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The association between influenza virus and the bacterium Streptococcus pneumoniae (pneumococcus) has been
proposed as a polymicrobial system, whereby transmission and pathogenicity of one pathogen (the bacterium)
are affected by interactions with the other (the virus). However, studies focusing on different scales of resolution
have painted an inconsistent picture: Individual-scale animal experiments have unequivocally demonstrated an as-
sociation, whereas epidemiological support in human populations is, at best, inconclusive. We integrate weekly
incidence reports and a mechanistic transmission model within a likelihood-based inference framework to charac-
terize the nature, timing, and magnitude of this interaction. We find support for a strong but short-lived interaction,
with influenza infection increasing susceptibility to pneumococcal pneumonia ~100-fold. We infer modest population-
level impacts arising from strong processes at the level of an individual, thereby resolving the dichotomy in seem-
ingly inconsistent observations across scales. An accurate characterization of the influenza-pneumococcal interaction
can form a basis for more effective clinical care and public health measures for pneumococcal pneumonia.
INTRODUCTION

It is increasingly clear that many pathogens interact. Infection with
one pathogen can affect the severity, infectivity, or susceptibility to
subsequent infection with other pathogens, and these effects can have
profound clinical, epidemiological, and evolutionary implications (1–8).
An important example is the putative association between the influenza
virus and the bacterium Streptococcus pneumoniae (pneumococcus).
Suspicions concerning a possible interaction among the two date back
over two centuries, with the observation that prevalence of pneumonia
increased during influenza epidemics (9). Histopathological examina-
tions have demonstrated that at least 24% of fatalities during the 1918
Spanish influenza pandemic had evidence of concomitant pneumo-
coccal respiratory infection (10). More recently, an atypical increase
in pneumococcal hospitalizations coincided with the occurrence of
the A/H1N1 influenza pandemic in fall 2009 (11). During nonpan-
demic periods, the epidemiology of these pathogens is characterized
by peaks during the winter months in temperate countries (12–14),
as can be seen from long-term weekly epidemiological records for
the state of Illinois, United States, before and after the introduction
of pneumococcal conjugate vaccines (PCVs) in 2000 (15) (see Fig. 1).

There is a discrepancy in our understanding of this interaction,
arising from the different scales at which it has been studied. The ev-
idence garnered at the level of the individual is both consistent and
strong. In humans, histopathological examinations have implicated
secondary bacterial infections in lethal (10, 16–19) and severe influen-
za cases (11). In animal models, challenge experiments have shown
that previous influenza infection enhances the severity (20–22) and
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susceptibility (23, 24) of subsequent pneumococcal infection. At the
population level, however, comparative analyses of seasonal patterns
of influenza and pneumococcal pneumonia incidence either have re-
vealed a modest association (25, 26) or fail to expose any signature of
interaction (27) (see section S-2 in the Supplementary Materials for
more discussion). One possible explanation for these contrasting find-
ings is that conclusions drawn from animal challenge experiments are
not directly relevant to human pathogen systems. Alternatively, the
mechanisms identified in animal models may be in operation, but
their dynamical footprints in epidemiological data may be too subtle
to detect using traditional methodologies. To resolve this dichotomy,
here, we confronted a mechanistic transmission model with incidence
reports of influenza and pneumococcal pneumonia within a likelihood-
based statistical inference framework. This approach permitted not
only the quantification of central parameters but also the rigorous test-
ing of alternative hypotheses.

Our aim was to identify the nature, strength, and timing of the pu-
tative interaction between influenza and pneumococcal pneumonia.
We examined three distinct hypotheses. The first (H1: transmission
impact) proposes that individuals infected with pneumococcal pneu-
monia contribute more to pneumococcal transmission if they have been
recently infected with influenza. The second (H2: susceptibility impact)
proposes that individuals infected with influenza are more susceptible
to pneumococcal pneumonia. The third (H3: pathogenesis impact)
proposes that influenza infection only affects the pathogenesis of sub-
sequent pneumococcal pneumonia infection, enhancing the severity of
clinical symptoms and thereby increasing the odds of notification.
RESULTS

Model
We formulated these focal hypotheses within an SIRS compartmental
model (28, 29) of pneumococcal transmission using influenza incidence
as a covariate. Our pneumococcal transmission model split the host
population into three compartments according to their pneumococcal
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infection status: with S, I, and R representing susceptible, infectious, and
recently recovered individuals. Compartments S and I are further sub-
divided to take into account individual status with respect to influenza.
Specifically, SF and IF represent susceptible and infectious individuals
currently infected with influenza, whereas SU and IU have no recent his-
tory of influenza. The model is schematically represented in Fig. 2A.
We estimated the size of SF, assuming it is proportional to the current
influenza incidence, corrected for underreporting. That is, at time t,
SFðtÞ ¼ FðtÞ

ρFNðtÞ SðtÞ, where N(t) is the population size, F(t) is the number
of reported influenza cases, and rF is the reporting probability.

In our model, susceptibles experienced a per capita hazard of pneu-
mococcal infection, l(t), that comprised two sources of transmission:
(i) those currently experiencing acute pneumococcal pneumonia and
(ii) a contribution from long-term bacterial carriage, modeled as a con-
stant, w, yielding λðtÞ ¼ βðtÞ IðtÞ

NðtÞ þ ω
h i

. Here, b(t) represents season-
ally varying transmission rate. Our pneumococcal transmission model
was implemented as a Markov chain, incorporating both demographic
and extrademographic noise (30), together with a probabilistic report-
ing process, with reporting probability rp. The complete model is de-
scribed in Materials and Methods.

Hypotheses formulation
To formulateH1—increased transmission of pneumococcus as a result
of influenza infection—we distinguished between the transmission con-
tribution of those infected with pneumococcal pneumonia according
to their status with respect to influenza. Specifically, we assumed that the
pneumococcal transmission rate of individuals recently infected with in-
fluenza is modulated by a factor q, relative to those uninfected with influ-
enza, such that λðtÞ ¼ βðtÞ IU

N þ θ IF
N þ ω

� �
. Thus, H1 implies q > 1,

with the null hypothesis given by q = 1. To formulate H2—influenza
www.ScienceTranslationalMedicine.org
infection increases susceptibility to pneu-
mococcal pneumonia—we assumed that
the relative hazard rates of susceptibles in
the subcompartments, SU and SF, are given
by l(t) and f l(t), respectively. The hazard
ratio f is then a measure of the suscepti-
bility impact of influenza infection. Again,
H2 implies f > 1, with the null hypothesis
f = 1. Finally, to formulateH3—increased
pneumococcal pneumonia severity be-
cause of influenza infection—we hypothe-
sized that individuals co-infected with
influenza only develop more severe symp-
toms and are, therefore, x times more like-
ly to be reported. Hypothesis H3 implies
x > 1, with x = 1 being the null. To eval-
uate the empirical evidence in support of
each model, we carried out formal hy-
pothesis testing using likelihood-based
inference (31–33) (see Materials andMeth-
ods for details), applied to weekly epi-
demiological records of influenza and
pneumococcal pneumonia hospitaliza-
tions from Illinois. Further, we tested the
impact of the introduction of the pneumo-
coccus vaccination program on these in-
teractions by fitting separate models to data
from the prevaccination (data set I, Fig.
1A) and vaccination time periods (data set II, Fig. 1B). For each hypoth-
esis, we constructed likelihood profiles for the focal parameters (q, f,
and x); that is, we systematically varied the parameter while maximizing
the likelihood over all other parameters. This approach not only yields
the maximum likelihood estimates (MLEs) but also provides the corre-
sponding 95% confidence intervals (CIs) for the parameter profiled.

Nature, timing, and the intensity of the interaction
The results concerning the nature of the interaction between influenza
and pneumococcal pneumonia were unequivocal in our study. We
found no evidence to support the transmission (H1) or severity (H3)
hypotheses in either data set (Fig. 2, B and D, and E and G, respec-
tively). The 95% CIs for q (data set I: 0.41 to 4.7; data set II: 0.3 to 1.9)
and for x (data set I: 0.4 to 3.4; data set II: 0.38 to 1.4) include the null
expectation of 1. In contrast, we find the susceptibility impact f to be
considerably larger than one in both data sets (data set I: 53 to 230;
data set II: 83 to 280). In the absence of support for H1 and H3, and
for reasons of parsimony, we reestimated the susceptibility impact f for
each data set after setting q and x to 1 (insets of Fig. 2, C and F). The
MLE of f—quantifying the magnitude of the susceptibility impact of
influenza on pneumococcal pneumonia—is 115 (CI, 70 to 230) in data
set I and 85 (CI, 27 to 160) in data set II (MLEs are presented in table
S2 of the Supplementary Materials). We also established the time scale
of the interaction by producing a likelihood profile for the susceptibility
factor when the window of interaction is extended, with influenza pre-
ceding pneumococcus superinfection by up to 3 weeks (see S-1.2 in the
Supplementary Materials for details). As shown in fig. S6, there is no
evidence in support of the interaction extending beyond 1 week. Simply
put, our analyses identified a transient but significant (~100-fold) in-
crease in the risk of pneumococcal pneumonia after influenza infection.
Fig. 1. Weekly incidences of influenza and pneumococcal pneumonia in Illinois. (A and B) Before (A,
data set I) and after (B, data set II) the introduction of PCVs. Incidences are the weekly hospitalization case

reports as a fraction of the total population (see Materials and Methods for details).
26 June 2013 Vol 5 Issue 191 191ra84 2
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Epidemiological impact
We translate our MLEs within an epidemiological context by cal-
culating the etiologic fraction of pneumococcal cases, defined as the
www.Scie
proportion of cases that is attributable to the interaction with influenza
(see Materials and Methods for details). We found substantial varia-
tion in this quantity (Fig. 3), with the etiologic fraction accounting for
Fig. 2. The nature and intensity of influenza-pneumococcal interaction.
(A) Schematic representation of the pneumococcal transmission model. Fol-

tions between influenza and pneumococcal pneumonia, inferred in Illinois
from 1990 to 1997 (B to D, data set I) and 2000 to 2009 (E to G, data set II).
lowing the SIRS framework, individuals progress along S → I → R → S at
per capita rates l, g, and e, respectively. Progression of individuals recently
infected with influenza is tracked separately via classes SF and IF. Pneumo-
coccal pneumonia case reports are fraction of the infected as they recover.
Births and deaths are present in the model but omitted in this illustration
for clarity (see Materials and Methods for the complete model). We test
three hypothesized pathways of influenza-pneumococcal interaction. H1
(q > 1): Individuals infected with pneumococcal pneumonia contribute
more to pneumococcal transmission if they have been recently infected
with influenza. H2 (f > 1): Individuals recently infected with influenza are
more susceptible to pneumococcal pneumonia. H3 (x > 1): Individuals
infected with pneumococcal pneumonia are more likely to be reported,
if recently infected with influenza. (B to G) Nature and intensity of interac-
Arranged column-wise are the tests for the three hypotheses H1, H2, and H3.
Plotted in each graph are likelihood profiles for the respective parameters—
the profiles are created by fitting a smooth line through the log of the
arithmetic mean likelihoods (shown in colored filled circles) in 10 repeated
likelihood estimates (shown in colored empty circles). The values within the
two dashed black lines are within the estimated 95% CI, and the value
marked with dashed colored line represents the MLE. The values corre-
sponding to the MLE and the 95% CIs are given on the top margin of the
graphs. The 95% CI is taken to be c21(0.95)/2 ≈ 1.92 log-likelihood units be-
low the maximum—univariate confidence limits using the c2 distribution.
For each of the three parameters, value of 1 represents the null hypothesis.
For H2, we show the profiles with q = 1, and x = 1 (that is, after rejecting H1
and H3) in the inset graphs.
nceTranslationalMedicine.org 26 June 2013 Vol 5 Issue 191 191ra84 3
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up to 40% of pneumococcal cases during peak influenza season, but is
generally low (typically <1%) otherwise. On an annual basis, the etiologic
fraction is 2 to 10%, consistent with values estimated elsewhere from
epidemiological time series methods (11, 25). This translated to an es-
timated 2172 [1567, 2891] and 1077 [782, 1430] cases of pneumococcal
hospitalizations that could be attributed to influenza in data sets I and
II, respectively.

As a validation step, we compared simulations arising from the
MLE and the null models with the data (figs. S3 to S5). We found that
although ignoring the impact of influenza infection on pneumococcal
epidemiology generates dynamics that reproduce the seasonal patterns
in pneumococcal pneumonia cases, these fail to capture the observed
interannual variability in peak sizes. Accounting for the interaction

with influenza explained some of this var-
iability, as reflected in improved goodness-
of-fit statistics (R2 increased from 0.687
to 0.739 in data set I, and from 0.523 to
0.618 in data set II; fig. S5). The modest in-
crease in R2 after the inclusion of influenza-
pneumococcal interaction highlights the
subtlety of its dynamical signature and per-
haps helps to explain its elusiveness in pre-
vious epidemiological analyses.

Consequences of detection
Finally, we explored the consequences of
the influenza-pneumococcal interaction
we have detected for pneumococcal epi-
demiology. We wished to examine the
dynamical impact of variability in season-
al influenza peaks on excess pneumococ-
cal cases. To do this, we first manufactured
multiple hypothetical influenza data sets
that differed in the interannual variability
in their peak sizes by a factor of up to 50
(for example, Fig. 4, B to F). Then, using
these synthetic influenza data as a covariate,
we simulated our pneumococcal trans-
mission model using MLE parameters (see
Materials and Methods for details on in-
ference using manufactured data). We
found the magnitude of pneumococcal
pneumonia peaks to be relatively insen-
sitive to moderate year-to-year variation
in the size of influenza outbreaks (Fig.
4A). For instance, a doubling of influen-
za peak resulted in less than 25% increase
in the magnitude of pneumococcal peak.
The influenza peak would need to be ~20-
fold larger than baseline to generate a dou-
bling of the pneumococcal peak (Fig. 4A).

This observation has implications for
the ability to detect influenza-pneumonia
interaction in epidemiological data; the
identifiability of f depends on variability
in the peak influenza incidence. To illus-
trate, we manufactured five sets of weekly
influenza case reports spanning a 4-year pe-
www.Scie
riod, with different magnitudes of epidemic in year 3, marked as I to V in
Fig. 4A. For each influenza data set (Fig. 4, B to F), we constructed pneu-
mococcal pneumonia incidences (Fig. 4, G to K) by simulating the MLE
model with themanufactured influenza data set as a covariate. Then, using
these simulated influenza and pneumococcal pneumonia incidence data,
we attempted to infer the interaction parameter f using our likelihood-
based inference framework (see Materials and Methods for details).
Even in this optimistic scenario, with perfect knowledge of pneumococcal
epidemiology and host demography, we find that it is not possible to
detect any interaction unless the influenza outbreak in year 3 is at least
fourfold larger than the seasonal baseline (Fig. 4, L to P). This result is
robust to some variability in the timing of the influenza peaks (see fig.
S10). It is also worth noting that the variability observed in the Illinois
Fig. 3. Impact of influenza on pneumococcal epidemiology. (A to D) Estimates of influenza-attributable
etiological fraction of pneumococcal pneumonia cases in Illinois in data set I (A and B) and data set II

(C and D). The estimates are based on the corresponding MLE models for each data set. (B and D)
Fractions averaged over annual periods, midyear to midyear, for intervals shown in (A) and (C), respec-
tively. Influenza-attributable etiological fraction of pneumococcal pneumonia cases in any time interval is
taken to be the ratio of pneumococcal cases as a result of influenza to the total pneumococcal cases in the
given time interval. The estimates for data sets I and II are based on 1000 replicate simulations of the
respective MLE models (see Materials and Methods for details on the calculation of etiological fractions).
nceTranslationalMedicine.org 26 June 2013 Vol 5 Issue 191 191ra84 4
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seasonal influenza peaks is typically below this level (Fig. 4A). There-
fore, the examination of shorter data sets from time periods exhibiting
little interannual influenza variability can fail to detect any meaningful
interaction between influenza and pneumococcal pneumonia. Thus,
the epidemiological signature of this strong but short-lived interaction
appears modest, and its detectability in data relies on information pro-
vided by differential sizes of seasonal influenza outbreaks.
www.Scie
DISCUSSION

Manymicrobial pathogens associated with infectious diseases cocirculate
in a population and can co-occur within individual hosts. Despite their
ubiquity, detecting interactions between pathogens in a natural setting
remains a challenge that general statistical approaches can fail to mean-
ingfully identify (7, 34, 35). We have focused on two common and rela-
Fig. 4. Detectability of influenza-pneumococcal interaction in manu-
factured data. We manufactured multiple hypothetical influenza data sets

actual annuals peaks in the data lie. We then sampled five scenarios (I to V),
indicated by five open red circles. Plotted column-wise are inference tests
that differ in their interannual variability in peak sizes. On the basis of the
MLE model, we then predicted pneumococcal pneumonia incidences for
each influenza data set. (A) Color-coded contours represent the magnitude
of annual peaks in pneumococcal pneumonia incidences when the annual
peaks in influenza incidences (plotted on the horizontal axis) and suscep-
tibility impact f (plotted on the vertical axis) vary. Magnitude of both influ-
enza and pneumococcal pneumonia peaks is presented as fold increase
relative to their respective baseline peaks. Marked in filled circles are where
performed on these five sets of manufactured data in each of the scenarios
(see Materials and Methods for details on inference using manufactured
data). (B to F) Manufactured weekly influenza incidences (on a log10 scale).
(G to K) Simulated weekly pneumococcal pneumonia incidences (on a
log10 scale) using the MLE model and influenza cases as covariates. (L to
P) Likelihood profiles of the susceptibility impact f. The dashed red line is
the actual value of interaction (f = 85, MLE model), and the values of f
between the two dashed black lines are within 95% CI.
nceTranslationalMedicine.org 26 June 2013 Vol 5 Issue 191 191ra84 5
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tivelywell-studiedhumanpathogens: the influenza virus and thebacterium
S. pneumoniae. Our research has used a framework for statistical inference
usingmechanisticmodels to characterize the interaction between two impor-
tant infectious diseases with the aim of reconciling the contradictory
conclusions of studies conducted at different scales. We have identified the
nature of this interaction (enhanced susceptibility to pneumococcal pneumo-
nia after recent infectionwith influenza), itsmagnitude, and time scale. In the
process, we have unpacked the population-level implications of immune-
mediated processes shown to occur at the level of the individual. This work
highlights thepotentialpowerofusing likelihood-based inferential approaches
in conjunctionwith high-resolution data: In addition to providing results that
have a mechanistic interpretation, these methods can often uncover
underlying processes that are not necessarily visible to the naked eye.

In the absence of higher-resolution information, in particular age-
stratified pneumococcal carriage (36, 37) and serotype-specific incidence
(38), our modeling choices have been pragmatic. The role of carriage in
transmission and incidence of pneumococcal pneumonia is thought to be
important (36, 37), and we found similarly strong role of carriage-
dependent transmission in our models (see section S-1.1 in the Supple-
mentary Materials for discussion and estimates of carriage-dependent
transmission). Furthermore, influenza has also been suggested to affect
nasopharyngeal carriage of pneumococcal pneumonia (39). However,
in the absence of carriage data and clear understanding of the casual link
between carriage and transmission, we were unable to incorporate a dy-
namic and mechanistic description of carriage in this model and to ex-
plore possible effects of influenza on carriage. Our results may also have
been affected by the use of hospitalization reports to infer and estimate
interactions. Hospitalization data by definition represent infections at the
severe end of the spectrum.Hence, the effect of influenza infection on the
severity of subsequent pneumonia, as observed in animal experiments
(20–22), may have been somewhat smaller in the data we examined.

Several of our findings are qualitatively consistent with outcomes
in animal models. This body of experimental work has shown that, for
instance, the influenza-pneumococcal interaction operates over a short
window—5 to 7 days (20, 21)—and that influenza can enhance suscep-
tibility to pneumococcal infection (23, 24). A number of candidate im-
munological mechanisms have been identified to explain the increased
susceptibility (9, 21). In animal models, increased susceptibility is quan-
tified via the reduction in the pneumococcal infectious dose in subjects
recently infected with influenza. The experimental observation that
increased susceptibility translates into infectious doses that may be
many orders of magnitude smaller (20) provides a mechanistic expla-
nation for the MLE of our phenomenological parameter f ~100.

Our work aims to bridge the understanding between pathogen interac-
tions at two different scales, namely, at the scales of the host and the host
population. Our approach here has been to infer interactions at the scale of
the host from observations at the scale of the host population. For a relatively
well-studied system, like the influenza-pneumococcal system, we argue that a
framework that couples mechanistic models with statistical inference can
achieve such a goal. In doing so,we also posit a possiblemechanismbywhich
potentially strong interactions between pathogens can be masked in nature.
MATERIALS AND METHODS

Data
Data sets I and II consisted of weekly hospitalization data from the
state of Illinois, which we obtained from the State Inpatient Databases
www.Scie
of the Healthcare Cost and Utilization Project (HCUP) (http://www.
hcup-us.ahrq.gov/db/state/siddbdocumentation.jsp), maintained by the
Agency for Healthcare Research and Quality (AHRQ), through an
active collaboration between AHRQ and National Institutes of Health
(NIH). This database contains all hospital discharge records from com-
munity hospitals in the state. HCUP databases bring together the data
collection efforts of state data organizations, hospital associations, pri-
vate data organizations, and the federal government to create a national
information resource of patient-level health care data (40). Cases were
identified by the presence of the relevant diagnostic codes listed any-
where in the patient’s record, including pneumococcal pneumonia (In-
ternational Classification of Diseases revision 9, code 481), influenza
(487–488), or all-cause pneumonia, excluding influenza (480–486).
Weekly time series were created for each disease outcome. Midyear pop-
ulation size estimates (fig. S1) for the state were obtained from the U.S.
Census Bureau.

The weekly reports of influenza and pneumococcal pneumonia
cases in data sets I and II span periods before and after the introduc-
tion of PCV, respectively. Data set I, as shown in Fig. 1A, spans from
the middle of 1989 to the end of 1997, consisting of 442 weeks of data.
Data set II, as shown in Fig. 1B, spans from the beginning of 2000 to
the end of 2009, consisting of 520 weeks of data. Data are presented as
incidences, based on the population of Illinois, which are shown in fig. S1.

Models
We present the complete model that was introduced in the Results sec-
tion and was used for the inference of interaction. We proceed by first
describing the deterministic skeleton of the model. Subsequently, we
explain how seasonality and demography are incorporated, how the
stochastic analog of the model is constructed, and finally, how the ob-
servation process is modeled.

Pneumococcal transmission and interaction with influenza
The equations below describe the deterministic skeleton of the pneu-
mococcal transmission model and its interaction with influenza. The
state variables are introduced in the Results section, and all the param-
eters including the MLE estimates are completely described in the
Supplementary Materials (see table S2).

dSðtÞ
dt

¼ μðNðtÞ − SðtÞÞ − λSUðtÞ − flSFðtÞ þ εRðtÞ
dIðtÞ
dt

¼ lðtÞSUðtÞ þ flðtÞSFðtÞ − γIðtÞ − μIðtÞ
dRðtÞ
dt

¼ gIðtÞ − μRðtÞ − eRðtÞ

SFðtÞ ¼ FðtÞ
rFNðtÞ SðtÞ

SUðtÞ ¼ SðtÞ − SFðtÞ ¼ SðtÞ − FðtÞ
rFNðtÞ SðtÞ

dIFðtÞ
dt

¼ fλðtÞSFðtÞ − gIFðtÞ − mIFðtÞ

lðtÞ ¼ bðtÞ IUðtÞ
NðtÞ þ q

IFðtÞ
NðtÞ þ w

� �

Incorporation of seasonality and demography
The pneumococcal transmission is modeled to be seasonal. Seasonality
is implemented using six cubic b-spline functions. We pay careful at-
tention to estimating the shape of the seasonality accurately. This is
reflected in the choice of flexible b-spline functions, with 6 basis.
nceTranslationalMedicine.org 26 June 2013 Vol 5 Issue 191 191ra84 6
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Because we are fitting data at high resolution in time, it is important to
estimate the shape of the seasonality function accurately. Within the
pomp framework, this can be called by using periodic.bspline.basis
and supplying time periods, degree, and the number of basis.

We also incorporate the population of Illinois, which is shown in
fig. S1. The population data are treated as a covariate in these models,
and the change in population is treated as excess birth that directly
enters the susceptible compartment.

Stochastic analog
To model the presence of stochasticity, we translate the system of or-
dinary differential equations defined above into a stochastic process
model. We do this by considering each flux between compartments
to be a random process. In particular, we assume that, over a small
time interval of duration Dt, the per capita rates are constant and that
the fluxes out of each compartment are independent, multinomial
random variables. Thus, for example, if we focus on the R compart-
ment, there are two ways of exiting: loss of immunity and death. By
assumption, the per capita probability of exit in the interval (t, t + Dt)
is constant and, letting ER(t) denote the number that actually exits R in
this interval, we have ER ~ Binomial(R,1 − exp(−(e + m) Dt)). Among
those that exit, the numbers of hosts respectively losing immunity
and dying over this time interval are distributed as Multinomial
(R, ε

εþμ ;
μ

εþμ).
Finally, to model extrademographic stochasticity, we include a

g-distributed multiplicative white noise, dW/dt, in the transmission
process (30, 41). The standard deviation of this noise, bsd, is also fit
along with the parameters. The force of infection is given by the fol-
lowing equation:

lðtÞ ¼ lðtÞ IUðtÞ
NðtÞ þ q

IFðtÞ
NðtÞ þ w

� �
dW

dt

Measurement model
Pneumococcal pneumonia cases in all our data are reported at weekly
interval. We model the observation process to match this frequency of
data reporting. We define H(t) to be the total number of new recov-
eries in week t, of which HF(t) are recoveries co-infected with influen-
za, and the remaining HU(t) are not. We assume that the weekly case
reports, CP, are normally distributed, that is,

CP ∼ NðρpH ,σÞ

where rp is the reporting ratio and s is the standard deviation. We
assume that the variance scales linearly with the mean, that is, s2 =
c2rpCP. The parameter related to the scaling of the standard deviation,
c, is also fit along with other parameters.

To allow for differences in reporting in pneumococcal pneumonia
because of the presence of influenza, we assume that the cases with
influenza are x times more likely to be reported compared to those
without influenza. This results in the following expansion of the above
equation:

CP ∼ NðρpðHF þ xHUÞ,σÞ

Likelihood inference framework
For likelihood-based inference, we use the framework of partially ob-
served Markov processes (7, 31, 32, 42) that is implemented in a freely
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available software package pomp (33). This framework consists of the
following four components:

(i) Data: These are weekly case reports of pneumococcal pneumo-
nia between 1989 and 1997 for data set I and between 2000 and 2009
for data set II.

(ii) Covariates: We use weekly case reports of influenza matching
the time period spanned by the data, and the population of Illinois as
covariates.

(iii) The process model: The process model is proposed to describe
the underlying epidemiological and demographic processes. This is
described in the “Models” section of Materials and Methods.

(iv) The measurement model: The measurement model is pro-
posed to describe the process by which the data are reported. This
is described in the “Measurement model” section of Materials and
Methods.

For a data set Y, consisting of observations of y(tj), j = 1, …, n at n
points in time, we calculate the likelihood that a chosen parameter set
q explains the complete data (within the confines of the process and
observation models). This likelihood function L(q) is a product of
conditional likelihoods, Ltj (q), calculated at each time tj for all n data
points in time. If f(y|t,q) is the probability of observing the data y(t) at
time t, given parameters q (measurement model), then the likelihood
and log-likelihood functions are defined as follows:

LðθÞ ¼ f ðyðt1Þ; yðt2Þ;…; yðtnÞjθÞ

¼ ∏
n

j¼1
fθðyðtjÞjyðtj−1Þ; yðtj−2Þ;…; yðt1ÞÞ

¼ ∏
n

j¼1
Ltj ðθÞ

logLðθÞ ¼ ∑
n

j¼1
logLtj ðθÞ

The Markov property of the model allows one to calculate the
conditional likelihood Ltj (q) sequentially starting from tj = t1. For
each tj, the likelihood function is as follows:

Ltj ðθÞ ¼ fθðyðtjÞjyðt1:j−1ÞÞ
¼ fθðyðtjÞjyðtj−1ÞÞ
¼ ∫∫fθðyðtjÞjxðtjÞÞfθðxðtjÞjxðtj−1ÞÞfθðxðtj−1Þjyðt1:j−1ÞÞdxðtj−1Þ

Here, x(tj) represents the state of the complete system at time tj. Con-
sequently, fq(y(tj)|x(tj)) is the measurement model, fq(x(tj)|x(tj − 1)) is
the process model, and fq(x(tj − 1)|y(t1:j − 1)) is the filtering distribution.
Furthermore, the calculation of the filtering distribution is simplified,
identifying a recursive relation by applying Bayes’ theorem.

fθðxðtj−1Þjyðt1:j−1ÞÞ ¼ fθðyðtj−1Þjxðtj−1ÞÞfθðxðtj−1Þjyðt1:j−2ÞÞ
∫fθðyðtj−1Þjxðtj−1ÞÞfθðxðtj−1Þjtðt1:j−2ÞÞdxðtj−1Þ

¼ fθðyðtj−1Þjxðtj−1ÞÞfθðxðtj−1Þjyðt1:j−2ÞÞ
Ltj−1ðθÞ

The density functions fq(·|·) are calculated via sequential Monte
Carlo particle filtering method (42, 43).

The likelihood functions are optimized using mif algorithm, which
is also implemented in pomp (33) package. For details pertaining to
the methods and implementation of the algorithm, please refer to (31–33).
The range of algorithm parameters used in the inference work is shown
in table S1.
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Influenza-attributable etiological fraction of pneumococcal
pneumonia cases
Influenza-attributable etiological fraction of pneumococcal pneumonia
cases in any time interval is taken to be the ratio of pneumococcal
cases as a result of influenza to the total pneumococcal cases in the
given time interval. Consider that H(t) is the total number of new re-
coveries in week t, of which HF(t) are recoveries co-infected with in-
fluenza. With the normal reporting process, the reporting ratio rp, and
the standard deviation s, the total reported cases are CP ~ N(rpHF, s),
and the total reported cases of pneumococcal infections with influenza
are CF

P ~ N(xrpHF, s). Recall, x is the hypothesized measure of severity
impact. The influenza-attributable etiological fraction of pneumococcal
pneumonia cases during week t, EF(t), is given by the following
equation:

EFðtÞ ¼ CF
PðtÞ

CPðtÞ
For results presented in Fig. 3, we estimate CP and CF

P using
separate MLE models for data sets I and II. Note that x = 1 in these
MLEs. We use 1000 simulations of the MLE models to find the mean
and the 95% CIs for these estimates.

Detectability experiments in manufactured data
To study the effect of variation in influenza on pneumococcal pneu-
monia incidence, and further on the ability to detect the enhancement
effect, we manufacture several sets of influenza data, each taken to be
weekly case reports of the same length (208 weeks, ~4 years). In 3 of
4 years, we set the influenza reports to the same level as seen in the 2000
to 2001 season in data set II. The remaining third season is varied be-
tween data sets. This is to reflect one central component of interannual
variability in influenza, the height of the peak.

We then take the MLE model (corresponding to data set II, which
predicts an 85-fold susceptibility enhancement) and generate simu-
lated data sets of pneumococcal pneumonia cases for each of the in-
fluenza data sets. The population is taken to match the first 4 years in
Illinois in data set II. Now, on the basis of pneumococcal pneumonia
and influenza, we ask whether the same likelihood-based framework
can detect susceptibility enhancement in each of the data sets. We at-
tempt to infer f, given that we have perfect knowledge of all of the
other parameters. The likelihood profiles of f from inference tests
on five of such data sets are shown in Fig. 4.
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