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ABSTRACT

Background

Mathematical models have become invaluable management tools for epidemiologists, both
shedding light on the mechanisms underlying observed dynamics as well as making
quantitative predictions on the effectiveness of different control measures. Here, we explain
how substantial biases are introduced by two important, yet largely ignored, assumptions at
the core of the vast majority of such models.

Methods and Findings

First, we use analytical methods to show that (i) ignoring the latent period or (ii) making the
common assumption of exponentially distributed latent and infectious periods (when including
the latent period) always results in underestimating the basic reproductive ratio of an infection
from outbreak data. We then proceed to illustrate these points by fitting epidemic models to
data from an influenza outbreak. Finally, we document how such unrealistic a priori
assumptions concerning model structure give rise to systematically overoptimistic predictions
on the outcome of potential management options.

Conclusion

This work aims to highlight that, when developing models for public health use, we need to
pay careful attention to the intrinsic assumptions embedded within classical frameworks.
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Introduction

The past decade has seen a dramatic increase in the
significance attached to infectious diseases from the public
health perspective. This trend is due in part to the emergence
of new and highly pathogenic infections such as Ebola [1],
West Nile virus [2], and SARS [3]. There are also well-
publicized concerns surrounding the deliberate introduction
of pathogens as bioterrorism weapons [4,5], and the con-
tinued persistence and resurgence of older infections, several
of which now boast strains resistant to more than one drug
[6]. In addition, there have been a number of high-profile and
economically expensive disease outbreaks in domestic live-
stock [7-9] as well as wildlife populations [10].

The effective management and control of such infections is
increasingly done with substantial input from mathematical
models, which are used not only to provide information on
the nature of the infection itself, through estimates of key
parameters such as the basic reproductive ratio R, [11], but
also to make predictions about the likely outcome of
alternative courses of action [12-15]. During the 2001
outbreak of foot-and-mouth disease in the United Kingdom,
for example, the former UK Ministry of Agriculture, Fish-
eries, and Food set up a committee that included two groups
with expertise in mathematical modeling of disease dynamics.
It is becoming increasingly important, therefore, that
epidemiological models produce accurate quantitative pre-
dictions, and this in turn relies on accurate parameterization.
Here, we examine the dynamical consequences of an
unrealistic yet almost ubiquitous assumption embedded in
such models concerning the distribution of the latent and
infectious periods. In particular, we show that without greater
care in model formulation, we may risk systematic biases
when parameterizing models from data and may make overly
optimistic policy recommendations.

The most commonly used framework for epidemiological
systems, is still the susceptible—infectious-recovered (SIR) class
of models, in which the host population is categorized
according to infection status as either susceptible, infectious,
or recovered [16,17]. Subsequent refinements of the model
have incorporated an additional exposed (infected but not yet
infectious) class (susceptible-exposed-infectious-recovered
[SEIR] models) (see Protocol S1 for mathematical equations).
One of the fundamental mathematical assumptions in such
models is that the rate of leaving the exposed or infectious class
is constant, irrespective of the period already spent in that
class. While mathematically very convenient, this assumption
gives rise to exponentially distributed latent and infectious
periods, which is epidemiologically unrealistic for most
infections [18-20]. A more sensible formulation would be to
specify the probability of leaving a class as a function of the
time spent within the class, such that initially the chance of
leaving the class is small, but the probability increases as the
mean infectious/latent period is reached. This would give rise
to a more realistic distribution of latent and infectious periods,
with a stronger central tendency. A convenient way to describe
such distributions is to write an expression for the infectious
class (neglecting the latent class for this example) as follows:

Number of  Initial number of ~ Those who have acquired
infectives at = infectives who are + the infection in the time
time ¢ interval [0,¢] and are still

infectious at time ¢, (1)

still infectious at
time ¢
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which translates mathematically into
L BS(t)I
I(t) = I1(0)P(¢) + / WPU— T)drt (2)
0

where f is the infection transmission rate and N is the total
population size. The probability of remaining infectious
through time is governed by the survivorship function, P(?),
and as such the average infectious period, denoted by 1/y, is
given by [ P(t)dt [21]. The probability density function of the
infectious period, p(f), is just the negative derivative of the
survivorship function, —dP(t)ldt. Different functional forms for
p(t) give rise to alternative assumptions concerning the
distribution of the infectious period in the model. For
example, setting p()) equal to e "'Jy recovers the classical
exponentially distributed SIR model. More realistic distribu-
tions can be obtained by choosing p(f) to be a gamma
probability density function [22-27], with parameters ¥ and n
(see Protocol S1). An alternative (and computationally effi-
cient) means of modeling infections with gamma distributions
is to divide the infectious class into n subclasses with ny being
the rate of sequential progression through the subclasses. The
advantage of this formalism is that when n =1 we recover the
exponentially distributed model, which has a large variance,
while as n—% we obtain a fixed infectious period. The effects of
n on the distribution of the infectious period are demonstrated
in Figure 1A; in Table 1 we present some examples of latent
and infectious period distributions estimated from data.

The dynamical consequences of these differences in the
distribution of infectious and latent periods have received
some attention over the past two decades. It has been shown,
for example, that the precise distribution of the infectious
period has no qualitative effects on the asymptotic values or
properties of the system [21,24], though perturbations to the
endemic equilibrium take longer to die out as n increases
[22,26]. When contact rates vary seasonally, for example, to
mimic the aggregation of children in schools [28,29], changes
in p(t) are known to have important consequences for the
persistence likelihood of infections [25,26,30]. An issue that
has received surprisingly little attention, despite its obvious
applicability to emerging infections and possible “deliberate
exposure,” is the influence of latent and infectious period
distributions on the invasion dynamics of an infection into a
largely susceptible population. This is in contrast to the
conceptually similar situation of within-host dynamics of
viral disease, such as HIV, for which some models already
adopt realistic distributions to describe stages in the cell life
cycle [31,32]. In particular, Lloyd [33] has shown how
parameter estimates made from viral load data are affected
by different assumptions about these distributions. Here we
are interested in the application of this work to between-host
transmission dynamics. As can be seen in Figure 1B, changes
in the gamma distribution parameter n have substantial
quantitative consequences for the epidemic curve: in com-
parison to a gamma-distributed model, the epidemic given by
the exponentially distributed model (i) takes off at a
dramatically slower rate, (ii) predicts a significantly smaller
(approximately 56%) peak number of cases, and (iii) lasts
much longer (almost twice as long).

Whether these marked differences between alternate
model formulations may translate into potentially important
public health concerns is a key question, which we address in
two ways. First, we document systematic differences in the
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Figure 1. Gamma-Distributed Infectious Periods and Their Effects on the
Epidemic Curve

(A) The change in the probability of remaining infectious as a function of
time when the number of subdivisions within the infected class increases
from n=1 to n=100. Irrespective of the value of n, the mean duration of
the infectious period is 1 wk. When n = 1, the distribution of the
infectious period is exponential, but as n increases the infectious period
becomes closer to a constant length.

(B) The consequences of changes in n for the SIR-type epidemic without
births or deaths. For the same basic reproductive ratio, Ry = 5, and the
same average infectious period, y =1, larger values of n lead to a steeper
increase in prevalence and an epidemic of shorter duration.

DOI: 10.1371/journal.pmed.0020174.g001

model parameters estimated from an epidemic using the
exponential and gamma-distributed models. Second, we
demonstrate that the use of exponential models produces
overoptimistic predictions about the low levels of control
required to subdue an epidemic.

Methods

The Relationship between Ry and Initial Epidemic
Growth Rate

During the early phase of an epidemic, the observed
exponential growth rate, A, is related to the basic reproduc-
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Table 1. Estimates of Latent and Infectious Period Durations
Estimated from Data for a Number of Infections, Together with
the Associated Gamma-Distribution Parameter (m and n)

Disease Latent m Infectious n Source
Period 1/¢ Period 1/y
(Days) (Days)
Measles 8 ~20 5 ~20 19
Foot-and-Mouth 3.5 13 43 17 39
SARS 5.36 2 5-6 3 34
Smallpox 14 40 8.6 4 48

DOI: 10.1371/journal.pmed.0020174.t001

tive ratio, R, of the infection. Mathematically, A is just the
dominant eigenvalue of the disease-free equilibrium, and one
can show that A must satisfy

A+ om)" — Roy(om)" (1 _ (% + 1) _n) —0 @3

for the SEIR model with gamma-distributed latent and
infectious periods (further details are given in Protocol SI).
This equation translates into an expression for R in terms of
A and the other parameters, as is presented in equation 4.
Therefore, if we can estimate the growth rate A from data, we
can use equation 4 to obtain an estimate of R,,.

Contact Tracing and Isolation

To study the effects of contact tracing and isolation, we
modify the assumptions of the SEIR epidemic model, while
still incorporating gamma-distributed latent and infectious
periods. In the new model, isolation of newly infectious cases
occurs at a daily rate of d; after a delay of 1, days, which
represents a period when infected individuals are infectious
but asymptomatic or undetectable (I4). A fraction ¢ of those
who had contact with an infectious and symptomatic
individual (Ig) (but did not contract the infection) are
removed to the quarantined susceptible class, SQ, where they
spend exactly T, days. An identical fraction of newly exposed
individuals is also quarantined. Full details of the model
equations are given in Protocol S1.

Results

In a typical management setting, such as the SARS outbreak
of 2003, public health professionals are confronted with a
novel (or perhaps a highly virulent variant of an existing)
pathogen that is spreading rapidly through a predominantly
susceptible population. One of the important tasks of any
modeling exercise is to provide insights into some of the
epidemiological characteristics of the invading infection, such
as its transmissibility, virulence, and persistence dynamics. Of
great interest is the estimation of the basic reproductive ratio
of the infection (R,), which measures the transmission
potential of the infection, and determines the degree of
control required.

Some of these aspects can be explored by studying the
range of model parameters that give (initial) outbreak
dynamics consistent with the (short-term) epidemic data thus
far gathered. One approach is to fit model parameters to data

July 2005 | Volume 2 | Issue 7 | e174



by “trajectory matching,” where one looks for the combina-
tion of parameters that, in a statistically rigorous sense, give
rise to dynamics most consistent with observed patterns
[34,35]. Alternatively, one may use the well-established result
that during the initial stages of an epidemic, the growth rate
is approximately exponential [17,20], with the rate deter-
mined by R,. First, we use this approach to examine, in
general, how the distribution of the latent and infectious
periods may affect the estimation of R, from initial epidemic
data. To illustrate that our results are not specific to this
methodology, we then take incidence data from an influenza
outbreak and parameterize the epidemic models using
trajectory matching.

Estimating Ry from Initial Epidemic Growth Rate

We may obtain an estimate for R, by calculating the initial
growth rate (M) of an infection from data and equating it to
the growth rate of the equations, calculated from the
dominant eigenvalue of the disease-free equilibrium (see
Methods). Such an exercise reveals that for any observed 2,
the precise value of R, estimated is crucially dependent on
the fundamental assumptions made concerning the distribu-
tions of latent and infectious periods. Specifically, we find
that the following equation determines the relationship
between R, and an empirically estimated epidemic growth

rate, A:
7\’ m
R():)\. (— —+ 1)
om

(-G

where m and n represent the number of subclasses in the
exposed and infectious categories, respectively. The mean
latent and infectious periods are represented by 1/c and 1/y,
respectively, and are assumed to be known or estimated from
independent data. This relationship was first determined by
Anderson and Watson [36] and has recently been applied in
the context of viral life cycle dynamics by Lloyd [33].

The relationship between estimated R, and the distribu-
tions of the latent and infectious periods is demonstrated in
Figure 2A. It reveals a subtle yet very important interaction
between model structure and estimated R,. In general, as the
infectious period becomes more tightly distributed (increas-
ing n), lower values of R, are estimated for any given growth
rate A. On the other hand, as the variance in the latent period
is reduced (increasing m), higher values of R, are estimated.
Indeed, we may use the relationship given by equation 4 to
arrive at the following general principle: if we ignore the
latent period, then models with an exponentially distributed
infectious period will always overestimate the infection’s
basic reproductive ratio. When the latent period is included,
however, this finding is reversed when the growth rate is large
(Figure 2B). In closely examining equation 4, we note that the
basic reproductive ratio estimated from a model without an
exposed class (1/c = 0) is always lower than the estimate from
the corresponding model when a latent period is included (1/
o > 0) (see equation S1 in Protocol S1). Therefore, when
faced with a rapidly spreading infection, either entirely
ignoring the latent period or assuming exponential distribu-
tions will lead to an underestimate of Ry and therefore will
underestimate the level of global control measures (such as
mass vaccination) that will be needed to control the epidemic.

@ PLoS Medicine | www.plosmedicine.org

Suitable Models for Infectious Diseases

Estimated RO

Classes in | (n) Classes in E (m)
4 r T T T T T T T
1h=1/0= 5 days .
o
1/y=1/o=7 days \
asl y=1/o y /\, |
1h=1/o=10 days P
’
----- = 1/y=5days 3
3k ’\/ 4
----- = 1/y=7 days ’/\ ’\f“
=== 1/y= 10 days ,~’\ ,\"’
Lo 25 \’V, Phie - ]
o . e ’\,\ - -
%o e f“‘ \"“’\
o ol ’ “ f“‘ - 7
k] ., K -
o - -7 -
5 K ot -
£ e Pte -
. . -
1.5F PPN - - i
\""’ ﬂ“‘
\’:—“‘
-
1
05 i

0 1 1 1
10 20 30 40 50 60 70 80 90 100
Estimated Annual Growth Rate ()

Figure 2. Estimates of R, from Data on the Initial Growth Rate of an
Epidemic

(A) The effects of changing the distributions of the latent and infectious
periods on the estimated value of Ry, with & assumed to be 100 per year
and the average latent and infectious periods fixed at 1 wk. The gray grid
surfaces show the asymptotic values of Ry when the latent and infectious
periods are both exponentially distributed (lower surface) or fixed
(higher surface). We note that the shape of each surface is independent
of the exact value of A.

(B) At higher values of A, Ry may be substantially over- or underestimated
using the classical exponentially distributed model (n=m = 1) compared
to periods of fixed lengths (n = m—®), depending on whether an
exposed class is included (solid lines) or not (dashed lines).

DOI: 10.1371/journal.pmed.0020174.g002
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Estimating Ry from Trajectory Matching

While the results described in the previous section are
based on the rate of epidemic take-off, we reach the same
qualitative conclusions about the effects of the distributions
of latent and infectious periods when estimating R, by other
data-fitting methods. For illustration, we use data from an
influenza outbreak in an English boarding school [37] to
estimate model parameters by trajectory matching. In the
absence of independent data, this method can be used to
provide estimates of the key infectious parameters. Of course,
here we can also compare the parameter estimates to
observed parameter ranges, since the influenza virus is known
to have a latent period of between 1 and 4 d and infected
individuals may transmit the virus up to 4 or 5 d after the
onset of illness [38]. We determine the best fit of the model
output to daily incidence data by minimizing the least squares
errors for different values of the distribution parameters m
and n. For comparison, we also determine the best-fit
parameters in the absence of any latent period. The least
squares errors and estimated R, of the best fit for a
combination of m and n are presented in Figure 3. These
results clearly illustrate the points raised in the previous
section: (i) entirely ignoring the latent period gives a
significantly lower estimate of R, and (ii) the assumption of
exponentially distributed latent and infectious periods results
in consistently lower estimates of R, than their gamma-
distributed counterparts.

Despite visually similar solutions, the SIR best-fit and SEIR
best-fit models (Figure 3C) result in strikingly different
estimates of Ry: 3.74 for the SIR model versus 35.9 for the
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Figure 3. Fitting Epidemic Models to Data from an Influenza Outbreak

(A and B) The least squares error (LSE) (A) and Rq (B) of the best-fit model
under different assumptions about the distribution of the latent and
infectious periods. (The label “w/0” denotes no latent class.)

(C) We plot the incidence data along with the SEIR best fit (m =2, n=2)
and that obtained by ignoring any latent period (n = 1)—the SIR best fit.
(D) The best-fit estimate of R, changes for these two models as we
increase the number of points used in the fitting procedure. When fitting
the models, for each value of n (and m), we are estimating the average
infectious period, 1/y, and transmission parameter, § (and average latent
period, 1/c). The effective population size for the influenza outbreak was
known to be N = 763.

DOI: 10.1371/journal.pmed.0020174.g003
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SEIR model, which is partly a result of the small population
size. However, the best-fit estimate of R, obtained from the
gamma-distributed SEIR model (m = 2, n = 2) is much more
sensitive to the number of points used to obtain the fit
(Figure 3D): the exponentially distributed SIR model gives the
same estimate whether the first six (up to the peak in
incidence) or more points are used. This difference is further
emphasized if we use the first few points of the data to
estimate the rate of epidemic take-off (A = 1.0837 d™, and
then take the final estimates of the average latent and
infectious periods to compute R, using equation 4. For the
SIR model (n=1, 1/y =2.2 d) we obtain an R, of 4.38 whereas
for the SEIR model (m=2,n=2, llc=2.6d, 1/y =2.1 d) we
obtain an R, of 16.9. Thus the initial rate of increase in
incidence does well in estimating R, for the exponentially
distributed SIR model but significantly less well for the
gamma-distributed SEIR model. Given that we are fitting an
additional parameter, it is to be expected that a limited
number of data points confounds the estimation of R, when
we include a latent period in the model assumptions.
However, this also highlights that even when incorporating
a latent period, estimates of R, based on the initial epidemic
growth rate may potentially underestimate the true value of
R().

Management Consequences

The results outlined above highlight the pitfalls of making a
priori assumptions concerning the distributions of latent and
infectious periods when estimating parameters. Depending
on the precise details, inappropriate model selection may
give rise to either gross over- or underestimates for the basic
reproductive ratio of an infection. However, even when
parameter estimates are reliable, choice of model structure
can also be very important when making recommendations
concerning individual-level control strategies. Historically, it
has been shown that contact tracing and the effective
quarantine of infected individuals and those potentially
exposed is an important means of infection management
[13,39,40]. We introduce both these measures into the SEIR
epidemic model, assuming that there is a small delay in
detecting newly infectious individuals, which may represent
an asymptomatic phase or uncertainty in diagnosing symp-
toms (see Methods and Protocol S1). As we show in Figure 4,
the precise levels of isolation of infected individuals and of
quarantining contacts required to control the outbreak and
the predicted level of disease incidence are crucially affected
by whether the classic exponentially distributed SEIR model
or a more realistic framework is used.

The process of isolating infected individuals results in a
reduction in the mean infectious period (see Protocol S1). It
is much more effective when the infectious period is
exponentially distributed because it essentially truncates the
tail of the distribution, so that the infectious period of a few
individuals is dramatically reduced. This effect is not as
pronounced in the gamma-distributed models because there
is less variation in the infectious periods (see Figure 1A). In
the same way, a longer delay in detecting infected individuals
has fewer consequences for the exponentially distributed
model because during this time many individuals will have
naturally left the infectious class. Under the assumption of a
gamma-distributed infectious period most individuals are
infectious for a minimum period of time so early detection is
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more important. While the predicted difference between the
exponential and gamma-distributed models depends on the
duration of the infectious period and the fraction of contacts
traced, it is generally true that models with an exponentially
distributed infectious period will give rise to overly optimistic
predictions concerning the effectiveness of isolating infected
individuals.

To focus on the effects of the infectious period distribution
on different courses of intervention we have assumed that all
those who are quarantined and exposed are detected before
the end of the quarantine period and are not released back
into the general population. We have also formulated a model
that takes into account the distribution of the latent period
during quarantine and find similar qualitative results to those
shown in Figure 4. However, if the average latent period is
increased relative to the fixed quarantine period and there is
only a small amount of isolation of infected individuals, then
the control measures are predicted to be more effective for
the gamma-distributed model, because more exposed indi-
viduals in the exponentially distributed model will leave
quarantine before they develop the infection.

Discussion

The use of models in epidemiology dates back almost a
century, and while traditional models have often been highly
successful in explaining observed dynamics [17,20,28,29,41],
our results show that within a strict management setting,
epidemiological details can make a crucial difference.
Although a body of theoretical work [25,26,30] has demon-
strated the importance of incorporating realistic distribu-
tions of latent and infectious periods into models of endemic
disease, few studies have considered the effects associated
with making predictions for an emerging disease [42].

The large discrepancies between estimates of R, from the
exponentially distributed and gamma-distributed fits reiter-
ate the importance of accurately determining the precise
distributions of latent and infectious periods. Although the
data required for such a task are often available from post
hoc analyses of epidemics they are certainly lacking for a
novel emerging infection. Instead, the uncertainty surround-
ing assumptions about the distributions should be incorpo-
rated into quantitative predictions made from
epidemiological models, especially since this may well be
greater than any uncertainty that arises from noise in the
data. Of course, more sophisticated fitting methods than
those used in this paper exist [43-46], but if the underlying
structure of the model is inappropriate, the method of
parameterization is largely irrelevant.

The take home message from our work is that when
developing models for public health use, we need to pay
careful attention to the intrinsic assumptions embedded
within classical frameworks. While some practitioners are
already using the approach we advocate [3,15,34,39,47], the
vast majority of applied epidemiological studies still use
models that incorporate exponentially distributed latent and
infectious periods. Perhaps this work points to the next steps
in delivering quantitatively accurate epidemiological models.

Supporting Information

Protocol S1. Further Details and Analysis of the Mathematical Models
Found at DOI: 10.1371/journal.pmed.0020174.g001 (7 KB TEX).
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Figure 4. The Predicted Effectiveness of Contact Tracing and Isolation of
Infected Individuals in a Population of 1 Million Susceptible Individuals

(A) The proportion of the population contracting an introduced infection
is depicted as a function of the infected isolation rate (d) and the
infectious period (1/y).

(B) The consequences of contact tracing.

In both, the surfaces represent predictions of the SEIR model with an
exponential (colored surface) or gamma (black grid surface; m =n=10)
distribution of the latent and infectious periods, respectively. Model
parameters: § =0.5 per day, 1/6=5d, 1q=10d, and 1p=2d. In (B), 1/A
=10d.

DOI: 10.1371/journal.pmed.0020174.g004
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Patient Summary

Background When a new infectious disease emerges, such as SARS, it is
important to try to predict how the disease will behave, e.g., how
infectious it is and what its latent period is, so that the spread of the
disease through the population can be estimated and appropriate public
health measures such as quarantining can be decided on.

What Did the Authors Do? They assessed different currently used
mathematical models of disease outbreaks, including models that took
no account of latent periods, and another that assumed that the latent
and infectious periods had a particular pattern—called exponential. They
showed that both of these assumptions could potentially lead to
underestimating the way the disease spreads. They then tested their
predictions on a known outbreak of influenza that occurred in a school.

What Do These Findings Mean? Public health officials may need to
rethink the way that they try to predict outbreaks of infectious disease.
Minimally, they need to be sure that they put into any model the most
accurate predictions of the behavior of the disease.

Where Can | Get More Information? The Health Protection Agency in
the United Kingdom has a Web site that explains its work on assessing
infectious disease outbreaks:
http://www.hpa.org.uk/infections/default.ntm

The Centers for Disease Control and Prevention in the United States is a
good place to start for information on any new infectious diseases:
http://www.cdc.gov/
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