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Prediction and control of the geographical spread of emerging pathogens has become a central public health

issue. Because these infectious diseases are by definition novel, there are few data to characterize their

dynamics. One possible solution to this problem is to apply lessons learnt from analyses of historical

data on familiar and epidemiologically similar pathogens. However, the portability of the spatial ecology

of an infectious disease in a different epoch to other infections remains unexamined. Here, we study this

issue by taking advantage of the recent re-emergence of pertussis in the United States to compare its spatial

transmission dynamics throughout the 1950s with the past decade. We report 4-year waves, sweeping across

the continent in the 1950s. These waves are shown to emanate from highly synchronous foci in the north-

west and northeast coasts. In contrast, the recent resurgence of the disease is characterized by 5.5-year

epidemics with no particular spatial structure. We interpret this to be the result of dramatic changes in pat-

terns of human movement over the second half of the last century, together with changing age distribution

of pertussis. We conclude that extrapolation regarding the spatial spread of contemporaneous pathogens

based on analyses of historical incidence may be potentially very misleading.
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1. INTRODUCTION
Over the past decade, the high-profile introduction and

geographical spread of novel pathogens, such as SARS

[1] and foot-and-mouth disease [2], and the ever-present

threat of a devastating influenza pandemic [3] have

emphasized the urgent need to better understand the

spatial transmission of infectious diseases and their

attendant control implications [4,5]. However, making

predictions about the spatial dynamics of such diseases

is hampered by the absence of data, precisely because

they are emerging pathogens. Much progress in spatial

epidemiology has resulted from studying long-term noti-

fication records of familiar infectious diseases, such as

measles [6], seasonal influenza [7] and dengue [8]. It is

important to determine, however, whether conclusions

drawn from historical studies of particular infectious

agents can inform the epidemiology of a modern day

and novel pathogen threat.

To explore this issue, we examine case reports of

whooping cough (or pertussis) in continental USA,

where concerted immunization programmes in the

1950s led to a drastic reduction in incidence over the sub-

sequent three decades [9]. Since 1980s, however, a

significant and poorly understood upsurge in cases has

been reported [10–12]. The fluctuating fortunes of per-

tussis control efforts in the US afford us a unique

opportunity to study the spatial ecology of an infectious
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disease in the same localities but in two eras separated

by many decades.

Whooping cough is a respiratory disease caused by the

bacterium Bordetella pertussis. Historically, the onset of

immunization programmes in developed countries were

instrumental in the reduction of pertussis incidence

[13,14]. It remains, however, one of the key micro-

parasitic diseases of childhood and adolescence, with a

significant annual burden of infant mortality [15],

especially in developing nations [16]. The well-publicized

resurgence of pertussis reports in several countries that

boast high vaccine uptake has been the subject of much

debate [10–12,17] and has highlighted major gaps in

our understanding of its epidemiology [18,19].

Here, we analysed monthly whooping cough incidence

in the 49 continental US states (including the District of

Columbia) from January 1951 to December 2010. In

order to take into account large temporal differences in

incidence, and in particular the near-absence of cases

from 1970s to 1990s, our analyses proceeded by splitting

the data into three different time periods, focusing

exclusively on the early (1951–1962) and the recent

(2002–2010) eras (see §2 and the electronic supplemen-

tary materials for the rationale for these specific eras).

To quantify patterns in the data, we used wavelet

decomposition, a technique that is particularly well

suited to non-stationary time series [20,21].
2. MATERIAL AND METHODS
(a) Pertussis incidence reports

Pertussis monthly notifications were collected at the state

level for the 49 continental states (i.e. including the District
This journal is q 2012 The Royal Society
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of Columbia) from 1951 to 2010. These data were obtained

from the National Notifiable Disease Surveillance System

and are fully anonymized. In the absence of detailed

state-specific vaccine uptake estimates, we are unable to

infer the fraction of infected reported, though analysis of

hospital records suggests a reporting probability of 11.6

per cent [22].

(b) Population sizes and spatial locations

Population size estimates by state and year from 1951 to

2010 are freely available from the US Census Bureau

(http://www.census.gov/popest/archives). Given that our epi-

demiological data are resolved by state, we make the

pragmatic choice to define a population as the number of

inhabitants within a given state. Because of the strong aggre-

gation of populations into high-density urban centres, our

definition is defensible. For the goegraphical location of

each state population, we considered its centroid defined as

the point on which a rigid, weightless map would balance

perfectly, if the population were represented as points of

equal mass. In this study, we used the coordinates (in

degrees) of these centroids for the year 2000. These are

freely available from the US Census Bureau (http://www.

census.gov/geo/www/cenpop/statecenters.txt).

(c) Wavelet transforms

Prior to wavelet decomposition, time series were square-root

transformed in order to stabilize the variance. Time series

were then centred and reduced in order to allow comparisons

of their qualitative features (i.e. periodicity) from state to

state. Wavelet decompositions were performed using a

Morlet wavelet with a non-dimensional frequency v0 ¼ 6

(see [6,20,21] for mathematical expressions). Before wavelet

transforms, time series were padded with zeros up to the

nearest power of 2. Analyses with no padding gave very simi-

lar results (not shown). Filtering over a given frequency range

is performed by summing the local wavelet power spectrum

over this frequency range. Time series were smoothed by fil-

tering over the frequencies where most of their power (i.e.

variance) stands. A major advantage of complex wavelets

such as the Morlet one is that they enable the quantification

of phase angles of the time series. These phase angles give

information on the timing of the epidemics. Phase angles

were calculated after filtering and expressed, for each state,

by taking their residuals in a linear model regressing phase

angle of all states as a function of time (see the electronic

supplementary materials and its figure S2 for more detailed

explanations). They are thus called ‘residual phase angles’

in the rest of the text.

(d) Longitudinal speed of propagation

The longitudinal speeds of disease propagation were esti-

mated from the slopes of the piecewise linear regression

between phase angles in radians and longitude in degrees.

The radians were first transformed into years, based on the

period around which the time series were filtered. Taking

into account the Earth’s curvature, one longitude degree rep-

resents about 84 km at the latitude of 408 (the average

latitude of the continental US).

(e) Critical community size

Critical community sizes (CCS) were estimated on a given

time period by plotting, for each state, the proportion of

months with zero disease notification during this time

period against its mean population size over the same time
Proc. R. Soc. B
period. Then, an exponential decay curve y(x) ¼ Ae2Bx was

fitted to these 49 data points, and the value of the CCS

was defined as the value of x where y is equal to a proportion

that represents one month over the considered time period.

(f) Spatial synchrony

The assessment of spatial synchrony was based on pairwise

(i.e. inter-state) correlation coefficients. Contrary to phase

angle analyses which account only for the qualitative fea-

tures of periodicity, synchrony is strongly dependent on

the quantitative features of the time series, especially the

amplitude (and thus is more affected by potential changes

in the reporting rate). The two approaches are comp-

lementary [6,7]. The relations between synchrony and

Euclidian distance were estimated by the NCF library for

R [6]. In particular, the spatial correlation functions were

estimated using the non-parametric spline covariance func-

tion and 1000 bootstraps to generate 95% confidence

intervals (CIs) [23].

(g) Time period definition and robustness

The US pertussis incidence time series are characterized

by strong non-stationarity, with a central era (1970–1990)

during which very few cases were reported across the country.

The rationale was thus to focus our analyses on the earlier seg-

ment of the data when the estimated vaccination coverage was

still low [9] and pertussis incidence relatively high. Selecting a

portion of the data on which analyses are performed naturally

leads to concerns over the arbitrariness of the choice and its

impact on the robustness of the results. We addressed these

concerns by examining the behaviour of the distribution of

the pairwise correlation coefficients, the number of states

above and below the CCS, the spatial correlation functions

and the global wavelet spectra, all calculated on the 1951 2 x

time periods, when x varies between 1951 and 2010 (see the

electronic supplementary materials). These analyses identified

a sharp transition around 1963 with constant behaviour before

and after this transition (see the electronic supplementary

material, figure S1b,d). The results presented for the first

era with x ¼ 1962 are robust with respect to x as long as

x , 1970. Similarly, a second transition was identified

around 2002, defining the second era but the results were

less robust with respect to this choice (see §3). Finally, choos-

ing the 1951 2 x time period before or after the wavelet

decomposition did not significantly affect the results.
3. RESULTS
The previously mentioned decrease in pertussis incidence

during the 1960s is illustrated in figure 1a,b, followed by

the recent rise in case notifications across states. In

figure 1c, we display the mean local wavelet power spectra

of the 49 states. This figure indicates that most variance

in pertussis fluctuations is centred around the period of

4 years in the first era (1951–1962) and between 5

and 6 years in the most recent era (2002–2011). The

figure also shows that wavelet decomposition fails to

identify significant periodicity during the 1970s because

of the paucity of reported cases.

Additionally, we carried out standard Fourier spectral

analyses of pertussis incidence in each era for all states.

Consistent with the mean wavelet results, we found that

most states in the early and recent eras exhibit a pro-

nounced statistically significant 4- and 5.5-year period,

respectively (figure 2a,c), whereas there is no detectable
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Figure 1. Monthly notifications of pertussis cases in the 49 contiguous states of the US from 1951 to 2010, obtained from the
National Notifiable Diseases Surveillance System. (a) Sum of monthly incidences in the 49 states. In the article, we particularly
focus on the data from 1951 to 1962 (red shaded region) and from 2002 to 2010 (blue shaded region). (b) Log10-transformed
monthly notifications for each state ordered according to mean population size and colour-coded according to incidence (colour
scale on the right). States are: CA (row 1), NY (2), TX (3), PA (4), IL (5), OH (6), FL (7), MI (8), NJ (9), NC (10), GA (11),

MA (12), VA (13), IN (14), MO (15), WI (16), TN (17), MD (18), WA (19), MN (20), LA (21), AL (22), KY (23), SC (24),
CT (25), AZ (26), OK (27), CO (28), IA (29), OR (30), MS (31), KS (32), AR (33), WV (34), NE (35), UT (36), NM (37),
ME (38), NV (39), RI (40), ID (41), NH (42), MT (43), SD (44), DC (45), ND (46), DE (47), VT (48), WY (49). (c) Average
of the local wavelet power spectra of the 49 states, after incidence in each state was normalized. The dashed lines show the local

maxima. For clarity of illustration, the spectral power is raised to 0.3 (scale on the right).
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periodicity in the time series from 1963 to 2001 (figure 2b).

The extinction profile of pertussis—defined using the CCS

concept [24]—is also different in the three eras (figure 2d).

Importantly, in the early era, in more than two-thirds of the

states, the population size exceeded the CCS, with no

pertussis extinctions. In the middle era, however, extinc-

tions were frequently observed, while pertussis is endemic

in 12 states in the recent era. The three epochs are also

characterized by differences in their spatial synchrony

[23,25] (figure 2e), with early and recent eras showing

much more pronounced decay in synchrony with

distance—characteristic of dispersal-driven synchrony

[26]—than the intermediate period (figure 2e).

To examine relationships among epidemics in different

states, we filtered the time series for each state in the

early and recent eras around the dominant periods 4 and

5.5 years, respectively (figure 2a,c). A striking feature that

emerges is the systematic gradient in the timing of

epidemics in the early era, as illustrated in figure 3a.

However, this organization among states appears different

in the two eras as exemplified by the reconstructed inci-

dence in New York and Colorado (highlighted in orange

and yellow, respectively). In the early era, these two states

show epidemics that are out of phase with a lag of almost

2 years, with outbreaks in New York leading the country,
Proc. R. Soc. B
while epidemic cycles in Colorado trail. In contrast, the

dynamics in these states are almost in synchrony in

the recent era. Calculation of the residual phase angles

of the filtered time series in the two eras allowed us to

quantify the lags observed between epidemics in each state.

Mapping the early era residual phase angles (figure 3c)

reveals spatially organized travelling waves, with two dis-

cernible foci, and this pattern is robust respective to the

number of years used to define the early era (see the elec-

tronic supplementary material, figure S2f together with

accompanying movies of the spatial dynamics of filtered

signals). Epidemics in the northeastern and northwestern

states are strongly in phase, despite the substantial geo-

graphical separation; a feature that is also apparent in

figure 2e (red curve), with increasing spatial correlation

functions for distances in excess of 3000 km. Thus,

northern states on the east and west coasts appear to

act as foci, driving epidemic waves that spread southwest

and southeast, respectively. When phase lags are regressed

against the geographical location of states, we find longi-

tude is a strong and significant predictor of the epidemic

timing (figure 3f ). This translates into a longitudinal pro-

gression speed westward from the northeast (323 km per

month, 95% CI, 311–336 km per month) that is almost

three times as fast as the eastward wave from the
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northwest (113 km per month, 95% CI, 106–120 km per

month). For comparison, the radial speed of the dengue

haemorrhagic fever waves emanating from Bangkok in

the 1980s–1990s was estimated at 148 km per month

(95% CI, 114–209 km per month) [8], while the waves

of measles in the pre-vaccine era were estimated to

spread from London to nearby environs at 20 km per

month [6]. Latitude, on the other hand, has much less

effect (figure 3b).

In the recent era, in contrast, we find surprisingly little

spatial organization (figure 3d). As we demonstrate in the

electronic supplementary materials, while the earlier era is

characterized by consistent phase hierarchy among states

through time (see the electronic supplementary material,

figure S2f ), the later era exhibits substantial variability

without any systematic structure (see the electronic sup-

plementary material, figure S2m). Additional support for

this clear difference between the eras is provided by the

lack of robustness with respect to the length of time series

used to define the recent era (see the electronic supplemen-

tary material, figures S1b,d), again confirming that there is

no clear spatial organization in this era. Finally, by present-

ing the unfiltered time series ordered according to longitude,

we confirm the spatial structure of pertussis dynamics in

the first era (see the electronic supplementary material,

figure S3a), together with its unravelling in the recent era

(see the electronic supplementary material, figure S3b).
Proc. R. Soc. B
Finally, we examined whether residual phase angles

depicted in figure 3 are associated with state population sizes

and found no significant relationship (figure 4, F1,47¼ 1.14,

p¼ 0.29 for the first era and F1,47¼ 0.85, p¼ 0.36 for

the second era). This is in contrast with the relationship

documented for measles in England and Wales [6].

Furthermore, no relationship was observed between phase

correlations and population size products (see the electronic

supplementary material, figure S4), in contrast to seasonal

influenza waves in the US [7]. In the discussion section, we

propose different lines of explanation for these observations.
4. DISCUSSION AND CONCLUSIONS
To date, three distinct mechanisms have been identified

to explain the spatio-temporal morphology of infectious

disease systems.

I. Diffusive spread from a point source. This can result

from the localized introduction of a pathogen into a

virgin population, as documented in the systematic

expansion of raccoon rabies [27] and West Nile virus

[28] in the US and the Ebola virus in Zaire [29].

II. Source-sink dynamics and gravity coupling. Measles

epidemics in the pre-vaccine era in England and Wales

have been shown to be the result of recurrent waves ema-

nating from large populous centres (sources) that

percolate through the rural hinterland (sinks) [6]. These
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Figure 3. Travelling waves of pertussis across the continental US during the 1950s (1951–1962) and in recent years (2002–

2010). For illustrative purpose, the states of New York and Colorado are highlighted in orange and yellow, respectively.
(a) Time series of pertussis cases for the 49 states filtered between periods of 3.5 and 4.5 years (early era) and 5 and 6
years (recent era). (b,e–g) Residual phase angles of each filtered time series plotted against the latitude (b,e) and the longitude
( f,g) of the centres of population of each state for the early era (b,f ) and the recent era (e,g). Each small dot represents the value

of the residual phase angle for a given month and the big dots show their mean for a given state. Note that, for visual clarity,
residual phase angles were deliberately plotted between 22 and þ2 radians instead of 2p and þp radians. As a result, some
dots are not visible on the graph. The grey areas are the 99% CIs of loess regressions and the coloured straight lines are the
99% CIs of piecewise linear regressions. The cut-off years were obtained via maximum likelihood of the piecewise regressions.
(c,d) Colour-coded loess regressions (and their isoclines) of phases angles against longitudes and latitudes (and interaction) of

the centres of population of each state (dots). The interpolation values are colour-coded according to the scales on the bottom
left (c) and right (d) corners. See electronic supplementary materials (and in particular its figure S2) for more detailed
information about the data processing used to make this figure.
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waves are consistent with ‘gravity coupling’, whereby the

epidemiological exchange between two centres is deter-

mined by their distance and their respective population

sizes [30]. Similar patterns have been noted in the spatial

hierarchies of annual influenza epidemics across the US

[7] and waves of dengue haemorrhagic fever in Thailand,

pulsing across the country from Bangkok [8].

III. Environmental gradients. In contrast, the waves of sea-

sonal influenza epidemics across Brazil are not thought to

be driven by population density or patterns of movement.

Influenza epidemics originate in northern Amazonian

regions, where population density and movement rates are

low, spreading to the more densely populated southern

subtropical states over a three-month period [31]. Climato-

logical variables (including temperature and absolute
Proc. R. Soc. B
humidity [32]) are thought to be the leading candidates

for generating this wave [33].

In this study, we find clear spatial organization of pertus-

sis epidemics in the 1950s and the conspicuous absence of

such structure after its re-emergence half a century later.

Among the two above-described mechanisms relevant to

recurrent epidemics (mechanisms II and III ), we can tenta-

tively rule out mechanism III because if environmental

factors were the primary drivers of patterns reported in

figure 3c, then we would expect approximately similar

geographical structuring in the recent era (figure 3d).

A rigourous evaluation of the role of mechanism II in the

spatio-temporal dynamics of pertussis in the early era would

require the use of statistical inference methods, applied to

coupled state-specific mechanistic transmission models
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[30]. Unfortunately, the absence of state-level vaccine

uptake information in the 1950s precludes such an

approach. Therefore, we resort to proximate indicators of

gravitational coupling. Given that population sizes in most

states in the early era exceeded the extinction threshold

(CCS, figure 2d), the observed spatial waves are unlikely

to have resulted from strict source–sink dynamics, where

frequent local extinctions are followed by reignition from

large reservoir states. We tested the effect of population

size on the hierarchy of epidemic timings by two previously

published methods (see figure 4 and electronic supple-

mentary material, figure S4) and failed to observe any

significant relationship, in contrast to measles in England

and Wales [6] and influenza in the US [7].

A fourth hypothesis that may explain the patterns

reported here for US pertussis in the 1950s is the

‘pacemaker’ mechanism, which has been readily predicted

in theoretical studies [34,35] but has not been documented

in large-scale epidemiological (or ecological) systems, so

far. Here, the foci—or pacemakers—would be a collection

of geographically clustered populations with highly syn-

chronous epidemiological dynamics acting as local

rhythm generators, such as states in the northeast and

northwest in the 1950s. The factors that would determine

the precise location of these foci are not yet understood.

In mathematical models, however, pacemakers have been

shown to arise in regions exhibiting higher than average

connectivity [35], or—in spatially homogeneous sys-

tems—to emerge with no predictable location [34,36]. In

epidemiological systems, regional population demography,

patterns of localized movement and vaccine uptake levels

are likely to play an important role in the spatial pattern

formation. Theoretical work to identify the processes that

may generate pacemaker dynamics and the impact of

disease-specific epidemiological and immunological traits

is clearly timely.

Over the 60 years of our dataset, we have documented

major shifts in pertussis epidemiological dynamics. First,

the inter-epidemic period shifted from 4 (figure 2a) to

5.5 years (figure 2c), which may be attributable to a

decrease in the rate of susceptible recruitment either

owing to a lower per capita birth rate or increased vaccine
Proc. R. Soc. B
uptake. However, we point out that because of the brevity

of the time series in the recent era (only 9 years), observed

patterns need to be interpreted with caution, especially

given the large CIs in figure 4b and variability in phase

angles for some states in electronic supplementary

material, figure S2l. Second, since the 1950s, there have

undoubtedly been changes in pertussis reporting prob-

ability, likely attributable to changes in the surveillance

system and improved diagnostic capabilities [37]. How-

ever, such changes, if they can affect the quantitative

aspects of the dynamics (such as mean incidence), are

expected to have very limited effects on qualitative aspects

of the dynamics (such as periodicity and phase) on which

our analysis is based. We thus expect our results on

spatial dynamics to be insensitive to changes in the

reporting fidelity.

The precise mechanisms generating different pertussis

metapopulation dynamics in these eras are not known. We

speculate, however, that the extent of pertussis-specific

spatial coupling between states is likely to have altered

substantially over the time span of these data. This

would have arisen for two reasons. First, it would be

uncontroversial to point out that human mobility patterns

have changed dramatically over the past 6 decades. In the

1950s, the majority of trips were made by ground trans-

portation, with air travel still rare apart from coast-to-

coast exchange [38]. This verbal hypothesis can explain

the spatial phase structure observed in figure 3f : rapid

between-coast air connections would synchronize the

two coasts and slow terrestrial diffusion on the road/rail

network would be responsible for the linear phase-

longitude association. The westward speed of propagation

being almost three times as fast as the eastward one may

have resulted from a road network being denser and

straighter in the flat east part of the USA than in its

mountainous Western counterpart, and also from higher

population density in the east. The dramatic increase of

air travel all over the continent together with rapid popu-

lation growth in the central US may be responsible for the

disruption of this spatial structure in the contemporary

re-emergence of pertussis. The second potential factor

in the changing spatial epidemiology of pertussis relates
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to the age distribution of pertussis incidence. It has been

shown that, in recent years, pertussis is affecting older

individuals [39,40], with increasing number of reports

observed in adolescent and adult age groups [41,42].

Hence, compared with the 1950s, the spatial exchange

of pertussis across states would have changed both

because of changing underlying movement patterns in

the population, but also because of a shift in the age

classes affected. From a pragmatic perspective, our find-

ings suggest that analyses of historical data may be

much less informative about modern epidemiological

systems than could a priori be expected.
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