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Review
Infectious diseases have been a prime testing ground for
ecological theory. However, the ecological perspective
is increasingly recognized as essential in epidemiology.
Long-term, spatially resolved reliable data on disease
incidence and the ability to test them using mechanistic
models have been critical in this cross-fertilization. Here,
we review some of the key intellectual developments in
epidemiology facilitated by long-term data. We identify
research frontiers at the interface of ecology and epide-
miology and their associated data needs.

Historical background
John Graunt, who pioneered the collection of vital statis-
tics in the 17th century, was a seminal figure in epidemi-
ology [1]. Because he was interested in an early warning
system for the spread of bubonic plague, he focused on
disease mortality, but his systematic analyses of vital
statistics were highly influential and led to programs for
regular documentation of demographic fluxes and causes of
death [2]. One of Graunt’s most substantial legacies is a
wealth of data on infectious disease morbidity and mortal-
ity systematically collected from the 16th century. In
England and Wales, for example, notifications of deaths
attributable to several high-profile diseases (e.g. measles,
whooping cough, diptheria, scarlet fever, plague) have been
recorded since 1836 [3]. Figure 1 shows spatially replicated
data spanning different eras for weekly notifications of
whooping cough deaths and incidence for the largest pop-
ulation centers in England and Wales from the first years
of the 20th century [4]. Similarly, the US Public Health
Service has published the Weekly Abstract of Sanitary
Reports since 1878 [5] and comparable collections are
available in many other countries.

Although long-term epidemiological data sets vary in
reporting fidelity, frequency and duration, relative to most
other ecological time series they tend to be long and highly
resolved. Examples include excellent data sets on cholera
and malaria mortality in the former British India [6],
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recent incidence data on dengue hemorrhagic fever from
Thailand [7], raccoon rabies data from the eastern USA [8],
and bubonic plague in gerbils in Kazakhstan [9]. This
wealth of ecological data is perhaps rivaled only by fisher-
ies data [10], trapping data for small mammals [11], and
data on forest insect outbreaks [12]. Another distinguish-
ing feature of infectious disease data is the availability
of parallel information, often including details on host
demography, immunization practices, and societal and
behavioral changes. These types of information have been
invaluable in placing observed epidemiological patterns
within their ecological context (see below).

Long-term data were instrumental in the development
of epidemiological ideas in the late 19th and early 20th
centuries, when a number of researchers explored the roles
of seasonality, immunity and competition in infectious
disease dynamics [13,14]. At the same time, fundamental
theoretical insights led to formulation of the classic math-
ematical models that underpin modern epidemiological
research, including Hamer’s presentation of the so-called
susceptible–infectious—recovered (SIR) model [15], the
development of the first malaria transmission model by
Ross [16] and the influential work of Kermack and McKen-
drick [17] on the threshold properties of the SIR system. In
the mid-20th century, Bartlett’s ground-breaking analyses
of measles epidemics and their extinction frequency led to
the important concept of the critical community size (the
smallest host population size above which the pathogen
persists [18]) and the dynamic impact of demographic noise
in amplifying fluctuations and sustaining oscillations in
SIR models [19]. Epidemiological theory was further
boosted by the seminal contributions of Dietz [20] and
Bailey [21]. In many ways, however, the true marriage
of epidemiological theory and long-term data sets had to
wait for the consummate work of Anderson and May.
Starting with their compelling 1979 treatise, they drew
attention to the important parallels between ecological
theory (especially predator–prey systems) and infectious
disease [22,23]. They subsequently published a series
of elegant studies in which meaningful, policy-relevant
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Figure 1. Long-term data on whooping cough (pertussis) in the largest cities of England and Wales [4]. Weekly notifications of pertussis deaths from the largest 95 towns

and cities in England and Wales for (a) 1904–1913 and (b) 1922–1931. (c) Weekly case data for the 60 largest cities for 1944–1957. The line graph at the top of each panel

shows data for London and the colored panels present spatial log-transformed data. The figures demonstrate changes in epidemiological patterns of pertussis through the

decades. In London, for example, pertussis outbreaks during 1904–1913 were annual, gave way to biennial cycles in 1922–1931 and were characterized by a mixture of

annual and multiennial oscillations after World War II. The color panels show that in between large outbreaks, pertussis became locally extinct in small populations, as

illustrated by white regions.
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conclusions were extracted from epidemiological data
(summarized in [24]). Subsequently, infectious disease
ecology has burgeoned as a field, becoming a prime testing
ground for ecological concepts and theory [25,26]. Current-
ly, the crosstalk between ecology and epidemiology is
exciting and productive: examination of epidemiological
data from an ecological perspective informs public health
issues [27–30] and methodology developed for dealing with
long-term epidemiological data sets are usefully applied in
ecological contexts [e.g. 31,32]. The abundance of long-term
data unquestionably continues to play a critical role in this
blossoming.

In this opinion piece, we review the major epidemiologi-
cal lessons learned from long-term data, outline some of
the outstanding challenges to epidemiological theory, and
identify an urgent need for new long-term data sets that
differ in type and scale.

Lessons learned (so far)
To address issues of causality in natural systems, dynam-
ical models are indispensable [33]. The most natural and
rigorous means of evaluating such models is to apply them
to long-term time-series data. In the ecology of many
infectious diseases, two circumstances make such models
relatively easy to formulate. The first is the pronounced
separation between the generation times for micro-para-
sites (viruses, bacteria, protozoa) and those of their hosts.
The second is the close ecological connection betweenmany
obligate specialist parasites and their hosts. Even given
the relative simplicity of the ecology in such cases, it is
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remarkable that the very simplest models have proved
surprisingly efficient at explaining data. This is in stark
contrast to the experience in ecology where, by and large,
the simplest models are thought to be of limited use in
explaining nature, with the notable exception of well-stud-
ied laboratory systems [34–36]. This degree of success
probably stems from a combination of factors. First, at
the macroscopic scale (e.g. long-term epidemic dynamics in
a metropolitan centre), many infectious disease systems
are characterized by well-understood biology and a reason-
ably simple natural history (host specificity, known dura-
tions of latency and infectiousness, and long-lasting
immunity). Second, and intriguingly, many heterogene-
ities seem to average out in such infectious disease systems
so that admittedly oversimplified descriptions often effec-
tively capture prominent dynamical patterns [37].

Nonlinearity, seasonality and stochasticity
One of the earliest attempts to apply an epidemiological
model to data was by Hamer [15], who noted the inconsis-
tency between the constant prevalence predicted by the
simplest transmission model and the violent, high-ampli-
tude oscillations observed in notifications of measles case
in London. Hamer speculated that a missing component of
the model was rhythmic variation in the number of sus-
ceptible subjects. This topic was re-examined by Soper,
whose exploration of Glasgow measles data led him to
suspect seasonal variation in transmission rates that could
be attributed to the opening and closing of schools [14].
This conclusion that epidemics of measles epidemics (and
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Figure 2. Dynamics of measles outbreaks in Niamey, Niger. Mean monthly rainfall

from 1995 to 2004 (blue) are plotted together with 62 standard deviations (blue

shading). The estimated seasonal transmission rate for Niamey is depicted in red,

with the shaded grey regions representing the 95% Bayesian credible intervals. The

dashed line depicts the seasonality (scaled for population size) for the pre-vaccine era

(1950–1968) in London for comparison. Reproduced with permission from [40].
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Figure 3. Depiction of long-term epidemiological data sets. Monthly case

notifications from Copenhagen for (a) chickenpox, (b) measles and (c) rubella.

(d) Weekly incidence of whooping cough in London (note that national

immunization commenced in 1957 in England and Wales). The statistically

significant dominant period through time as detected by wavelet spectral

analysis is also plotted in each panel.
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of other childhood diseases) in large populations are driven
by school-term-driven seasonal changes in contact rates
has since been confirmed [38,39]. Interestingly, a recent
study of measles in sub-Saharan Africa has revisited the
mechanism of transmission seasonality. Ferrari et al. [40]
explored measles incidence in Niger and suggested that
seasonal human migration associated with agricultural
practices is a key driver there (Figure 2). In data for
Niamey, the capital of Niger, the estimated amplitude of
seasonality is much greater than it is in London (Figure 2).
This difference is thought to be largely responsible for the
unpredictable and perhaps chaotic oscillations in measles
in Niger.

Compared with the pattern in Niger, measles data for
England and Wales, Europe and the US show a striking
temporal regularity (Figure 3). In England and Wales,
from 1950 until the introduction of national pediatric
immunization in 1968, measles epidemics in larger towns
and cities exhibited a predictable 2-year cycle [24,41]. The
fact that the most basic SIR transmission model with
school-term forcing reproduces this and other qualitative
features of measles epidemics in large populations [42] has
led some to comment on the essentially deterministic
nature of these data [37].

As Figure 3 shows, however, infectious diseases vary in
their predictability and in the appearance of stochasticity
and seasonality in their dynamics [43]. For example, epi-
demics of chickenpox (Figure 3a) are highly regular, with a
constant inter-epidemic period. Similarly, although mea-
sles outbreaks (Figure 3b) exhibit distinct dynamical
shifts, these are well explained by changes in birth rates
(see below) [42]. By contrast, mumps (Figure 3c) and
pertussis (Figures 3 and 1d) exhibit more unpredictable
dynamics, an observation that presents both challenges
and opportunities: challenges, inasmuch as increased
noise levels obscure patterns that reveal the underlying
ecology; and opportunities, because increasing variability
broadens the dynamic range of the system, thereby poten-
tially revealing more about the mechanisms shaping the
dynamics. From an ecological perspective, this observation
is particularly interesting because of the historical, recur-
rent and occasionally charged debate over the relative
importance of exogenous (stochastic) and endogenous (den-
sity-dependent) forces in shaping population dynamics
[44,45]. Analyses of childhood disease data have shed light
on when stochasticity is dynamically important, identify-
ing the epidemiological traits (e.g. infectious period and
transmission rate) that determine the outcome of season-
ality and demographic noise [46,47]. Emerging theory on
this front has very elegantly revealed the ingredients
necessary for noise amplification in such systems [48–50]
and the accompanying response to seasonality [43].

Bifurcations, chaos and natural experiments
One of the guises under which the noise versus nonlineari-
ty controversy reappeared was the 1980s and 1990s dis-
cussion surrounding the possibility of chaos in ecological
systems [51]. The idea was that the nonlinearity inherent
in pathogen transmission conjoined with seasonal forcing
makes childhood diseases prime candidates for chaotic
dynamics. The high-profile work of Schaffer and colleagues
[52,53], Sugihara andMay [54] andEllner andTurchin [55]
exploited long time-series data for case notifications for
childhood diseases and novel theoretical approaches to
identify the fingerprints of chaos. Ultimately, unequivocal
evidence of chaos in these systems remains elusive, with
perhaps the most likely example being that of measles in
Niger discussed above [40]. In retrospect, the lasting im-
pact of the hunt for chaos in ecology has been methodologi-
cal. The question of whether any particular ecological
system is chaotic has been eclipsed by a more basic ques-
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tion: what features must a mechanistic model have to
explain ecological dynamics?

More recently, Earn et al. [42] argued that because
measles is highly transmissible and elicits long-lasting
immunity, epidemics are determined by the replenishment
rate of the susceptible pool: so-called supply-side epidemi-
ology. They pointed out that changes in the influx of
susceptible subjects resulting from, for example, secular
trends in birth rates or vaccination coverage might result
in shifts in dynamical patterns and suggested that the
recurrent annual epidemics of measles observed in devel-
oping nations [56] might be explained as a consequence of
high fecundity, whereas the aperiodic dynamics observed
in the vaccine era in developed countries, previously con-
sidered to be an example of chaos, can be more parsimoni-
ously attributed to the interaction between stochasticity
and multiple attractors.

Direct experimental confirmation of the changes pre-
dicted by bifurcation analyses and stochastic simulations
have here, as elsewhere in ecology, been practically impos-
sible. However, informative studies have exploited natural
experiments of four types: (i) changes in host demography
have afforded some of the most elegant and direct con-
firmations of predicted bifurcations [27,42,57]; (ii) the
commencement of mass vaccination campaigns [58]; (iii)
differential immunization strategies across countries; and
(iv) comparison of outbreak data among communities
(towns, countries) of different size, which has facilitated
assessment of the relative importance of demographic
stochasticity and extinction dynamics [37,59–61].

Metapopulations, spatial synchrony, travelling waves
and transmission networks
The systematically collected and spatially resolved UK
incidence data for measles and whooping cough represent
a special, perhaps unique, resource. Recognizing the sig-
nificance of these data for long-standing questions in pop-
ulation ecology, Grenfell and colleagues spearheaded a
campaign to digitize such information [62]. Subsequent
analysis revealed that the measles metapopulation in
England and Wales in the pre-vaccine era was character-
ized by highly synchronous biennial outbreaks [37]. In the
vaccination era, however, a significant reduction in spatial
synchrony was observed [58,62]. Phase differences among
outbreaks in different populations have been mooted as a
possible explanation for the paradoxical observation that
the critical community size has not increased substantially
as a result of vaccination. If correct, this is a prominent
manifestation of the ecological concept of the rescue effect
[63] and, importantly, suggests a strategy of spatially
targeted immunization programs [25].

Spatially explicit epidemiological models make spatio-
temporal predictions and a great deal of attention has been
focused on synchrony and traveling waves in disease sys-
tems [64]. Since Grenfell et al. [62] described such waves in
measles incidence in England and Wales, they have been
identified in a number of other systems, including spatially
pulsed dengue outbreaks in Thailand that emanated from
Bangkok [7]. A very active area of research has focused on
the mechanisms of host and/or vector movement affecting
such spatiotemporal patterns. It has been shown that
614
gravity models generate patterns that are consistent with
the waves of measles outbreaks in England andWales [65].
Such models (borrowed from transportation theory) as-
sume that the extent of epidemiological interaction (or
coupling) between two centers is determined by the geo-
graphical distance between them and their respective
population sizes. By contrast, the pronounced spatial
waves of seasonal H3N2 influenza epidemics in the US
have been explained via coupling predicted by commuter
movement between states [28].

Methodological development
Mechanistic models of epidemiological processes are non-
linear dynamical systems and as such are amenable to the
tools of that field, most importantly numerical solution,
stability and bifurcation analyses for deterministic mod-
els [24,66] and simulation, computation of stationary dis-
tributions and stochastic resonance for probabilistic
models [46,48,50]. To date, less attention has been focused
on formal statistical inference in disease systems (esti-
mating key parameters and evaluating competing hypoth-
eses) than on analysis of models. The most widespread
approach to formal statistical inference has used the time-
series SIR (TSIR) approach [39], in which the dynamics of
transmission are approximated by a simple discrete-time
stochastic model that can be fitted to time series data via
nonlinear regression. Although this approach has been
applied to a variety of diseases [43,67], and is a rough-and-
ready tool, the approximations it makes begin to break
down with increasing distance from the measles regime.
Novel approaches based on the state–space framework
have been applied to diseases such as influenza [68],
cholera [29] and plant diseases [69] and show promise
for dealing with strain dynamics, age structure and envi-
ronmental drivers. In a state–space framework, the un-
derlying ecoepidemiological processes that are not directly
observable but are responsible for observable patterns are
viewed as distinct from the observation process itself.
Statistical inference on state–space models is computa-
tionally demanding but recent algorithmic breakthroughs
have greatly improved the outlook for rigorous inference.
Worthy of special note are tailored MCMC approaches
[68,69], indirect inference approaches based on nonlinear
forecasting [70] and iterated filtering [29,71,72], the latter
two of which have the plug-and-play property, requiring
only model simulation and obviating the need for analyti-
cal tractability of the model. These methods have yielded
considerable success in infectious disease settings andwill
probably lead to important insights in other ecological
systems.

Theoretical challenges and data needs
Here, we look to the future, outlining some of the research
frontiers in disease ecology and advocating for new and
different types of long-term data.

Strain evolution, phylodynamics and the community

perspective

The broader ecological stage on which infectious disease
dynamics play out, their community context, is increasing-
ly recognized as critical [4,26,73]. Whereas the single host–
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single pathogen paradigm deepened our understanding of
the epidemiology of measles and chickenpox, for example,
there are many systems for which its explanatory power is
limited. Obvious examples include strain-polymorphic
pathogens, such as those responsible for malaria, influen-
za, dengue and polio. Numerous open questions remain
that can only be adequately answered by additional data.
For instance, in disease systems with antigenic variability,
much uncertainty surrounds the determinants of strain
diversity [74], the limits to strain coexistence [75], the
mechanisms responsible for the patterns of strain replace-
ment observed, and the strength, duration and impact of
immunity [76,77].

In the context of pathogens with limited diversity (e.g.
cholera and dengue), existing theory is complex but rela-
tively straightforward [75,78]. When genetic novelty con-
tinually arises, as in the case of influenza A, the theoretical
challenges are greater. The so-called phylodynamics per-
spective attempts to infer aspects of the ecology and evo-
lution of hosts and pathogens from the shapes of pathogen
phylogenies [74,79,80]. Identification of ways to better
integrate genetic and epidemiological data beyond visual
or descriptive comparisons of phylogenies remains a
challenge.

Beyond multi-strain systems, we now recognize poly-
microbial diseases, in which transmission and pathogenic-
ity involve interactions among distinct pathogens.
Examples include opportunistic bacterial and viral infec-
tions (with numerous high-profile demonstrations in HIV/
AIDS patients), periodontal diseases and some respiratory
infections, including Haemophilus influenzae and Strepto-
coccus pneumoniae [81]. Despite the recognized impor-
tance of multi-pathogen diseases in general, appropriate
long-term data are still scarce. We believe that break-
throughs in the understanding of these processes will
require the collation of data of different types, especially
serological cross-sectional information shedding light on
the kinetics of population immunological profiles and inter-
actions among infectious agents.

Within-host dynamics

Most epidemiological models that track the prevalence of
an infectious disease within a population categorize indi-
viduals according to infection and immunity status (e.g.
susceptible, infectious or recovered and immune). Concep-
tually and mathematically, this resembles the Levins
metapopulation model, in which habitat patches are either
empty or fully colonized, irrespective of the population
density [82]. This approach has limited value in a number
of applications [83], including attempts to understand the
epidemiological outcome of mixed infections [84], the evo-
lutionary consequences of pathogen life-history traits
[59,85], and the evolution of drug resistance [86]. In such
cases, attempts to understand the underlying processes
using mathematical models have been frustrated by the
absence of long-term data at the individual infection scale
[87]. Short-term or snapshot data for the initial stages of an
infection are often available, but greater longitudinal in-
formation is likely to be the key to further progress for
persistent infections such as HIV [88] and pathogens that
can reinfect, such as influenza [89].
Another field that increasingly calls for a finer-scale
understanding is immunity dynamics. Although infections
by chickenpox, smallpox and morbilliviruses (including
measles, rinderpest, and canine and phocine distemper
viruses) induce life-long immunity, this does not seem to
be the norm. Population-level data have been used to infer
the dynamics of immunity relating to cholera [29,67], H.
influenzae type B [90] and pertussis [30]. Ultimately,
however, this question will need to be resolved using better
specific within-host models of infection with appropriate
empirical information, to some extent obtainable from
animal models.

Environmental drivers

From a public health and wildlife management perspec-
tive, research on the ecology and evolution of infectious
diseases would ideally translate into the development of
early warning systems. This effort has for the most part
focused on the use of climatological variables to inform
epidemic predictions. This is largely because mechanisms
linking environmental conditions, such as rainfall and
temperature, to disease transmission are known [91].
For example, temperature determines the developmental
rate of the malaria parasite Plasmodium falciparum [92]
and the persistence of avian influenza viruses in aquatic
environments [93], with qualitative impacts for transmis-
sion dynamics [94]. Perhaps the best-studied aspect has
been the impact of climatic variables on disease vectors;
ecological niche models have been used to predict the
presence of vectors by reference to abiotic determinants
of habitat suitability [95]. Although plausible, climatologi-
cal determinants of epidemic risk and reliable early warn-
ing systems based on them require further empirical
support. This has led a number of scientists to use long-
term data to examine the statistical association between
climate variation and the incidence and dynamics of infec-
tious diseases [91], especially cholera [6] and Lyme disease
[96], with a view to predicting the consequences of climate
change [97]. These efforts are likely to be transformed by
the increasingly abundant, highly spatially resolved satel-
lite data on environmental drivers, whereas the acquisi-
tion of similarly resolved epidemiological data remains an
active frontier.

Surveillance networks and policy

Wehave highlighted several epidemiological success stories
made possible by long-term data sets accumulated through
surveillance systems. Naturally, improved understanding
of such systems leads to an expectation of reliable quantita-
tivepredictions. Indeed, epidemiologicalmodelsare increas-
ingly expected to quantify unobserved variables in an
outbreak in progress (so-called nowcasting) and to make
forecasts. For example, in the 2001 outbreak of foot-and-
mouth disease in the UK, policy-makers and politicians
relied heavily on mathematical modeling in their selection
of epidemic control measures, with great success [98,99].
The recent H1N1 pandemic, however, provides a sobering
counter-example. Following the first wave of transmission
in the Northern Hemisphere in the summer of 2009, epide-
miological models were scrutinized for predictions about
the severity and impact of the autumn influenza season.
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The models dramatically overpredicted the size of winter
outbreaks and numbers of likely fatalities. This prominent
setback canbe largely attributed to inadequate information,
both in terms of the epidemiology of the virus (particularly
the case fatality rate) and the true extent of the first epi-
demic. The recent study byMiller et al. [100] goes a longway
to explaining why: they demonstrate that the first wave of
the epidemic in the UK probably involved ten times
more children than was initially estimated. The resulting
overestimation of the number of susceptible individuals
seems to have led directly to overestimation of the severity
of the second wave. This observation points to the need
for systematic cross-sectional serological surveys as a
prerequisite for better real-time modeling of the dynamics
of emerging threats.

Increasing reliability of models for forecasting and now-
casting will depend on better data on the contact patterns
and transmission networks within and between popula-
tions. Promising recent developments in this regard in-
clude detailed studies of contact networks in Portland,
Oregon [101] and self-reported mixing-pattern data for
European populations [102]. We are also better placed to
understand themechanistic basis of individualmovements
thanks to mobile phone geolocation data [103] and the
geographical dynamics of monetary currency (the Where
is George? project [104]).

A universal challenge in the interpretation of incidence
data is the reporting bias that arises, for example, when
subclinical infections play an important epidemiological
role but are less likely to be reported than severe disease
[29]. More troubling are the potential dynamic interactions
between reporting fidelity and epidemiological processes.
For example, the 2009 H1N1 pandemic showed that sen-
sationalism and fear can lead to increased clinic visits and
thus higher reported incidence. Making the best use of
long-term incidence data will require a better understand-
ing of the interactions between disease dynamics, trans-
mission, behavioral changes and the processes by which
incidence data are recorded.

Data-sharing policies

Policies and practices for systematic sharing of and access
to data have yet to be formulated and adopted by the
epidemiological research community. This leads to tension
between those who have invested in data collection and
digitization and those who have invested in the develop-
ment of analytic tools. Whatever community-wide (or,
more probably, funding-agency-mandated) policies are
eventually agreed on must adequately reward the initial
investment in data mining and collection efforts.

Conclusions
Infectious disease ecology is a vibrant field of research.
Long-term epidemiological data continue to feature prom-
inently in the development and utility of the field. Epide-
miology has furnished some of the most definitive tests of
ecological principles and has proved an unrivalled test bed
for ecological theory and method. In turn, epidemiology is
beginning to benefit from an ecological perspective on
complex multi-host and multi-pathogen systems. Contin-
ued progress will depend on our ability to gather new and
616
different long-term data and effectively query them using
more realistic models.
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