ 100 weeks being suffi-

cient. Cox’s d performs best with the largest window size

possible so that there is the largest possible difference in R0

between the start and end of the window.

Overall we conclude that the two methods are comp-

lementary, performing best under differing conditions.

Cox’s d reliably detects emergence over fast time scales,

where the null hypothesis is strongly disfavoured. EWS
perform best at detecting long term trends in the time

series, where there is a more gradual approach to the epi-

demic transition. Additionally, our results favour the use of

some EWS over others. The behaviour of the coefficient of

variation and Kolmogorov complexity prior to the transition

means they both perform poorly as indicators of emergence.

The remaining EWS (the mean, variance, index of dispersion,

autocorrelation, correlation time and entropy) have a behav-

iour which is resiliant to parameter changes and reliable in

the face of stochasticity, making them strong candidate EWS.

By grounding our results in theory, rather than a detailed

model for a particular disease we expect our results will have

applicability to a wide range of emerging infectious diseases.
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This generality is of particular importance for emerging

infectious diseases, where there are likely many unknowns

regarding transmission of the pathogen.

The key simplifying assumption of the BDI process which

makes it mathematically solvable is that it neglects the impact

of disease transmission on the availability of susceptible indi-

viduals. In reality, infection diminishes the size of the

susceptible pool and can also confer immunity to reinfection,

delaying the individual’s return to susceptibility. Our results

show how these demographic and immunological consider-

ations impact on the performance of EWS. Although the

signals’ strengths are reduced, for all parameters considered

the performance is still informative for a population of 106

individuals.

Our work is not the first to investigate the signature of cri-

ticality prior to the epidemic transition; in particular, we note

the work of Jansen and collaborators [15]. These previous

works seek to identify the approach to the critical transition

through changes in the tail of the outbreak size distribution

[15,38]. In contrast, both approaches in this paper are based

around summary statistics. This has advantages: the sizes of

individual distinct outbreaks can be difficult to identify, a

large number of outbreaks are required to accurately recon-

struct the tail of the outbreak size distribution, and

summary statistics calculated using moving windows clearly

display temporal variation in the dynamics.

The SIS and SIRS models considered in this paper have

only one susceptible and one infected class, assuming all indi-

viduals are equally infectious and interact homogeneously.

Risk structure has been shown to significantly change the

necessary conditions for epidemics, with R0 ¼ 1 being an

underestimate for the epidemic threshold [39]. For diseases

emerging in populations structured as many loosely connected

smaller community units, such as Ebola in sub-Saharan Africa,

this may significantly impact on predictability. R0 is a measure

based on the average context; however heterogeneities in the

contact structure of individuals can lead to instances of super-

spreading [22], particularly relevant for sexually transmitted

diseases and something not captured in the BDI process. The

large variations in transmission rates reduce the worth of R0

as a measure, and a universal increase in R0 is unlikely to be

the driver of emergence. Superspreading events have been

identified for SARS and more recently for MERS [21,40]. In

addition, there is the challenge of incomplete and unreliable

data, modelled through explicit inclusion of a reporting process

[41]. Further work is ongoing studying EWS and Cox’s d for

these dynamics.

This work lays theoretical foundations, but more research

is needed to develop actionable technologies applicable to

actual disease data. For instance, improved reporting would

lead to an increase in the mean number of case reports, but

not an increased autocorrelation. A simultaneous increase in

both presents stronger evidence of disease emergence. The

development of ways in which readings of multiple EWS

and also Cox’s d can be combined and leveraged to improve

the quality of predictions is therefore desirable. One motivation

in studying EWS is to ultimately develop comprehensive EWS

software packages. These packages would be plug and play

ready: public health practitioners could use them to give quan-

tifiable information about the risk of a critical transition and

disease emergence in a particular context.

As a final note, while this paper has focused on anticipat-

ing infectious disease emergence this does not limit the
applicability of our methods. Emerging diseases are an

example of an invasion process, where a new class of individ-

ual attempts to establish itself in a population. Other examples

are found across the biological sciences. The BDI process is an

appropriate model for a large range of invasion processes. We

propose that the methods in this paper will have a similarly

general status for anticipating successful invasion. Our work,

therefore, opens up a new class of transitions which it may

be possible to anticipate.
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Appendix A. Critical slowing down for the
stationary birth – death – immigration process
The master equation for the BDI process, equation (2.3), can

be solved both when R0, g and z are constant or when they

are functions of time [23]. For mathematical simplicity, we

will focus on the case in which the disease is emerging

over a long time scale relative to the infectious period.

Under these conditions, we can find exact theoretical values

for the EWS. If there are y infectious individuals initially pre-

sent then Z(c, 0) ¼ ecy and equation (2.3) has the solution [23]

Zy(c, t) ¼ (1� R0)z=b{A(c)þ B(c, t)}y

{A(c)þ R0B(c, t)}yþz=b , ðA 1Þ

with A(c) ¼ (1 2 R0 ec) and B(c, t) ¼ e(R021)gt(ec 2 1).

We are interested in dynamics prior to the emergence of

disease so restrict ourselves to considering R0 , 1. As t!1,

we see that B(c, t)! 0. The generating function converges

onto the stationary solution

Zs(c) ¼ 1� R0

1� R0 ec

� �z=b

, ðA 2Þ

for any number of initial infected. This is the moment generat-

ing function of a negative binomial distribution with mean

and variance

m1 ¼
(z=g)

1� R0
ðA 3Þ

and

s2 ¼ (z=g)

(1� R0)2
: ðA 4Þ

Both equation (A 3) and equation (A 4) diverge as R0! 1.

Using equations (A 1) and (A 2), we can calculate the

correlation function in the stationary state. The conditional

mean, E[n(t) jn(0)], is

@Znð0Þ
@c

����
c¼0

¼ m1ð1� eðR0�1ÞgtÞ

þ nð0Þ eðR0�1Þgt, ðA 5Þ
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and therefore the correlation function C(t) ¼ Es[n(t)n(0)] is

CðtÞ ¼ Es½E½nðtÞ jnð0Þ�nð0Þ�

¼ s2 eðR0�1Þgt þ m2
1: ðA 6Þ

The autocorrelation, defined for a stationary process as

AC(t) ¼ (C(t) 2 m2
1)/s2, is

AC(t) ¼ e�(1�R0)gt: ðA 7Þ

As the critical transition is approached, the correlation time

�t ¼ [(1� R0)g]�1 diverges. This is the hallmark of critical

slowing down.
R.Soc.Interface
14:20170115
Appendix B. Shannon entropy and Kolmogorov
complexity
The Shannon entropy is a measure of the information

content of a random variable, and is defined as

H(t) ¼ �
P

n Pn(t) ln Pn(t) [33]. For time series data, an

approximation to the probability distribution over n is calcu-

lated numerically via Pn(t) �
Pt

s¼t�Wþ1 1n¼n(s)=W , where n(s)

is the number of infected individuals present at time s and

1n¼n(s) is the indicator function, equal to one if n ¼ n(s) and

zero otherwise. As mentioned above, when the process is

non-stationary this method is inexact.

Another information theoretic measure is the Kolmo-

gorov complexity [33]. The Kolmogorov complexity of a

sequence of data is the shortest computer algorithm required

to reconstruct it. A quantification of the Kolmogorov com-

plexity was proposed by Kaspar & Schuster [34]. Before

applying their algorithm the data are converted to sequence

of bits, 0 or 1. Their algorithm proceeds by considering two

operations: ‘copy’ and ‘insert’. Each operation adds one to

the complexity measure. The Kolmogorov complexity is the

minimum number of operations required to reconstruct the

data sequence. For further details, see [34]. The specific algor-

ithm used to calculate the Kolmogorov complexity can be

found in [35]. As with the other EWS, we calculate the

Kolmogorov complexity over a moving window. To convert

the time series to a sequence of bits, we perform a linear

detrending over the data within the window. The residual

time series is discretized into 1 whenever the residual is

larger than zero, and 0 otherwise.
Appendix C. Transition probability distribution
and likelihood
The generating function given in equation (A 1) can also be

used to find the the probability of there being ntþd infected

at time t þ d given nt infected at time t [28]. Assuming that

R0 does not vary significantly between time t and t þ d, the

transition probability for the BDI process is

PBDI(ntþd jnt, R0) ¼
Xntþd

m¼0

PBD(ntþd �m j nt, R0)

� PBDI(m j 0, R0), ðC 1Þ
where

PBDðm, j n, R0Þ ¼
Xminðn,mÞ

k¼0

n
k

� �
nþm� k � 1

n� 1

� �

� Rm�k
0 rnþm�2k½1� ð1þ R0Þr�k ðC 2Þ

and

PBDI(m j 0, R0) ¼ mþ z=g� 1
m

� �
pm[1� p]z=g, ðC 3Þ

with r ¼ [1 2 AC(d)]/[1 2 R0AC(d)] and p ¼ m1/(m1 þ z/

g) ¼ 1/(2 2 R0). Given a time series fntgT
t¼0, the likelihood

of the data for a given rate of emergence, R0(t) ¼ R0(0) þ
DR0t, is

L(R0(0),DR0) ¼
YT�d
t¼0

PBDI(ntþd j nt, R0(t)): ðC 4Þ

The MLE for (R0(0), DR0) is given by arg maxR0(0),DR0

L(R0(0),DR0).
Appendix D. Calculating early-warning signals
from single time-series data
If the BDI process is stationary then the process is ergodic,

allowing expectation values to be calculated from a time

series by time averaging. For example, the correlation

function is

CðtÞ ¼ Es½ntþtnt�

�
Xt

s¼t�ðW�1Þd

nsþtns

W
: ðD 1Þ

The sum is performed over integer multiples of the timestep d,

with the approximation becoming exact as W!1. Although

not formally equivalent, and therefore potentially introducing

errors (see the discussion in §5), we will also use this approach

to calculate expectation values for non-stationary processes, in

line with the early-warnings literature.
Appendix E. Estimating the probability of
supercriticality
Suppose we observe that EWS Q has a value y. We would like

to know the probability that R0 . 1 given this observation,

P(R0 . 1 jQ ¼ y).

Monte Carlo sampling allows for the estimation of

P(Q ¼ y j R0 ¼ r). Through use of Bayes’ theorem,

P(R0 . 1 jQ ¼ y) ¼
Ð1

1 drP(Q ¼ y jR0 ¼ r)P(R0 ¼ r)Ð1

0 drP(Q ¼ y jR0 ¼ r)P(R0 ¼ r)
: ðE 1Þ

Assuming a prior P(R0 ¼ r) ¼ 1/L if r [ [0, L] and 0

otherwise,

P(R0 . 1 jQ ¼ y) ¼
ÐL

1 drP(Q ¼ y jR0 ¼ r)ÐL
0 drP(Q ¼ y jR0 ¼ r)

: ðE 2Þ

Finally, P(R0 . 1 jQ ¼ y) can be found numerically by bin-

ning recorded values of Q and approximating the

integrals as summations over all bins.
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