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Population dynamics models remain largely determinis-

tic, although the presence of random fluctuations in

nature is well recognized. This deterministic approach

is based on the implicit assumption that systems can

be separated into a deterministic part that captures the

essential features of the system and a random part that

can be neglected. But is it possible, in general, to under-

stand population dynamics without the explicit con-

sideration of random fluctuations? Here, we suggest

perhaps not, and argue that the dynamics of many

systems are a result of interactions between the

deterministic nonlinear skeleton and noise.

Ever since the pioneering work of Lotka [1], Volterra [2]
and Elton [3] during the 1920s, there has been a recurring
debate about the relative importance of exogenous
(environmental) variables versus endogenous (density-
dependent) factors in determining observed fluctuations in
population size. During the 1950s, the debate reached
fever pitch with two main protagonists: Nicholson cham-
pioned density-dependent (deterministic) processes [4]
and Andrewartha and Birch defended the density-inde-
pendent (stochastic) school. Following the publication of
his 1957 paper, Nicholson is generally considered to have
won the debate [4], and much work during the following
decades concentrated on what is often referred to as the
‘dogma of density-dependent factors’. The discovery, by
May [5], during the 1970s, that simple discrete-time
models of density dependence could generate chaotic
dynamics suggested that the observed erratic fluctuations
in population size are generated by relatively simple
deterministic rules; his findings further reinforced the
view that we need not necessarily resort to stochastic
factors to explain empirical patterns. Over the past decade
or so, there has been a concentrated effort to evaluate
critically model predictions against observed empirical
patterns, which has led to researchers revisiting the
deterministic–stochastic dichotomy and a realization
that, in many instances, deterministic model frameworks
should incorporate stochasticity [6,7].

The deterministic–stochastic debate can be distilled as
follows: if our understanding of population dynamics is to be
caricatured by a mathematical model, do we consider only

the intrinsicnon-linear factors known to influencemortality
and fecundity (e.g. density dependence) or should we also
incorporate stochasticity (both demographic and environ-
mental)? In recent years, it has become increasingly
apparent that noise and non-linearity are both important
and, more crucially, that they can interact to give rise to
dynamics that would not have been predicted by rigidly
deterministic models [6,8–12]. Here, we consider the
treatment of stochastic processes (noise) in population
dynamics models. We argue that, in many circumstances,
stochasticity cannot be considered independently of thenon-
linear component of the model; hence, the choice of
‘deterministic skeleton’ and the treatment of noise can
have a substantial impact on the interpretation of factors
underlying the dynamics of populations.We briefly consider
the types of stochastic model that have recently proven
popular, before addressing issues concerning the construc-
tionof thedeterministic skeletonand the treatment ofnoise.

Modelling approaches

Recent stochastic population models can be classified into
two categories [13]: the first, known as inductive models,
are concerned with fitting models to time-series data [14].
The second category, classified as deductive models, do not
explicitly use the patterns in the time-series data to
construct and parameterize a model, but instead use data
on the mechanistic processes thought to have generated
the observed time series [15]. These models are then used
to simulate time series, which are then compared to
empirical observation. Most recently published stochastic
population models are inductive [11,16–18]. This raises
the question of how complex should a model be?

How complex should a model be?

Both deductive and inductive models must strike the
correct balance between biological realism (model com-
plexity) and statistical rigour. Given that most ecological
time series are comparatively short, models (especially
inductive ones) are often simple because, in general, there
should be many data points per parameter estimated [19].
This issue has recently been raised by Ginsberg and
Jensen [20], who criticized many complex inductive
models because they involved estimatingmore parameters
than is justified given the quantity of data. Ginsberg and
Jensen argue for parsimony by suggesting that all popu-
lation cycles can be explained with one three-parameter
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model. At one level (the observation that cycles occur
because of a largely deterministic build-up of individuals
that are susceptible to disease, starvation, predation or
resource competition) they are correct, but understanding
which limiting factor is responsible for the dynamics is
necessary for generality, as this determines the types of
cycle observed. Recent demonstrations of the interplay
between non-linear skeletons and noise [21–26] suggest
that there is a place for more complex inductive and
deductive models where data permit their construction.

The answer to the question of how complex a model
should be depends on the question at hand, the system
under investigation, the required scale of resolution and
the data available [12,19,27]. System dependence is

illustrated by recent studies of childhood disease. In
Box 1, we give an example of how models of substantially
different complexity are required to provide an equivalent
level of understanding for two apparently similar disease
systems, where the scale of resolution is the infection
status of the host and the fundamental processes equiv-
alent to birth, death and dispersal in animal or plant
systems are susceptibility, immunity and infectivity. This
comparison demonstrates how a deterministic model
works well for one system, whilst a stochastic model is
needed to provide an equivalent level of understanding for
another, qualitatively similar system.

The scale dependence of model complexity is illustrated
by spatial models in which discrete individuals interact

Box 1. Model complexity and the dynamics of childhood diseases

Rohani and colleagues have explored the epidemics of measles and

whooping cough in England and Wales [39]. They have demonstrated

that for both diseases the simple Susceptible–Exposed–Infected–

Recovered (SEIR) demographic models with seasonal forcing (to mimic

the aggregation of children in schools) represent a biologically

appropriate ‘deterministic skeleton’. For measles, this fully determinis-

tic model provided a good framework for explaining the observed

dynamical transitions resulting from either systematic trends in the

population birth rate or mass-vaccination [36]. By contrast, the same

deterministic framework is spectacularly unsuccessful at capturing,

however qualitatively, whooping cough epidemics (Figure I). The

reason appears to be the fragility of the deterministic whooping

cough skeleton; it is surprisingly prone to the effects of stochasticity and

the overall dynamics might be explained as being the result of an

interaction between stochasticity and unstable periodic orbits [40].

As well as providing an example of issues concerning model

complexity, this case study also highlights the importance of studying

comparative population dynamics because measles has been exten-

sively studied as a ‘prototypical’ childhood infection. The lessons learnt

from understanding its epidemics are not, it would seem, universally

applicable. There is no reason to suppose that the absence of generality

from this comparison is limited to childhood diseases.

Figure I. Noise and non-linearity in epidemics. (a) Weekly whooping cough cases in Birmingham; (b) predictions from a deterministic so-called SEIR skeleton;

(c) addition of stochasticity into the model. The stochastic model captures the observed dynamics substantially better than the deterministic version [40].
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according to the local densities that they experience. At
one extreme, we expect small-scale population dynamics
to be trivially dominated by noise; at the other extreme,
we might expect large-scale dynamics to be accurately
approximated by fully deterministic equations. Examples
of such approximations in ecology have been developed for
individual-based models of plant growth and competition
[28] and for a variety of lattice and network-based models
of disease [29]. Interestingly, however, noise can play an
essential role at intermediate spatial scales, as has been
illustrated with individual-based predator-prey models
[30]. Population cycles display cycles of fairly regular
periods but varied amplitudes, termed ‘quasi-cycles’ [31].
This behavior arises from the interplay of the nonlinear
interactions between individuals, which are local in the
spatial case, and the noise from either environmental
fluctuations or individual uncertainty.

As well as the issues of model complexity discussed
above, modelers must decide on the form that the skeleton
will take. One important issue is whether the skeleton
should be either discrete or continuous.

Deterministic skeletons: discrete or continuous?

The size of any real population, at any point in time, has
to be an integer value, because all populations consist of
individuals: fractions of individuals do not exist [12].
Consequently, it makes logical sense that models should
be integer based unless we are interested in variables such
as biomass and concentration. Most models, however, are
not integer based, mainly because the mathematical
theory underpinning integer-valued deterministic models
is under-developed and complex. Until recently, it had
been assumed there would be few consequences of working
with mathematically tractable continuous-state models;
however, recent research has challenged this view by
demonstrating the importance of recognizing the discrete
nature of ecological populations [32,33].

Part of the confusion is due to the fact that, when
modelers make deterministic models probabilistic by
incorporating demographic stochasticity into a non-
integer-based (continuous) deterministic model, they in
fact add two new ingredients: (i) a probabilistic component;
and (ii) integer-valued population sizes.Whenmodels with
demographic stochasticity exhibit radically different prop-
erties compared to their continuous deterministic counter-
parts, it is inevitably attributed solely to the importance
of demographic stochasticity. For example, at the 2003
Ecological Society of America (ESA) meeting in Savannah,
Aaron King (University of Tennessee at Knoxville, USA)
used a host-parasitoid model to demonstrate convincingly
that making population size discrete valued in a determi-
nistic model (i.e. no demographic stochasticity) can have
dramatic consequences on population size and variation in
population growth. Until the mathematics of discrete-
valued models is better developed, most researchers are
likely to continue to use continuous-value models. How-
ever, integer-value models are biologically more realistic
and results (and, consequently, interpretation) can differ
markedly between the two approaches.

Which form of noise?

In the mathematical literature, ‘noise’ is the term applied
to whatever obscures or reduces the clarity of a signal.
In population ecology, it can be loosely thought of as
whatever we do not understand in population dynamics
[16]. Environmental noise can be generated by a range of
factors, such as climatic effects, natural enemies, inter-
specific competition or anthropogenic change, that are not
included in the deterministic skeleton. Another form of
noise is demographic, which is introduced by the uncer-
tainty in the fate of individuals. Here, we do not consider
measurement error explicitly although it is a type of noise
(but see [14]). If the deterministic skeleton is structurally
inappropriate or only captures some of several important
processes, noise might, in fact, be deterministic in origin.
There are now various examples where substantial
amounts of presumed noise have been explained by the
incorporation of additional processes into models [34]. In
spite of its unknown origins and the fact these origins
are almost certainly system specific, there are various
generalized noise ‘treatments’ that have been proposed
[35], with different treatments generating contrasting
population dynamics.

Noise treatments

The first treatment is the ‘deterministic’ one. This con-
siders noise to be completely divorced from the determi-
nistic skeleton; noise is unimportant and can, therefore,
be discarded. This treatment is considered sensible if a
population is large and its dynamics are governed entirely
by the deterministic skeleton, with, at most, only a small
amount of measurement error contributing the only noise.
In reality, we are yet to discover such a system, and
population size is not always a reliable indicator of the
importance of noise. Simple nonlinear models of disease
formulated at the individual level have shown, for
example, that noise can sustain oscillations that would
otherwise decay in the fully deterministic case.

The second is the ‘equilibrium’ treatment, where noise
provides some ‘fuzziness’ around the deterministic skele-
ton. In other words, the underlying source of the noise is
completely independent from the deterministic factors
in the model. The deterministic skeleton is considered
effectively correct but perhaps overlooks, for example,
fluctuations introduced by demographic stochasticity. This
is themost common perception and treatment of noise. The
third is the passive treatment, where noise is considered to
influence the transition from one deterministic system
state to another. For example, consider a population that is
subject to strong Allee effects (below a threshold popu-
lation size, the rate of population growth is positively
related to density, whereas, above the threshold, popu-
lation growth is negatively related to density) with a fixed
carrying capacity (the maximum sustainable population
size). The deterministic model predicts terminal popu-
lation decline below the population threshold and density-
dependent growth above it. There are two possible
equilibria (extinction and the carrying capacity), with
population size the only determinant of eventual
dynamics. The skeleton explains the dynamics well, and
noise is unimportant except in causing the transition
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from one equilibrium to another. Examples also include
transitions between attractors other than equilibria, such
as cycles of different periods in a model for childhood
epidemics [36], and transitions leading to spatial pattern
formation through diffusive instabilities [37].

The final treatment is the most interesting and is
termed ‘active’. Here, noise interacts with the nonlinearity
in the deterministic skeleton, and population patterns
cannot be fully captured from either component alone
[21–26]. In particular, under the active treatment, knowl-
edge of the stable, long-term properties (attractors) of the
deterministic skeleton is insufficient to understand the
dynamics of the population. The standard analyses based
on bifurcation diagrams, that describe how long-term
population dynamics change with the values of model
parameters, neither predict, nor explain, the dynamics
produced when noise is added. Examples of the active
treatment of noise include those given in [21–26].

In Figure 1, we demonstrate how the different noise
treatments can influence the type of population dynamics
that amodel predicts. The system is described in Box 2 and
the model is described in detail in [38]. Below, we discuss
the active treatment in further detail.

Active noise

The epidemics of whooping cough represent one example of
the interaction between noise and nonlinearity (Box 1,
[39,40]). Another disease example comes from cholera:
a nonlinear time series model can only generate the
multiple coexisting cyclic frequencies observed in histori-
cal data once noise is added to the deterministic skeleton
[41]. A non-disease example comes from Soay sheep Ovis
aries living on the St Kilda archipelago, UK and is
described in Box 2. Another non-disease example is
given by the phenomenon of noise amplification in
population models [26] near the bifurcation point of the
nonlinear deterministic system at which an equilibrium
loses stability. Noise sustains the otherwise decaying
oscillations in a behavior similar to the quasi-cycles
described above [31] One exciting possibility is that the

weak sensitivity to initial conditions observed inmany real
time series [42] can result, in part, from these quasi-cyclic
dynamics [26,43].

The literature about the role of noise in population
models is large and increasing. It would currently be rash
to claim any widely supported generalizations, but both
the theoretical and empirical literature about the active
treatment of noise is rapidly expanding. What is clear is
that, in all studied empirical systems, both nonlinear
feedbacks and noise influence population dynamics.
Traditionally, modelers have concentrated on ‘stable’
dynamics to explain patterns in data. It is also increasingly
apparent that we also need to understand ‘unstable’
structures that interact with noise to give rise to
unpredictable dynamics [21,22,40]. From this new per-
spective, we can often develop a good understanding of the
consequences of stochasticity by a comprehensive exami-
nation of the properties of the deterministic skeleton.
Within this context, the distinction between passive and
active noise treatments becomes somewhat blurred.
Whether this is the rule rather than the exception remains
to be determined.

It is also apparent that the identification of interactions
between deterministic and stochastic processes can
require both considerable data and a solid understanding
of the biology of the system. A detailed understanding of
the active treatment of noise can only come from a three-
pronged approach involving the development of theory,
the development of statistical approaches to fit complex
models to data, and the collection of data that enable
competing theoretical hypotheses to be disentangled.

Model selection

There might often be multiple, competing hypotheses
proposed to explain a specific pattern in population

Box 2. Inductive and deductive models of Soay sheep

The population of Soay sheep (Ovis aries) on the St Kilda Archi-

pelago, UK exhibits periodic ‘crashes’ when up to 60% of animals can

die. The population has been studied in detail for nearly 20 years,

with complete life histories known for many hundreds of individuals.

The best inductive population model yet identified for this popu-

lation proposed that climatic effects (specifically the frequency of

storms in late winter) on population growth rate are strongest when

the sheep population is large [10]; the model, however, explains only

20% of the observed variance in population growth.

Deductive construction of a more complex deterministic skeleton,

which includes density-dependent age- and sex-specific survival and

recruitment functions, and the incorporation of state-specific sto-

chastic climatic factors, enabled (90% of the variation in population

growth to be explored [38]. The predominant reason for the impres-

sive performance of this model was that it captured important,

persistent differences in the contribution of different cohorts to the

population dynamics. These cohort differences are generated by the

effects of interactions between density and climate on survival rates

throughout the life of the cohort, which generate substantial fluc-

tuations in the age- and sex-structure of the population and, con-

sequently, the susceptibility of the population to both stochastic and

deterministic processes. This model was a deductive model involv-

ing the analysis of survival and reproductive histories of several

thousand animals. Combination of these functions into a model of

the time series predicted the time series well [38].

Figure 1. Examples of the consequences of different noise treatments around an

age- and sex-structured deterministic skeleton (see [35] for model details). The

deterministic treatment does not consider noise; the equilibrium treatment

considers only demographic stochasticity in survival and recruitment; the passive

treatment considers a change in mean weather conditions occurring at the arrow;

and the active treatment incorporates interactions between density and climate

that influence survival and recruitment rates. The passive treatment line has been

moved down slightly to distinguish it from the deterministic treatment line.
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dynamics. For example, multiple deterministic and sto-
chastic processes have been proposed to explain the cyclic
fluctuations of pine looper moth [44]. Many decades of
fieldwork have identified a list of mechanisms operating
in the system that could be invoked to explain the data
qualitatively, but could not determine which mechanisms
were causal. Identifying approaches for model selection in
nonlinear systems with measurement and process error,
when knowledge about system variables is incomplete, is
an active area of research [19]. Recent developments in this
area might even reverse our perception of the respective
roles of models and experimental data, as proposed by
Steve Ellner (Cornell University, USA) at the last 2003
ESA meeting. He presented an approach to select among
competing mechanistic models as a way to test different
hypotheses for the origin of population cycles, with an
application to the population cycles in the pine looper
moth.He concluded by reminding us that usually, we think
‘Models tell us what is possible, but Experiments reveal
what is actual’ whereas, in this case, ‘Experiments tell us
what is possible, but Models reveal what is actual’.

Conclusions

Recent research has demonstrated that an understanding
of population dynamics (across multiple levels of abstrac-
tion) requires consideration of the interaction between
nonlinear feedbacks and noise. One conclusion arising
from this realization has been that the naı̈ve dichotomy
between whether density-dependent or density-indepen-
dent processes determine population fluctuations is
neither relevant to, nor informative [45]. The death of
the debate has, however, raised several important new
questions. How should a deterministic skeleton be chosen?
Should it be discrete or continuous? How should noise be
incorporated? How does noise interact with the nonlinear-
ity of the skeleton? Which dynamical properties of the
deterministic system, if any, fully explain this interaction?

It could be argued that the classic, purely deterministic
and purely stochastic syntheses of population biology have
failed to identify many, if any, of the generalities that
underpin observed patterns of fluctuations in population
size. It is too early to determine whether the new
deterministic–stochastic synthesis will deliver general-
ities, but if it stimulates as much debate as the old
dichotomy our understanding of population dynamics can
only be substantially enhanced. A crucial first step is a
better understanding of the exciting mathematics behind
the interaction between non-linear skeletons and noise.
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