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Summary

1. The development of transgenic technologies, coupledwith sterile insect techniques (SIT), is being

explored in relation to new approaches for the biological control of insect pests. Recent studies have

shown that there are often fitness costs associated with transgenic insect strains, but the impact of

these costs on their potential use in pest control is poorly understood.

2. In this paper, we explore the impact of an insect fitness cost on two control strategies (classical

SIT and transgenic late-acting bisex lethality) using a stage-structured mathematical model, which

is parameterized for the mosquitoAedes aegypti. Counter to the majority of studies, we use realistic

pulsed release strategies and incorporate a fitness cost, which is manifested as a reduction in male

mating competitiveness.

3. For both models we show that the level of control of a pest mosquito population is highly sensi-

tive to the rate at which the transgenic or sterile males are released. Population control is more effec-

tive when smaller numbers of sterile/transgenic males are released more frequently than larger and

less frequent releases.

4. If the wild-type mosquito population exhibits cycles of peaks and troughs in abundance, as is the

case for many insect species, then high frequency releases of transgenic males not only reduce mos-

quito abundance, but they may dampen future pest outbreaks, whereas the use of SIT alone may

have an adverse effect, causing an increase in mosquito abundance. Additionally, the timing of ster-

ile/transgenicmale release during the mosquito population cycle is critical in reducing pest outbreak

levels.

5. In all cases, the reduced fitness of the sterile/transgenic males causes reductions in control, thus

requiringmore frequent or greater magnitude releases.

6. Synthesis and applications. The sterile insect technique is considered to be a valuable non-chemi-

cal tool for pest management. With the potential application of recent genetic developments to

enhance the technique, it is becoming increasingly important to consider the wider ecological impli-

cations of this biological control strategy. Predicting the most efficient release strategies will be

important in combating pest and vector insects as well as for limiting potential broader ecological

effects. Although the focus of our models are based on the mosquito, A. aegypti, which can spread

yellow fever, dengue fever and Chikungunya disease, our modelling approach and results can be

appliedmore broadly to other species.

Key-words: Aedes aegypti, biological control, dengue fever, fitness, population cycles, RIDL,

SIT, transgenic

Introduction

For centuries, humans have attempted to control insect popu-

lations. This is in part because of the significant mortality and

morbidity burden associated with insect vector-borne diseases
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(Manga 2002; Gubler 2004), but also due to the huge economic

impact of insect pests leading to losses in global food produc-

tion (Pimentel et al. 2000; Pimentel 2007). While a variety of

control approaches have been explored, they have commonly

been chemically-based. However, as a result of (i) the ever-

present risk of pest resistance to chemical pesticides, (ii) the

increasing pressure for countries to adopt a low carbon econ-

omy in the future, and (iii) the desire for environmentally

benign approaches to pest control, alternative methods, such

as biological control, are increasingly sought (Dyck, Hendrichs

& Robinson 2005). One environmentally friendly alternative is

the sterile insect technique (SIT) (Knipling 1955). This species-

specific method of insect control relies on the mass rearing,

sterilization and release of large numbers of male insects

(Dyck, Hendrichs & Robinson 2005), which – it is hoped –

mate with wild-type females, thereby reducing their reproduc-

tive output, and potentially the pest population abundance.

Mixed sex sterile releases are generally not considered as it is

less efficient and for some species, such as mosquitoes, it is only

the females that bite and therefore could potentially aid disease

spread in the short-term [see Alphey et al. (2010) for a recent

review]. This approach has achieved some success in control-

ling several insect pest species, including screwworm (mixed

sex method), Mediterranean fruit flies, and tsetse flies (Krafsur

1998; Benedict & Robinson 2003). Overall, however, it is gen-

erally agreed that classical SIT strategies have had sporadic

successes, leading to the recent development of transgenic tech-

nologies, such as genetic sexing (Robinson, Franz & Fisher

1999), genetic marking (Peloquin et al. 2000) and genetic

female-specific lethality (Seawright et al. 1978) to improve SIT

efficacy (Benedict & Robinson 2003; Wimmer 2003; Alphey

et al. 2010). For example, transgenic techniques can increase

the efficiency and reliability of male-only mass production

(Heinrich & Scott 2000; Thomas et al. 2000) or they may be

used to induce molecular sterility instead of radiation (Alphey

& Andreasen 2002; Alphey et al. 2008), which often leads to

reducedmating fitness (Helinski, Parker&Knols 2009).

One such transgenic strategy is release of insects carrying a

dominant lethal (RIDL) (Thomas et al. 2000; Fu et al. 2010).

The principle of RIDL is such that if the released transgenic

insects are homozygous for a dominant lethal and mate with

wild insects, all the progeny are heterozygous for a dominant

lethal and so die, in the case of bisex RIDL strategies. Sex spe-

cific (often female-specific (Fu et al. 2010)) RIDL strategies

have also been developed, but these are not considered here.

The stage at which the dominant lethal is expressed (e.g.

embryo, larva, etc.) can have a significant effect on the control

strategy (Phuc et al. 2007), with late-acting (i.e. death occur-

ring after the density-dependent larval stage) having a signifi-

cant advantage over its early-acting counterpart and SIT

because of an additional reduction in pest abundance as a

result of larval competition. Thus, depending on the stage of

induced death, SIT and bisex RIDL strategies rely on similar

principles, but are based on very different technology (Phuc

et al. 2007; Yakob, Alphey&Bonsall 2008).

Whilst fitness costs due to radiation have often dogged SIT

control (Helinski, Parker & Knols 2009), recent studies have

shown that there are often fitness costs associated with trans-

genic insect strains when compared with their wild-type coun-

terparts (Catteruccia, Godfray & Crisanti 2003; Irvin et al.

2004; Moreira et al. 2004; Marrelli et al. 2006). These fitness

costs are crucial because the transgenic insects must compete

effectively with the local populations to either introgress effec-

tor genes into the wild gene pool, in the case of gene-drive sys-

tems, or to sexually compete with wild-type males, in the case

of transgenic aided SIT or RIDL. These fitness costs are often

construct- and strain-specific, they occur across a range of fit-

ness components and the magnitude of the cost may vary con-

siderably. For example, Irvin et al. (2004) examined the

reproductive and developmental fitness of three transgenic

lines of Aedes aegypti relative to non-transgenic mosquitoes.

Their results showed that all the lines analysed had high fitness

costs; survivorship was significantly reduced for all life stages;

fecundity was considerably decreased and adult longevity was

lower in two lines. One criticism of this result is that the fitness

cost may be a consequence of inbreeding (Marrelli et al. 2006).

In another example Moreira et al. (2004) examined the fitness

of Anopheles stephensi mosquitoes carrying two different

transgenes that inhibit the transmission of Plasmodium berghei

(a rodent parasite used as a model organism for the study of

human malaria). They found a significant reduction in fitness

(fecundity) in one transgene strain via life-table analysis and a

quick loss of the transgene allele in caged experiments, whilst

the other strain showed no such fitness reduction. In contrast,

Morrison et al. (2009) found little difference in the mating

competitiveness of two RIDL strains of Mediterranean fruit

fly,Ceratitis capitata. The impact of the fitness costs associated

with transgenic insects and their potential for use in pest con-

trol is poorly understood [but see Yakob, Alphey & Bonsall

(2008)], largely because of the lack of relevant fitness studies

and field data, whether this is because of constraints on the

release of transgenic insects or difficulties associated with

obtaining long-term ecological data in the field.

Mathematical models have been used to answer important

questions about SIT since the 1950s (Knipling 1955; Berryman

1967; Barclay & Mackauer 1980; Lewis & van den Driessche

1993; Phuc et al. 2007; Tyson et al. 2008; Yakob, Alphey &

Bonsall 2008), and the development of appropriatemathemati-

cal models can potentially answer important ecological and

pest control problems more generally. Typically, the models

define a pest population in a single equation as either a discrete

time difference equation [see Knipling (1955) for example] or

as a continuous time differential equation [see Barclay &

Mackauer (1980) for example], to which sterile insects are

released at a constant level to reduce the pest population. The

critical release rate (the minimum rate of sterile releases

required to eradicate the pest population) is then calculated.

However, these models fail to take into account the stage-

structured life-history of the insects, which can have significant

effects on their dynamics, [but see Barclay (1980) and Esteva &

Mo Yang (2005) for example] as found in many other models

of insect population dynamics (Wearing et al. 2004; White,

Sait & Rohani 2007), where short-period population oscilla-

tions in abundance occur from the developmental lags between
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life-history stages (Murdoch, Briggs & Nisbet 2003). In the

case of late-acting bisexRIDL, since the late-acting system kills

the heterozygous offspring after the density-dependent larval

stage, additional mortality occurs in the wild-type population.

This has been found to have a significant control effect over

classical SIT and early-acting bisex RIDL systems (Atkinson

et al. 2007; Phuc et al. 2007; Yakob, Alphey & Bonsall 2008).

Therefore, the strength of density dependence and the func-

tional form in which it occurs is likely to have a large effect on

the level of population control (Atkinson et al. 2007; Yakob,

Alphey&Bonsall 2008).

In most control models, whether SIT or transgenic, it is

often assumed that the release rate of sterile/transgenic males is

constant, whereas in reality, the release may come in the form

of a pulse or multiple pulses, since the insects are mass-reared

and released at periodic times. Therefore, it is critical to under-

stand the effects of the release frequency and abundance has

on the target population, and how they interact given the com-

plex developmental life-history.

In this paper, we explore the impact of two control strate-

gies: SIT and late-acting bisex RIDL (referred to as RIDL

hereafter), which assume fitness costs, using models. Both

models are stage-structured, and are parameterized for the

mosquito, A. aegypti. We apply pulsed sterile/transgenic male

releases at different frequencies, which cause reductions in

wild-type mosquito abundance that are highly sensitive to the

rate of sterile/transgenic insect male release. However, we also

demonstrate that, under some circumstances, the pulsed

release of sterile/transgenic male insects can give rise to

increases in wild-type abundance. We also consider the timing

of release of sterile/transgenic males when the wild-type mos-

quito population exhibits cycles in abundance and investigate

the effects of variation in fitness costs (manifested as a variation

in mating competitiveness in the transgenic strain) on the effec-

tiveness of SIT/RIDLbiological control strategies.

Materials and methods

The stage-structured model we use to study the wild-type mosquito

population is derived from the framework presented by Dye (1984),

whereN(t) is the population of female wild-type mosquitoes at time t.

We assume that mosquito population growth is stage-structured and

that density dependence occurs at the larval stage (Dye 1984), with

associated parameters a and b. As discussed by Dye (1984), this two

parameter density dependence function allows for greater flexibility

in the way in which density affectsmortality.We also assume, for sim-

plicity, that there is a 1:1 sex ratio in the wild-type population, and

that the dynamics of the females are identical to those of the male

(Phuc et al. 2007; Yakob et al. 2008). The model is described by the

delayed-differential equation

dNðtÞ
dt
¼ rNðt� TÞexp �aðNðt� TÞEÞb

� �
� lNðtÞ: eqn 1

Here, r is the daily egg production, corrected for survival from the

egg to the adult stage,T is themosquito stage-structured developmen-

tal time, E is the egg production rate of female adults, not corrected

for density-independent survival between the egg stage and adult-

hood, and l is the daily female adult death rate.

We assume that all RIDL releases carry a late-acting dominant

gene, since early-acting RIDL is mathematically similar to classical

SIT. For both SIT/RIDL release scenarios, wild-type female mosqui-

toes are assumed to mate proportionately to their relative abundance

(Knipling 1955; Phuc et al. 2007), given by

NðtÞ
NðtÞ þ cSðtÞ

where 0 < c £ 1 is the coefficient of reduced mating competitive

ability of sterile/transgenic males.

In contrast to the majority of previous studies, the SIT/RIDL con-

trol strategy takes the form of pulsed releases, where the sterile/trans-

genic mosquitoes are released at discrete times, t ¼ nTrel where n ¼
1,2,3,…. Here, Trel is the time between successive sterile/transgenic

male mosquito releases. At each release time a constant number of

sterile/transgenic male mosquitoes are released, hN*, where h is the

release ratio with respect to the sterile-free equilibrium of wild-type

mosquito populations,N*.

These assumptions lead to the system of pulsed coupled delayed

differential equations

dNðtÞ
dt
¼ rNðt�TÞ Nðt�TÞ

Nðt�TÞþ cSðt�TÞ

� �
FðtÞ�lNðtÞ; 8t eqn 2a

dSðtÞ
dt
¼�lSðtÞ; t 6¼ nTrel; n¼ 1;2;3; . . . eqn 2b

SðtþÞ¼SðtÞþhN�; t¼ nTrel; n¼ 1;2;3; . . . eqn 2c

where the moment immediately after the nth sterile/transgenic

release is denoted as tþ ¼ nTþrel and F(t) is the larval density-

dependent function. For SIT, larval competition is reduced by

the fraction of successful matings by sterile males and wild-type

females and hence

FðtÞ ¼ exp �a Nðt� TÞ Nðt� TÞ
Nðt� TÞ þ cSðt� TÞ

� �
E

� �b
 !

: eqn 2d

For RIDL (late-acting), the successfully mated wild-type females

and transgenic males produce offspring that develop to a post larval

stage and hence add to the density-dependent mortality (Phuc et al.

2007). Thus, for RIDL the density dependence term is given by

FðtÞ ¼ exp �aðNðt� TÞEÞb
� �

: eqn 2e

It should be noted that in the absence of the sterile/transgenic male

mosquito releases, the population model eqn 2 simplifies to that of

Dye (1984).

The definitions of the parameters are given in Table 1.

Results

CONTROL-FREE POPULATION DYNAMICS

As demonstrated by Dye (1984), in the absence of biological

control, the femalemosquito population equilibrium is given by

N� ¼ 1=að Þ log r=lð Þð Þ1=b

E
; eqn 3

and it is stable if

lT <
2p� cos�1ð1=AÞ

A2 � 1
; eqn 4
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where A ¼ 1)bln(r/l). Hence, the parameters E and a
only have an effect on the equilibrium population size,

but do not have any effect on the stability of the system

(Fig. 1). The controlled system eqn 2 is highly intractable,

and therefore we resort to numerical integration. The

delay-differential equations are solved numerically using a

sixth order Runge-Kutta solver (Thompson & Shampine

2006) with impulses (Corwin, Thompson & White 2008).

In the control-free model eqn 1 the female adult mosquitoes

exhibit stable equilibrium dynamics for low birth rates (r) and

density dependence (b), as found by Dye (1984). However,

greater survival during development or increased environmen-

tally favourable conditions may lead to an increased birth rate.

When the birth rate becomes sufficiently large the equilibrium

loses stability, leading to periodic oscillations. The amplitude

of these oscillations and the mean population abundance

become increasingly large as the birth rate increases. Spectral

analysis reveals that the period of the population oscillations is

51–53 days, which correspond to delayed-feedback cycles

(Murdoch, Briggs &Nisbet 2003). These cycles are a feature of

Table 1. Parameter definitions for themathematical model in eqn 2

Parameter/

variable Definition Value

N Number of female wild-type mosquitoes

S Number of male sterile or transgenic mosquitoes

r Birth rate of adults corrected for egg to adult survival* 1Æ31 or 1Æ5 days)1 when fixed

T Mosquito development period* 18Æ84 days

c Coefficient of reduced competitive ability of sterile/transgenic males 0Æ95 or 0Æ5
a Density-dependent coefficient (1/a is the size at which the population repro-

duces at its maximum rate) corrected for egg to adult survival†

0Æ01

b Density-dependent coefficient 0Æ4 or 1 when fixed

E Average egg production rate of females 1 days)1

l Adult death rate* 0Æ12 days)1

h Release ratio 1

N* Control-free female mosquito equilibrium Given by eqn 3

Trel Time between sterile/transgenic male releases Varied

*Parameter determined by Dye (1984).

†Parameters do not change the stability, but only the equilibrium size of the wild-type only dynamics and so are scaled to give reason-

able population sizes.
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Fig. 1. The importance of the birth rate and

density dependence on the control-free

female mosquito dynamics. In (a) the stabil-

ity criterion eqn 4 is plotted for varying val-

ues of birth rate (r) and density dependence

(b). The parameter region labelled ‘Stable’

denotes parameter space where model eqn 1

gives rise to a stable equilibrium, whereas the

parameter region labelled ‘Unstable’ gives

rise to oscillatory dynamics. In (b) and (c)

two time series are plotted for (b) r ¼ 1Æ31
and b ¼ 0Æ4, which is in the stable region of

parameter space; and (c) r ¼ 1Æ5 and b ¼ 1,

which is just inside the unstable region. All

other parameter values are given in Table 1.
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the stage-structuring (i.e. the time delay in the mathematical

model) that is crucial to the development of the mosquitoes.

Data collected by Sheppard et al. (1969) and Southwood et al.

(1972), from which the parameter estimates are calculated and

evaluated (Dye 1984), show fluctuating behaviour with an

average period approximately equal to that observed by simu-

lations of eqn 1. Whilst other environmental factors are not

included explicitly in eqn 1, such as rainfall, the developmental

structuring which occurs for mosquitoes is likely to be a major

component of the observed fluctuations. Therefore, it is

important that we understand how the sterile/transgenic male

insects interact with these cyclical populations of wild-type

mosquitoes.

CONTROLLED POPULATION DYNAMICS

Equilibrium wild-type dynamics

If the wild-type population of mosquitoes exhibit stable

equilibrium dynamics (low r and b), then the periodic

releases of either sterile or transgenic males mosquitoes of

any fitness will reduce the wild-type mosquito population

(see Fig. 2 a,b and compare the blue solid line with the red

and black solid lines). High frequency releases (low Trel) will

eradicate the wild-type mosquitoes for both control strate-

gies, but the transgenic RIDL control gives greater

wild-type suppression, needing less frequent releases to erad-

icate the population. This is due to the additional wild-type

mortality caused by RIDL larval competition (Phuc et al.

2007; Yakob et al. 2008).

In contrast, low frequency releases (high Trel) result in less

wild-type mosquito suppression for both SIT and RIDL strat-

egies, with RIDL out-performing SIT. However, whilst the

average wild-type mosquito population is less than that for

SIT at low frequency releases, the variability induced by the

period release strategies are greater for the RIDL control, since

density dependence is reduced for the SIT strategy.

It is clear that more frequent control releases gives greater

wild-type suppression, since more sterile/transgenic insects are

in the environment. However, in reality, the number of sterile/

transgenic male mosquitoes that can be released per unit of

time is limited by the output of the mass-rearing factory. In

practice, insects are mass-reared and released on a regular

basis. An obvious question to ask is whether it would be

advantageous to release half the number of sterile/transgenic

insects, but twice as often? In Fig. 3 we address this question.

Here, we release the same average number of sterile/transgenic

male mosquitoes, but vary the frequency of releases (see

Fig. 3a). We achieve this by scaling the release ratio, h, as the
time between releases, Trel, varies. For both SIT (blue lines in

Fig. 3b) and RIDL (black lines in Fig. 3b), we see that more

frequent and smaller releases gives greater wild-type popula-

tion control. Infrequent, large releases cause large initial wild-

type population suppression, but this wears off as the sterile/

transgenic insects die, allowing the wild-type mosquitoes to

recover. In contrast, frequent small releases have a smaller

impact, but the constant presence of the sterile/transgenic

males gives greater wild-type female mosquito suppression.

Moreover, this effect can be large in the sense that the fre-

quency of releases may either lead to wild-type eradication or

marginal suppression, depending on the area of parameter

space, as shown here by theRIDL control strategy.

Periodic wild-type dynamics

Many species of insect exhibit cycles in population abundance

(Kendall et al. 1999). Environmental drivers, such as tempera-

ture and rainfall, are often the cause of this periodicity, but

there are many examples of insect populations showing short-

period cycles that are caused by either interspecies interactions
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Fig. 2.The effects of varying the periodic sterile (a) and transgenic (b)

male release rates for two mosquito populations with differing fitness

costs on a stable wild-type mosquito population. The blue lines

denotes the control-free equilibrium; the black lines denote the female

wild-type mosquito population mean (solid), minimum (dashed) and

maximum (dotted), where the fitness cost is low (c ¼ 0Æ95); the red

lines similarly denote the female wild-type mosquito population for a

sterile/transgenic population with a high fitness cost (c ¼ 0Æ5). For
each simulation r ¼ 1Æ31 and b ¼ 0Æ4, all other parameter values are

given in Table 1.
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(Godfray & Hassell 1989) or by intraspecific interactions dur-

ing the development (Sait, Begon & Thompson 1994; Mur-

doch, Briggs & Nisbet 2003). For A. aegypti the data collected

by Sheppard et al. (1969) and Southwood et al. (1972), from

which the parameter estimates are calculated (Dye 1984), show

similar short-period fluctuations, although greater detail is

required to determine the cause of these fluctuations.

As we have already shown, the wild-type mosquito popula-

tionmodel exhibits such behaviours when the birth rate (r) and

density dependence (b) become sufficiently large. If we assume

such dynamics, and the uncontrolled wild-type mosquitoes

exhibit short-period population cycles, then what effect does

the time between releases have on the dynamics, and how is

this affected by reduced fitness costs in the sterile/transgenic

strain? In Fig. 4 we address this question.

For this region of parameter space the SIT control (see

Fig. 4a) exhibits an undesirable behaviour in that releases of

sterile males cause an increase in wild-type female abundance.

This has previously been shown with other models (Phuc et al.

2007; Yakob et al. 2008), and occurs because the strong

density dependence exhibited by the wild-type mosquitoes is

reduced by the control strategy, and hence leads to an increase

in abundance. Here we show that increasing the frequency of

releases has a greater negative effect.

In contrast, for the RIDL strategy (see Fig. 4b) we see that

any control strategy causes a decrease in the mean wild-type

female mosquito population. High frequency transgenic male

releases (low Trel) causes wild-type mosquito eradication, as in

the case of equilibrium-type dynamics. Low frequency releases

result in a mean reduction in wild-type mosquitoes, but there

may be peaks in adult abundance above that of the control-free

scenario. This phenomenon arises from the pulse of transgenic

males perturbing the wild-type mosquito dynamics, which

when coupled with the stage-structure developmental delays

and high density dependence, causes oscillations in mosquito

abundance with increased amplitude.

Furthermore, we clearly see that any transgenic strain that

suffers from an increased cost of fitness (mating competitive-

ness) will have reduced effectiveness on control, with greater

frequency of releases required to achieve the same level of con-

trol as a similar strain with a lower fitness cost.

Timing of release in cyclic populations

Our results show that the time between releases of sterile or

transgenic male mosquitoes can have a large effect on the

dynamics of the wild-type mosquito population. On the other

hand, if the wild-type population has cyclic dynamics, then is

the best strategy to release the sterile/transgenic males at the

wild-type population maximum, the minimum or some other

specific time during the cycle? This may be very important for

more cost-effective control strategies.

In order to determine the ‘best release strategy’ we must first

define a suitable measure of reduced wild-type population size

in controlled relative to uncontrolled scenarios. To this end we

define the release effect,R, as

RðtÞ ¼
R sþt

s NCðsÞdsR sþt
s N0ðsÞds

eqn 5

where NC is the wild-type female mosquito population

subject to a single sterile or transgenic release at time s,
and N0 is the uncontrolled wild-type female mosquito

population. This time-dependent measure gives the rela-

tive effect of the sterile/transgenic release at different time

points in the population cycle of the wild-type mosqui-

toes. Hence, if R ¼ 1 then there is no relative effect of the

control strategy on the wild-type mosquito population; if

R < 1 then the release has had a (desirable) negative

effect on the wild-type population; if R > 1 then the

release has had a positive effect on the wild-type popula-

tion. Note that for our system, a single sterile or trans-

genic release results in R fi 1 as t fi ¥ since the
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Fig. 3. The effects of varying the periodic sterile and transgenic male release rates whilst fixing the time-averaged sterile/transgenic abundance to

be constant. In (a) the green lines denote the sterile or transgenic male mosquito population average (solid), minimum (dashed) and maximum

(dotted), respectively, as the time between releases (Trel) is varied. Similarly, in (b) the corresponding wild-type female mosquito population aver-

age (solid), minimum (dashed) andmaximum (dotted) as the time between releases (Trel) is varied for sterile insect techniques (SIT) control (blue)

and release of insects carrying a dominant lethal (RIDL) control (black). In all simulations the fitness cost is assumed to be low (c ¼ 0Æ95). So that
the average sterile/transgenic population remains constant, we scale the release ratio such that h ¼ Trel/7. Thus, at Trel ¼ 7 we have h ¼ 1 which

gives weak wild-type suppression with an SIT control strategy and elimination with RIDL as predicted in Fig. 2. All other parameter values are

given in Table 1.
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sterile/transgenic mosquitoes eventually die-out and the

dynamics return to their natural state.

In Fig. 5 we demonstrate the effect a single release of sterile

or transgenic mosquitoes at different points of the wild-type

population oscillation, ranging from the population minimum

(pre-population peak, pure blue), to the population maximum

(pure red), and back to the populationminimum (post-popula-

tion peak, pure green). With all release points, and for both

control strategies, initially we see no immediate effects of the

control on thewild-typemosquito population (Fig. 5c–d) since

a reduction in population can only be seen in the next genera-

tion via the reduced numbers of progeny frommated wild-type

females. It should be noted that this crucial effect would not be

shown in models that do not incorporate some form of stage-

structure.

As we have already discussed, the parameter region in which

wild-type mosquito oscillations occur gives rise to an adverse

effect using the periodic release SIT control strategy. There-

fore, a single release is also likely to have an adverse effect, as

shown in Fig. 5c where the timing of the release in the cycle

changes the magnitude of this effect. Releases before the

trough in abundance of the wild-type population cause the

least adverse effect, which contrasts with a release after

the wild-type peak, which causes a larger adverse effect. This is

highlighted in Fig. 5(e) where these two release times are plot-

ted, and the increase in wild-type population can be clearly

seen.

For the RIDL control strategy, intuitively, one might

assume that the best time to initially release transgenic males in

order to have the maximum impact is at the population mini-

mum (Benedict & Robinson 2003), when competing wild-type

males and females are low and transgenic males have a greater

probability of acquiring mates. However, Fig. 5 demonstrates

that the best time may be more subtle than this. Our results

show that the best time to release is after the peak in adult

abundance, but before the trough in wild-type mosquitoes

occurs (i.e. approximately half way between the population

peak and the following trough), as denoted by the large devia-

tion in the release effect, R, in Fig. 5d. Releasing transgenic

males in this way takes advantage of the relatively large num-

bers of fertile female mosquitoes still present in the population

whilst at the same time having a larger proportional impact on

a population of wild-type mosquitoes that continues to

decrease towards the trough, thus suppressing the subsequent

wild-type population peak. In contrast, the worst time to

release the transgenic males is when the wild-type population is

increasing. In Fig. 5f, we show this contrast by plotting two

time series: the scenario where we observe the minimum effect

(dashed lines); and the maximum effect (dotted lines). These

plots highlight that, whilst keeping the number of released

transgenic males constant, we are able to maximize the effect

on the wild-type mosquito population by concentrating the

release time to when themosquito population is decreasing.

Releasing sterile or transgenic mosquitoes that suffer from a

reduced fitness (mating competitiveness) results in smaller or

larger wild-type population effects, but this does not signifi-

cantly alter the best andworst time to release.

When extrapolating the release effect to multiple releases the

problem becomes increasingly more difficult to interpret. First,

the dynamics from multiple non-periodic sterile or transgenic

mosquito releases result in complex wild-type mosquito popu-

lation dynamics. Secondly, the largest deviation in the release

effect occurs when the transient dynamics of any prior release

have vanished and hence minimizing this function has little

biological relevance, but one can simplyminimize this function

over the period of the short-term cycle, which we have carried-

out in Fig. 6.

In Fig. 6 we see that after the first release of transgenic mos-

quitoes at the best release time the wild-type mosquito popula-

tion has a greatly reduced subsequent outbreak level. Whilst

subsequent ‘best’ releases may prevent further wild-type mos-

quito peaks, they do not cause a significant reduction in the

mosquito population, since the average times between releases

do not fall below the threshold for eradication, as predicted by
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Fig. 4.The effects of varying the periodic sterile (a) and transgenic (b)
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(dotted) andminimum (dashed) of the control-free periodic wild-type

mosquito population. All parameters are as in Fig. 2 except r ¼ 1Æ5
and b ¼ 1.
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the periodic release strategy. Therefore, these state-dependent

release strategies may have to be combined with optimal con-

trol theory (Rafikov, Bevilacqua &Wyse 2009) with a suitable

control functional for efficient control.

Discussion

Our results show that the time between releases of sterile or

transgenic male mosquitoes can have a large effect on the

dynamics of the wild-type mosquito population, but that the

control of the wild-type mosquito population is highly depen-

dent on the rate at which the sterile/transgenic males are

released, with only high release rates giving sufficient control.

Counter-intuitively, we show that at lower release frequencies,

stage-structured life-history effects can lead to oscillations in

adult abundance that are sometimes above control-free levels,

thus increasing the potential for larger than usual outbreaks in

wild-type mosquito numbers. In all cases, the reduced fitness

costs in the sterile or transgenic males cause significant reduc-

tions in pest control, thus requiring more frequent (and hence

more costly) releases.

By modelling the more realistic periodic pulsed release

strategy, we have shown that there is a benefit by adopting

more frequent and smaller releases, as opposed to less fre-

quent and larger releases. However, with more frequent

releases comes increased distribution costs. Therefore, not

only should one consider the control aspects in the pest man-

agement system, whether SIT or RIDL, but one should also

take into account the cost/benefit relationship. Furthermore,

models that assume a constant release strategy (Knipling
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Fig. 5.The relative effect of a single sterile or transgenic release at different points throughout the wild-typemosquito population cycle. In (a) and

(b) a typical pest population cycle is plotted over time, where the colours indicate different points along the cycle, ranging from the population

minimum (pure blue), to the maximum (pure red) and back to the minimum (pure green). In (c) and (d) the release effect (a relative measure of

deviation from the wild-type population cycle) is plotted against time for sterile insect techniques (SIT) (c) and release of insects carrying a domi-

nant lethal (RIDL) (d) control strategies with a low fitness cost (c ¼ 0Æ95), where the line colours denote the release effects from different points

during the cycle [cf. (a) and (b)]. In (e) and (f) the time series are plotted for the minimum (dashed lines) andmaximum (dotted lines) effects where

for a single release of sterile or transgenic males, respectively. All parameters are given in Table 1 except r ¼ 1Æ5 and b ¼ 1.
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1955; Barclay & Mackauer 1980; Phuc et al. 2007; Yakob

et al. 2008) will tend to over-estimate the true level of popula-

tion control. Hence, when designing pest management pro-

grammes in general, it is important not to over-simplify the

release strategy dynamics.

Our work also explores the control implications of the tim-

ing of releases, especially relevant to wild-type mosquito popu-

lations with cyclic dynamics. We demonstrate, counter to

intuition, that the most effective time to release is well before

the mosquito outbreak occurs (Benedict & Robinson 2003). In

other words, early intervention strategies are more effective in

controlling mosquito outbreaks than late intervention. More-

over, whilst reduced fitness has an effect on the magnitude of

the control success, the best time to release is nevertheless still

robust. Here, we have presented a fitness cost through a reduc-

tion of mating competition, but other fitness costs may also be

assumed. For example, sterile or transgenic males may carry

an additional fitness cost in the form of a reduced life span

(Irvin et al. 2004). Preliminary analysis shows qualitatively

similar results (not presented here) as the reduced mating com-

petition fitness cost, in that an increase in cost requires higher

frequencies of sterile/transgenic males to control the mosquito

population. This highlights the important point that, whilst

induced fitness costs may reduce some aspects of the effective-

ness of control, there may still be gains by optimizing the tim-

ing of releases. Transgenic technologies can additionally

increase the efficacy of control strategies by improving mass

rearing capabilities, for example (Wimmer 2003).

The parameter space required to induce the short-period

cycles highlights two important points. First, the parameter

estimates from Dye (1984) do not facilitate such cycles,

although small changes in the upper estimate of the birth rate

(r) would allow such behaviour, as we have used here. How-

ever, the data from which the estimates are derived suggest

such oscillations (Sheppard et al. 1969; Southwood et al.

1972), although the destabilizing mechanisms are not clearly

understood. Secondly, the functional form and parameters of

density dependence, which is an important factor in the cycles,

relies on the accuracy and size of the data set. As Legros et al.

(2009) discuss, the outcome of the functional forms and

parameters may be interpreted in a significantly different way,

depending on the fitting method. Therefore, we suggest that

further experimental and theoretical investigation is required

[but see Agnew, Haussy & Michalakis (2000)] into the density

dependence mechanisms, especially in light of the fact that our

model, along with others (Phuc et al. 2007; Yakob et al. 2008),

predict that SIT and early-acting – but not late-acting – RIDL

control strategies may lead to an increase in wild-type mosqui-

toes due to over-compensatory density dependence.

The insights we have gained arise by considering a detailed

model for the life-history of the wild-type species, namely the

stage-structured modelling approach, which was pioneered by

Gurney, Nisbet & Lawton (1983). In contrast, whilst classical

pest control models inform us of the release rates required to

eradicate pest species (Knipling 1955; Murdoch, Chesson &

Chesson 1985; May & Hassell 1988), they do not readily lend

themselves to predicting release rates when dynamics are cycli-

cal, which are generated by the discrete developmental stages

(egg, larva, pupa) of the pest insects and which are frequently

observed in the wild (Godfray & Hassell 1989; Kendall et al.

1999).

For many mosquito populations, seasonal environmental

effects are an important feature of their life-history, giving rise

to seasonal cyclic dynamics (Mogi et al. 1998; Scott et al.

2000). For example, seasonal rainfall can increase the abun-

dance of mosquitoes, where reproduction depends on the

availability of suitable breeding sites such as water-filled con-

tainers. Moreover, many species of mosquitoes in temperate

zones overwinter in a diapausal state (Mitchell 1988). Such

environmental variation may give rise to seasonal bouts of

infectious diseases (Altizer et al. 2006). Hence, controlling the

insect vector of the infectious disease in seasonal environments

must be addressed, which we aim to report on elsewhere.

Despite our emphatic results, further investigation is

required to fully comprehend what the effects of multiple

releases might be, since any release not only has an impact on

the magnitude of any cyclic behaviour, but also on the fre-

quency of the cycles. Thus, it is possible that some state-

dependent release strategies may cause unforeseen behaviours.

For example, for many seasonally forced systems, the periodic

forcing can react with the natural dynamics of the population,

resulting in highly cyclic, or even chaotic behaviour, thus

making predictions of ensuing population dynamics difficult

and the possible disease outbreaks subsequently arising diffi-

cult to manage and mitigate against [see Greenman, Kamo &

Boots (2004) for example, and references therein]. Here, for

cyclic wild-type mosquito populations, we considered a state-

dependent RIDL control where we maximized the release

effect (R) for different releases throughout the period of

the population cycle. We showed that releasing at certain

times within the cycle (before the population trough) gave
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significant improvements in population control. However, in

practice, to adopt such a release strategy would require inten-

sive monitoring, and therefore there may be a cost/benefit

trade-off which should be further explored. Furthermore, the

presence and nature of cycles, and the optimal release strategy

relative to such cycles, may be quite sensitive to model

assumptions. Nevertheless, extrapolating this result further,

we predict that knowledge of environmental population

drivers, such as rainfall and temperature, which also give rise

to population fluctuations (Yang, Brook & Bradshaw 2009),

may be combined with specific release times to maximize

control efficiency.

Whilst our model concentrates on SIT and late-acting bisex

RIDL, elements may be incorporated into the closely related

strategies of release of early-acting RIDL (Thomas et al. 2000;

Atkinson et al. 2007 and gene drive (population replacement)

(Ito et al. 2002; Rafikov, Bevilacqua &Wyse 2009). For exam-

ple, in gene drive systems the cost of the transgene may inhibit

population replacement of the wild-type (Lambrechts, Koella

& Boëte 2007), which can be overcome by an increased

released rate (Magori & Gould 2006). However, these fitness

shortcomings are not present in all systems (Marrelli et al.

2007).

Our models have revealed significant effects on pest mosqui-

toes resulting from the release of sterile or transgenic males

with respect to stage-structure, release times and strategies,

and fitness costs. However, since the life-history of many pest

species are complex, we have adopted a simplified modelling

approach in the first instance to gain a mechanistic under-

standing of the impact of pulsed sterile and transgenic insect

releases. Several key assumptions of SIT models remain to be

further examined, such as the assumption that males and

females are at a constant ratio of 1:1. By definition, the mass

release of sterile or transgenic males during SIT approaches

disrupts this ratio, which may have an impact on the extent of

mating competitiveness that sterile/transgenic males experi-

ence in the field. Incorporating greater life-history detail, such

as dispersal (Otero, Schweigmann & Solari 2008), for both

wild-type and sterile/transgenic strains and their associated

specific fitness costs, may prove to give greater understanding

of control strategies. For example, the spatial model of Yakob

et al. (2008) shows that migration of sterile males beyond the

control zone may have unanticipated effects on non-target

pests in the surrounding areas. Moreover, increased species

and disease specific information will be required before imple-

menting a control strategy.Microcosm and field work will help

in determining specific parameters, interactions and behaviour,

and combining these with relevant models will aid in the con-

trol design.
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