
vol. 159, no. 5 the american naturalist may 2002

The Interplay between Determinism and

Stochasticity in Childhood Diseases

Pejman Rohani,1,2,* Matthew J. Keeling,2,3 and Bryan T. Grenfell2

1. Institute of Ecology, University of Georgia, Athens, Georgia
30602-2202;
2. Department of Zoology, University of Cambridge, Downing
Street, Cambridge CB2 3EJ, United Kingdom;
3. Department of Biological Sciences and Mathematics Institute,
University of Warwick, Coventry CV4 7AL, United Kingdom

Submitted August 14, 2000; Accepted November 6, 2001

abstract: An important issue in the history of ecology has been
the study of the relative importance of deterministic forces and pro-
cesses noise in shaping the dynamics of ecological populations. We
address this question by exploring the temporal dynamics of two
childhood infections, measles and whooping cough, in England and
Wales. We demonstrate that epidemics of whooping cough are
strongly influenced by stochasticity; fully deterministic approaches
cannot achieve even a qualitative fit to the observed data. In contrast,
measles dynamics are extremely well explained by a deterministic
model. These differences are shown to be caused by their contrasting
responses to dynamical noise due to different infectious periods.

Keywords: population dynamics, epidemiological models, seasonality,
stochasticity.

A debate at the heart of ecology has concerned the extent
to which observed ecological dynamics are shaped by de-
terministic processes as opposed to stochasticity (e.g., An-
drewartha and Birch 1954; Nicholson 1957). Throughout
much of the last century, however, the emphasis in the-
oretical studies seemed to be firmly on deterministic ap-
proaches to ecology. These resulted in many important
conceptual breakthroughs (e.g., Pearl and Read 1920;
Lotka 1925; Kermack and McKendrick 1927; Nicholson
and Bailey 1935; May 1974; Anderson and May 1978; Has-
sell 1978) and established the basic framework for mod-
eling typical ecological interactions, while highlighting
their characteristic dynamics. Such deterministic models
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are still widely used in present-day ecology and have
proved invaluable in providing us with a qualitative un-
derstanding of population dynamics.

In recent years, there has been a growing trend toward
confronting model predictions with data from studies of
ecological systems in the laboratory and in the field. Many
of these studies have uncovered a subtle interaction be-
tween stochasticity (be it environmental or demographic)
and the deterministic nonlinearities inherent in most eco-
logical interactions (Zimmer 1999). These range from
studies showing stochastically excited oscillations in the
dynamics of Dungeness crab populations (Higgins et al.
1997) to stable manifolds in dynamics of laboratory flour
beetle populations (Cushing et al. 1998) and from estab-
lishing the role of environmental stochasticity on sheep
populations (Grenfell et al. 1998; Coulson et al. 2001) to
understanding multiple coexisting attractors in marine mi-
croorganism ecosystems (McCauley et al. 1999). These
studies represent a growing list of ecological systems that
cannot be fully understood by purely deterministic
approaches.

In the laboratory flour beetle populations, for example,
it has been noted that identical experimental replicates
exhibit very different transient dynamics (see also Sait et
al. 2000). As Cushing et al. (1998) explained, this was
caused by the interaction between demographic noise and
the stable manifold of a saddle node. Another example of
how stochasticity can affect population dynamics was pro-
vided by Grenfell et al. (1998), who showed that fluctu-
ations in Soay sheep populations have two key compo-
nents. If sheep numbers are low, then density-independent
growth is observed, while at intermediate/high numbers,
population size may either increase or decrease, depending
on environmental conditions and the sex and age structure
of the population (Grenfell et al. 1998; Coulson et al.
2001). It is clear that in models of such systems, a sto-
chastic element is essential if the key features of the dy-
namics are to be successfully captured.

An ideal “field” system for clarifying the interaction
between noise and determinism would furnish time series
data, reflecting dynamics at a range of spatial scales, levels
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of exposure to stochasticity, and parameter regimes. Fur-
thermore, these dynamics would be captured successfully
by mechanistic models, which can be tuned to analyze the
relative impact of environmental and demographic noise
and nonlinear deterministic forces.

A strong candidate for this paradigm is provided by the
great microparasitic diseases of childhood, notably measles
and whooping cough. The seminal synthesis of determin-
istic and stochastic approaches to these systems (and more
specifically to measles epidemics) is by Bartlett (1957), who
demonstrated a strong interaction between demographic
stochasticity, environmental variability (seasonality), and
delayed density dependence. More recent theoretical stud-
ies by Schwartz and Smith (1983) and Rand and Wilson
(1991) have also shown how epidemics may be subtly
affected by noise. Here, we build on these foundations to
examine these interactions in greater detail, with the ad-
ditional benefit of a different “experimental treatment,” as
represented by the introduction of nationwide vaccination
regimes (Anderson and May 1991).

In this article, we examine models for childhood diseases
in developed countries, analyzing the large-amplitude os-
cillations by studying their behavior near the deterministic
dynamical attractor. In a dynamical context, deterministic
forces pull trajectories toward an attractor, whereas sto-
chasticity tends to cause trajectories to leave the attractor.
Establishing the precise balance between the deterministic
forces and the susceptibility of the system to stochastic
influences remains a key challenge. We are primarily in-
terested in exploring the importance of dynamical noise
for the large-scale prevaccination epidemics of measles and
whooping cough in England and Wales. We explain in
more detail the results reported recently by Rohani et al.
(1999; 2000a), who argued that large-scale whooping
cough epidemics are extremely sensitive to noise, while
measles outbreaks can be effectively explained by simple
deterministic models (Earn et al. 2000). We show that
while measles and whooping cough are relatively similar,
both in broad natural history and reproductive potential,
their nonlinear dynamics are subtly different. The deter-
ministic whooping cough attractor (both in the prevaccine
and vaccine eras) is shown to be very prone to stochastic
effects, causing “transient” dynamics that are qualitatively
different from its asymptotic dynamics. The prevaccina-
tion measles attractor, however, is very stable, showing
pronounced biennial outbreaks, and trajectories pushed
off the attractor return to it in a biennial fashion. We
explore these phenomena using what we term the “in-
vasion orbit,” which highlights the dynamical topology
near the deterministic attractor. Note that throughout this
article, we refer to the “measles attractor,” by which we
mean the biennial attractor that is observed in large cities
in developed countries in the postwar, prevaccination era.

This pattern is clearly seen in the 1950–1968 period in
England and Wales and in the postwar period in New York
City, Baltimore, and Copenhagen (Earn et al. 2000).

Data

Due to their recognized importance, weekly case reports
for diseases such as measles and whooping cough in dif-
ferent cities of England and Wales have been collected since
1939, while records of deaths due to these infections date
back to 1897. Similarly high-resolution data sets can be
found for many large cities in Europe and North America.
Clearly, by ecological standards, these represent precious
means of exploring the dynamics of a natural host-parasite
system, and indeed, numerous studies of measles epidem-
ics exist (Hethcote 1983; Schaffer and Kot 1985; Olsen and
Schaffer 1990; Sugihara et al. 1990; Anderson and May
1991; Bolker and Grenfell 1993; Engebert and Drepper
1994; Ferguson et al. 1996; Ellner et al. 1998; Grenfell and
Harwood 1998; Rohani et al. 1998; Earn et al. 2000). While
many of these high-profile studies have looked for signals
of dynamical chaos in measles time series (Olsen and
Schaffer 1990; Sugihara et al. 1990; Engebert and Drepper
1994), others have focused on the mechanisms generating
the observed pattern of outbreaks (Hethcote 1983;
Schenzle 1984; Bolker and Grenfell 1993; Earn et al. 2000).
The observed patterns in England and Wales range from
annual outbreaks in the years immediately following World
War II to spatially synchronized biennial outbreaks in the
period from 1950 to 1968 as well as to complicated dy-
namics (with no characteristic signal) in the ensuing vac-
cine era (fig. 1A).

The case reports for whooping cough have received
much less attention from ecologists, perhaps partly because
whooping cough large-scale dynamics appear somewhat
irregular (fig. 1B). In contrast to measles epidemics, the
prevaccine-era dynamics of whooping cough are less reg-
ular and spatially uncorrelated (Fine and Clarkson 1982;
Grenfell and Anderson 1989; Hethcote 1998; Rohani et al.
1999). In each city, bouts of annual whooping cough out-
breaks are punctuated by periods of 2–2.5-yr epidemics.
This pattern is drastically altered in the vaccine era, where
spatially synchronized 3.5–4-yr outbreaks are observed
(Rohani et al. 1999, 2000a, 2000b).

The England and Wales data are thought to be relatively
accurate for measles, representing around 60% of true
cases (Clarkson and Fine 1985; Finkenstadt and Grenfell
2000). The accuracy of reporting is thought to be lower
for whooping cough (between 5%–25% of actual cases;
Clarkson and Fine 1985; Hethcote 1997). Although no-
tification accuracy will alter the amplitude of fluctuations,
it is unlikely to affect the dynamical pattern of epidemics.
In fact, it has been previously demonstrated that there is
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Figure 1: Aggregate measles and whooping cough notifications in England and Wales from 1944 to 1994; data obtained from the Registrar General’s
Weekly Returns. A, Time series for square root of measles cases in England and Wales, with vaccination starting in 1968 (dotted line). B, Square
root of cases of whooping cough in England and Wales, with the onset of national vaccination indicated by the dotted line.

very strong correlation between the case reports we present
and isolations of the whooping cough bacterium (Borde-
tella pertussis) by the Public Health Laboratory Service
(Miller et al. 1992). There are also independent notifica-
tions provided by the Royal College of General Practi-
tioners General Practice Research Unit (Fine and Clarkson
1982) that show a very strong correlation with the case-
report data.

SEIR Formalism

Both measles and whooping cough are respiratory infec-
tions, with estimated reproductive potentials ( ) of 16–18R 0

(Anderson and May 1991). Measles is caused by a virus
in the morbillivirus family, while (as mentioned above)
whooping cough is caused by a bacterium. Both infections
are transmitted by aerosol particles and are highly infec-
tious, with approximately 90% of susceptible (close) family
contacts acquiring the infection (Behrman and Kliegman
1998). The latent period (1/j) for both diseases lasts ap-
proximately 8 d, and the effective infectious period (1/g)
is about 5 d for measles and approximately 14 d for
whooping cough (Behrman and Kliegman 1998; Rohani
et al. 1999). The infection process is well described by the
classic SEIR (susceptible, exposed, infectious, or recovered)
formalism in which hosts are categorized according to in-
fection status. Although the immunological response to
whooping cough can be more complex than measles, its

overall dynamics can be qualitatively well captured by this
modeling framework (Rohani et al. 1999, 2000a).

The basic system of differential equations describing the
SEIR framework for a constant population of size N are
given by

dS b(t)I
p mN � � m S, (1)[ ]dt N

dE b(t)I
p S � (m � j)E, (2)

dt N

dI
p jE � (m � g)I, (3)

dt

dR
p gI � mR. (4)

dt

Here, 1/j and 1/g are the incubation and infectious pe-
riods, respectively, and m gives the per capita birth and
death rates. Since measles and whooping cough are infec-
tions that primarily affect children, the model incorporates
a time-dependent contact rate ( ) to mimic the aggre-b[t]
gation of children in schools. Term-time forcing is imple-
mented by making on school daysb(t) p b # (1 � b )0 1

and otherwise (b0 is the basic contactb(t) p b # (1 � b )0 1

rate, and b1 denotes the amplitude of seasonality). Note
that in our simulations, we use a slightly lower amplitude
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Figure 2: The dynamics of whooping cough as obtained using different implementations of the susceptible, exposed, infectious, or recovered (SEIR)
model. A, Model is fully deterministic with , yielding rigidly annual epidemics. B, Similar dynamics are observed with the analogous6N p 5 # 10
Monte Carlo simulation model with a large population size, . C, Smaller population size, , gives a mixture of annual6 5N p 5 # 10 N p 5 # 10
epidemics and multiannual outbreaks, as was observed in the England and Wales data. D, We mimicked the effects of environmental stochasticity
by making the transmission rate a normally distributed random variable, . This gives qualitatively the same results as the Monteb(t) ∼ N(b, 0.5 # b)
Carlo simulations. The following parameters were used in all simulations: /yr; d; d; ; (giving anm p 0.02 1/j p 8 1/g p 14 b p 0.15 b p 4161 0

of 17).R0

of forcing for whooping cough. We do this because our
analyses of both age-structured models and time series
approaches (similar to those of Finkenstädt and Grenfell
1999) reveal that whooping cough transmission is less sea-
sonably variable than measles transmission, despite the two
diseases’ identical underlying contact patterns. We stress
that although this lower level of seasonality for whooping
cough provides a better fit to the observed data, the dy-
namical differences reported here are not qualitatively de-
pendent on it.

In this article, we also explore the analogous stochastic
(Monte Carlo) model, which assumes the same intrinsic
processes as the above equations but is event driven (the
algorithm for the process is described in detail in the ap-
pendix; Bartlett 1957; Grenfell 1992). The Monte Carlo
model reveals the role that demographic noise can play in
determining dynamics. However, we have also explored
models with environmental stochasticity by adding mul-
tiplicative noise to the transmission parameter b(t). Our
results are not qualitatively affected by the choice of sto-
chastic model.

Numerical Experiments

In this section, we investigate the dynamics of measles and
whooping cough by means of numerical experiments. As

outlined below, we are predominantly interested in ex-
ploring the “stability” of the deterministic attractor for
these infections. Hence, much of what follows describes
the consequences of perturbations and the qualitative be-
havior of transients.

The classic work of Schenzle (1984) showed how a de-
terministic, term-time forced age-structured SEIR model
successfully captured the dynamics of measles in the pre-
vaccination era. Recently, the work of Earn et al. (2000)
suggested that age structure may not be essential for mod-
eling large-scale measles epidemics. The message from
their work was important; simple, carefully constructed,
and parameterized deterministic SEIR models can repro-
duce the qualitative dynamics of measles extremely effec-
tively. The same cannot be said for whooping cough, how-
ever, where both the deterministic SEIR and age-structured
models produce rigidly annual outbreaks (fig. 2A; results
for age-structured model not shown), in contrast to the
observed epidemics. To understand this anomaly, we ex-
plored the dynamics of the corresponding Monte Carlo
simulation SEIR model. For large population sizes (up-
ward of 5 million), where one may expect the effects of
demographic stochasticity to be negligible, the Monte
Carlo model predicted largely annual whooping cough
outbreaks with some longer period outbreaks (fig. 2B).
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Figure 3: Identical analysis to that presented in figure 2 for measles dynamics. Model parameters: /yr; d; d;m p 0.02 1/j p 8 1/g p 5 b p0

; .1,250 b p 0.251

For smaller population sizes, however, we observe a mix-
ture of annual and multiannual epidemics (fig. 2C). The
same phenomenon is also observed in the deterministic
model when significant environmental stochasticity is in-
cluded (fig. 2D).

A repeat of this analysis for measles reveals no quali-
tative difference between the dynamics of large and small
places or deterministic and stochastic models (fig. 3A–3D).
This clearly points toward important differences between
the stability of the measles and whooping cough attractors.

Conventionally, the stability properties of a determin-
istic attractor are studied by measuring the dominant Lya-
punov exponent (Peitgen et al. 1992; Glendinning 1994).
Our analysis of local and global Lyapunov exponents, how-
ever, failed to explain the observed patterns. In both sys-
tems, the dominant global Lyapunov exponent was neg-
ative, indicating a stable periodic attractor (with the
Lyapunov exponent for whooping cough slightly more
negative than that for measles). Essentially, this confirms
the asymptotic stability of these attractors; small pertur-
bations eventually die out and trajectories return to the
deterministic attractor—it provides no information on the
nature of transient dynamics. We also estimated local Lya-
punov exponents, which revealed the regions around the
measles and whooping cough attractors that are sensitive
to perturbations (Keeling et al. 2001). Again, this analysis
provided no explanation for the observed differences be-
tween the dynamics of the two infections.

Instead, we resort to exploring the underlying mecha-

nisms generating these patterns by perturbing the deter-
ministic system and studying the length and characteristics
of transients. In figure 4, we present the results of a series
of numerical experiments. In each of the three panels, we
plot the time series for the deterministic measles model,
with a perturbation at year 50. The perturbation takes the
form of moving a fraction of those exposed and infectious
into the recovered class, and the magnitude of the per-
turbations increases in successive panels of figure 4.
Clearly, small perturbations have virtually no effect on the
dynamics of measles, with the trajectories in figure 4A and
4B showing no discernible response. When perturbation
levels become appreciably high (50% in fig. 4C), a slight
change in the amplitude of the oscillations can be ob-
served, although the period of these transients remains at
2 yr. We repeated these perturbation experiments at a
number of points along the attractor, with no tangible
qualitative difference in the observed results. Hence, the
biennial measles attractor appears to robust to moderate
perturbations, and trajectories that are pushed off the at-
tractor return to it rapidly and are also biennial. In direct
contrast, whooping cough dynamics appear to be very
sensitive to perturbations. As shown in figure 5, all per-
turbations (identical in proportion to those applied to
measles) result in trajectories moving off the attractor.
Furthermore, whooping cough transients are character-
istically different from the asymptotic dynamics, showing
a clear multiannual component with a period of around
2–2.5 yr.
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Figure 4: Numerical experiments to demonstrate the robustness of the measles attractor to perturbations. We ran the deterministic model for 50
yr, instantaneously removed a fraction of those in the exposed and infectious classes, and observed the length and characteristics of the ensuing
transients. A, 10% of infectives were removed, with no tangible effects. B, Level of perturbation was increased to 20% with little discernible result.
C, When 50% of infectives are removed, however, a noticeable change is observed. The transients, however, are biennial and approach the asymptotic
attractor rapidly.

It is possible to summarize these findings by plotting
the interepidemic period. Simply, at a specifically chosen
point on the attractor (explained in detail below), we make
a perturbation to the infective population and evaluate the
time taken for a single epidemic cycle (illustrated in fig.
6A). This is repeated for different perturbation levels. In
mathematical terms, we define ( , , ) to be the fixed∗ ∗ ∗S E I
point of the unforced system (with b constant and

) and ( , , ) to be a trajectory on theˆ ˆ ˆR p 17 S[t] E[t] I[t]0

deterministic attractor at time t. Then, we perturb the
system at time t0, where and , by ap-∗ ∗ˆ ˆS(t ) p S I(t ) 1 I0 0

plying a displacement, D, to the number of infectious in-
dividuals such that

∗ˆ ˆ ˆS(t ) p S(t ) p S , E(t ) p E(t ), I(t ) p I(t ) � D.0 0 0 0 0 0

We then establish the time taken for a complete revolution
in the forced system, which gives the initial interepidemic
period T(D) following the perturbation. More rigorously,
this “return time” is given by

∗ ∗T(D) p min [t 1 0 : S(t � t ) p S , I(t � t ) 1 I ]. (5)0 0

The results of this analysis for measles and whooping
cough are shown in figure 6B, which demonstrates that
for small displacements, the interepidemic period is un-

affected. For larger perturbations ( to ),�5 �35 # 10 5 # 10
however, there is a clear distinction between the two dis-
eases; although both systems eventually return to their
respective attractors, measles dynamics maintain the pe-
riod of 2 yr, whereas whooping cough epidemics show
multiannual fluctuations, with a period of 2–3 yr. When
the displacements become extremely large, both infections
take many years to approach the deterministic attractor
and have long interepidemic periods (cf. Schwartz and
Smith 1983).

Invasion Orbit

These findings can be understood better by exploring the
topology of the system in the neighborhood of the deter-
ministic attractor. We do so by taking annual samples of
the numbers of susceptibles and infectives (at a single
instant every year). In this manner, the biennial measles
attractor is represented by two fixed points, and the an-
nual whooping cough attractor is simply a fixed point in
(S, I) space. To uncover the dynamical properties of the
system in the neighborhood of the fixed point(s), we define
the “invasion orbit.” This is achieved by starting simula-
tions at time td with a very low proportion (10�30) of
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Figure 5: Numerical experiments to demonstrate the susceptibility of the whooping cough attractor to perturbations. As in figure 4, we ran the
deterministic model for 50 yr, instantaneously removed a fraction of those in the exposed and infectious classes, and recorded the transient dynamics.
For whooping cough, even a 10% perturbation level (A) results in a noticeable change. With higher levels of perturbation (20% and 50% in B and
C, respectively), there are clear deviations from the deterministic attractor resulting in relatively long transient dynamics with a multiannual period.

infectives and a population composed almost entirely of
susceptibles. For a number of years, we note the numbers
of susceptibles and infectives at a single instant every year,
after the initial transients have been discarded. The process
is repeated a large number of times for increasing values
of (td � [0, 1]) yr; this is akin to imposing changes in
initial conditions (cf. Rand and Wilson 1991). Plotting
these points in phase space gives the invasion orbit: the
route by which the infection invades the system and ap-
proaches the deterministic attractor. In technical terms,
this gives the unstable manifold of the disease free equi-
librium, .∗ ∗ ∗ ∗(S , E , I , R ) p (N, 0, 0, 0)

The invasion orbits for measles and whooping cough
are presented in figure 7. They demonstrate that the mea-
sles invasion orbit appears to be strongly biennial, as was
suspected. Trajectories that are pushed off the attractor by
noise are swept back onto it via the invasion orbit, which
exhibits biennial dynamics (fig. 7A). The scenario for
whooping cough is very different. The invasion orbit is
“star” shaped and has a clear multiannual component,
giving rise to fluctuations with a 2–3-yr period as trajec-
tories approach the vicinity of the annual attractor (fig.
7B).

Does this approach explain disease dynamics in the vac-
cine era? For measles, a plausible explanation already ex-
ists. Earn et al. (2000) proposed that the character of mea-
sles epidemics is determined by the supply of susceptibles

to the population. In particular, an increase in the pro-
portion vaccinated (or equivalently, a decrease in the pop-
ulation birth rate) results in reduced recruitment of sus-
ceptibles, corresponding to a lowering of the effective

(an observation that had previously been made by DietzR 0

[1976] and by May [1986] for unforced systems). Models
predict that measles epidemics in the vaccine era are in a
region of parameter space dominated by multiple-
coexisting attractors with finely intertwined basins of at-
traction. Hence, the complex spatiotemporal pattern of
outbreaks may be the result of an intricate interaction
between process noise and multiple attractors. Numerical
simulations of a stochastic model appear to confirm these
predictions (Rohani et al. 1999).

The epidemics of whooping cough in the vaccine era
are, however, less well understood. In particular, it is im-
portant to explain why regular, nearly 4-yr epidemics are
observed even though the deterministic period is still 1 yr
(Hethcote 1998; Rohani et al. 1999, 2000a, 2000b). We
proceed by plotting the initial period (T[D]) following a
displacement (D), which shows that for a large range of
displacements ( to ), the initial period is�5 �37 # 10 2 # 10
approximately 4 yr (fig. 8A). Again, we believe this period
is explained by the invasion orbit which, in the vicinity
of the annual fixed point, shows a clear 4-yr structure (fig.
8B).

Naturally, we wish to know why two diseases with a
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Figure 6: A, Illustration of the method used to estimate the initial period
(T[D]) after a displacement (D) has been applied to the number of
infectives. The grey line represents the deterministic attractor, and the
black line shows a trajectory following the displacement. B, Estimated
initial periods for measles (solid line) and whooping cough (dashed line).

broadly similar natural history, affecting the same popu-
lation, with roughly the same can have such differentR 0

nonlinear properties as observed by their differing re-
sponses to stochasticity. The key difference lies in the con-
stituent components of . For the SEIR system,R R ≈0 0

(i.e., it is approximately the product of the mean trans-b/g
mission probability, , and the infectious period, 1/g).b

Measles, with an effective infectious period of 5 d, must
have a very high mean transmission probability compared
to whooping cough, where the infectious period lasts for
approximately 14 d.

Differences in the transmission probability and the in-
fectious period are translated into dynamical differences
via the interaction with the seasonal changes in contact

rates. Given the relatively brief infectious period of mea-
sles, the 2-wk school break over Christmas holidays, for
example, plays an important dynamical role as the trans-
mission rate remains low over a complete epidemiological
generation of the disease (as opposed to the generation
length of an individual virus particle). Whooping cough,
however, displays much weaker “resonance” with seasonal
forcing due to its longer epidemiological generation length
and is primarily affected by the relatively long period of
low contact rates during the summer months. We believe
it is this key difference that explains why the measles at-
tractor is much more robust to perturbations compared
to whooping cough.

The reason for the differences in the structure and pe-
riod of the invasion orbits is, however, not immediately
obvious. We speculate that they may be due to the differing
natural time scales of the two infections, which dictate the
decay of perturbations to the attractor (a lucid account of
this is given by May [1986]). By plotting the dynamics
annually, the deterministic attractor is contracted to one
or two points, and it is simply the behavior of the per-
turbation that is observed. Locally, at each point on the
attractor, the behavior of a small perturbation is governed
by the Jacobian at that point. The natural frequency pre-
dicted by the Jacobian of the unforced system changes
little around the attractor and hence oscillations in the
perturbations occur with approximately the period (T)
predicted by

�T p 2p AG. (6)

Here, A represents the mean age at infection, ≈1/m(R0 � 1),
and G gives “generation length” of the infection, G p

(Anderson and May 1991; Heth-[1/(m � g)] � [1/(m � j)]
cote 2000). Using this argument, the natural resonant time
scale of measles is 2.05–2.37 yr (given �2G p 3.56 # 10
yr and assuming a mean age at infection of 3–4 yr). For
whooping cough, however, again assuming a mean age at
infection of 3–4 yr but with yr, we obtain�2G p 6.02 # 10
a natural period of 2.67–3.13 yr. The actual periods ob-
served in the England and Wales data are, however, slightly
lower (2–2.5 yr). This is likely to be explained by the
waning of immunity in some individuals (Miller et al.
1992; Hethcote 1998), which would reduce the mean age
at infection and lower the natural period. In the vaccine
era, the mean age at infection for whooping cough is likely
to have risen to 5–7 yr, giving a natural period of 3.49–4.14
yr (Rohani et al. 1999). This predicted period is only rig-
orously true for relatively small perturbations of the kind
induced by demographic stochasticity. Deviations that are
too small will result in dynamics identical to those of the
attractor, while extremely large perturbations cause long-
period damped oscillations (fig. 6).



Figure 7: Invasion orbits for (A) measles and (B) whooping cough. The recipe used to uncover these structures is described in the main text. Model
parameters are as stated in figures 2 and 3. A, Plotted instantaneous number of infectives and susceptibles for years 20–25. B, Plotted instantaneous
number of infectives and susceptibles for years 20–30. In both plots, different shadings are used for different years to highlight the relevant multiannual
structure of the invasion orbit. The solid line in B follows the path of a specific trajectory.
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Figure 8: Whooping cough dynamics in the vaccine era. A, Initial period following a displacement. B, Invasion orbit, clearly highlighting its 4-yr
structure. Model parameters are as stated in figure 2 with a vaccination level of 60%. The data points in B represent the instantaneous number of
infectives and susceptibles for years 60–70.

Discussion

Historically, deterministic approaches to ecological prob-
lems have dominated our thinking. With distinguished
exceptions, the importance of stochasticity has often been

ignored. Two common justifications for this have been
that chance events are most important for very small pop-
ulations (May 1974; Keeling and Grenfell 1999) and that
the dynamical effects of stochasticity were thought to be
negligible, merely adding some variation to the determin-
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istic predictions. It is now becoming increasingly evident
that many ecological systems are qualitatively affected by
demographic and environmental noise, to such an extent
that deterministic models may be incapable of capturing
or indeed explaining their dynamics (Bartlett 1957; Hig-
gins et al. 1997; Bjørnstad et al. 1998; Cushing et al. 1998;
Grenfell et al. 1998; McCauley et al. 1999; Rohani et al.
1999). A key question in ecology concerns when we do
and when we do not need to worry about stochasticity.

In this article, we have explored the consequences of
the interaction between stochasticity, nonlinearity, and sea-
sonal forcing, with surprising results. We have shown how
two common infectious diseases with striking similarities
in natural history and reproductive potential exhibit very
different dynamics. This is explained by their differing
dynamical responses to stochasticity, the root cause of
which lies in differences in their epidemiological time
scales. The resulting dynamical consequence of these dif-
ferences is that the measles attractor in the prevaccine era
is highly robust to perturbations and those trajectories
pushed off the attractor return to it in a biennial manner.
The whooping cough attractor, however, is much more
prone to stochastic perturbations, with transient behav-
ior that is qualitatively different from the asymptotic
dynamics.

Thus, most features of large-scale measles dynamics can
be understood using deterministic models (Schenzle 1984;
Anderson and May 1991; Bolker and Grenfell 1993; Earn
et al. 2000), although its small-scale behavior is much more
prey to stochasticity. In marked contrast, even the large-
scale dynamics of whooping cough cannot be understood
without allowing for stochasticity (Hethcote 1998; Rohani
et al. 1999), even though it is a very similar dynamical
process to measles. We have proposed a possible expla-
nation for these findings: differences in the structure of
the invasion orbit (the effective geometry of the landscape
around the attractor).

This study highlights the advantage of studying such
key ecological questions using childhood infections; the
biology of these systems is well understood, detailed mech-
anistic models exist, and extensive data sets at many spatial
scales are available. Furthermore, these systems have the
added benefit of a great deal of dynamically interesting
structure; strong overcompensatory forces and nonlinear-
ity interact subtly with resonance (due to seasonality) and
process noise.

We have attempted to untangle the complex dynamics
of these infections using classical dynamical-systems ap-
proaches. An alternative formalism for exploring these is-
sues has recently been developed by Finkenstädt and Gren-
fell (2000). They have constructed time series models for
measles using “susceptible reconstruction” to formulate a
set of discrete-time maps. Although they have looked at

these questions in a broader statistical sense, their findings
are in strong qualitative agreement with those of this study.

It is interesting to note that this system can be viewed as
the epidemiological analogue of the dispersal-colonization
trade-off metaphor (define each person as a “patch,” dis-
ease transmission as “dispersal,” and the infectious period
as “colonization time”). Within this framework, measles
can be thought of as the superior disperser but poorer
colonizer while whooping cough successfully colonizes a
patch for a longer period of time but is less effective at
dispersal (P. Rohani, unpublished manuscript). The per-
sistence consequences of habitat destruction (i.e., vacci-
nation) within this framework are qualitatively different
to those presented in studies of simple ecological mod-
els (cf. Nee and May 1992; Tilman 1994), highlighting
the potential importance of stochasticity and seasonal
variation.

One of the clearest messages to emerge from this work
is that details sometimes matter. While ecologists have
been searching for general patterns to explain ubiquitous
phenomena, our study indicates that in nonlinear systems,
small differences in biological characteristics can have pro-
found qualitative implications. Given the concentration of
effort in explaining the dynamics of measles epidemics, it
is tempting to assume that most childhood infections with
a roughly similar natural history are likely to behave in a
similar manner. As we have shown, this is clearly not the
case with whooping cough. Hence, great care is needed
when extrapolating on the results of any single study.
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APPENDIX

Stochastic Simulation Algorithm

The Monte Carlo SEIR model assumes the same intrinsic
processes as equations (1)–(4) but is event driven (Bartlett
1957). The recipe for the model is as follows. We first
estimate a time to the next event (dt) by calculating
the sum of the frequencies of all possible events,

, and setting dt ph p 2 # mN � [b(t)IS/N] � jE � gI
, where U1 is a uniform deviate in [0, 1]. Next,� log (U )/h1

we order all possible events as an increasing fraction of h

and generate another uniform deviate (U2 � [0, 1]), to
obtain the nature of the next event. For example, if the
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uniform deviate is in the interval [0, mN/h], then the event
is a birth ( ), whereas if U2 lies inS r S � 1, N r N � 1

, then the next event is an infection{mN/h, [b(t)IS/N]/h}
( ).S r S � 1, E r E � 1
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