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Abstract

Traditionally, epidemiological studies have focused on understanding the dynamics of a single pathogen, assuming no interactions

with other pathogens. Recently, a large body of work has begun to explore the effects of immune-mediated interactions, arising from

cross-immunity and antibody-dependent enhancement, between related pathogen strains. In addition, ecological processes such as a

temporary period of convalescence and pathogen-induced mortality have led to the concept of ecological interference between unrelated

diseases. There remains, however, the need for a systematic study of both immunological and ecological processes within a single

framework. In this paper, we develop a general two-pathogen single-host model of pathogen interactions that simultaneously

incorporates these mechanisms. We are then able to mechanistically explore how immunoecological processes mediate interactions

between diseases for a pool of susceptible individuals. We show that the precise nature of the interaction can induce either competitive or

cooperative associations between pathogens. Understanding the dynamic implications of multi-pathogen associations has potentially

important public health consequences. Such a framework may be especially helpful in disentangling the effects of partially cross-

immunizing infections that affect populations with a pre-disposition towards immunosuppression such as children and the elderly.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Outbreaks of diseases such as SARS, West Nile Virus
and avian influenza have alerted us to the potentially grave
public health threat from emerging and re-emerging
pathogens (Cyranoski, 2001; Lipsitch et al., 2003; Mack-
enzie et al., 2004). However, understanding the persistence,
spread and evolution of extant pathogens also remains a
significant challenge. Historically, our understanding of
disease-host systems has been built upon a population-
based rather than community-based approach: epidemiol-
ogists have traditionally studied infectious disease at the
level of a single pathogen species infecting a single-host
species. This has led to a significant body of epidemiolo-
gical research devoted to understanding the precise
mechanisms underlying host–pathogen dynamics in isola-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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tion. In the case of novel emerging pathogens, this is
perhaps a reasonable study unit. In the case of established
pathogens, however, it may well be an oversimplification of
the web of ecological and immunological interactions in
which hosts and their pathogens persist and evolve.
During the past several years, single-host single-patho-

gen approaches have been extended to incorporate multiple
hosts (Hudson and Greenman, 1998; Gog et al., 2002;
Dobson, 2004) and multiple pathogens (Gupta et al., 1994;
Ferguson et al., 2003). Much of the work on multi-host
systems has focused on how parasites can shape host
coexistence dynamics by mediating ‘‘apparent’’ competi-
tion between host species (Holt, 1977; Tomkins et al.,
2001). However, the area of community epidemiology that
has received most attention has been the dynamics of
multi-strain pathogens, in part due to the number and
importance of microparasites with well-established anti-
genic polymorphism, such as influenza, malaria, the
adenoviruses, poliovirus and cholera (Andreasen et al.,
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1997; Gupta et al., 1998; Read and Taylor, 2001; Earn
et al., 2002; Koelle et al., 2005). In such systems, it is
empirically documented that different strains typically
fluctuate out-of-phase with each other; epidemics of one
strain do not generally coincide with epidemics of another.
Multi-strain interactions have been studied on two distinct
scales: within-host immune-mediated interactions such as
superinfection and coinfection (Nowak and May, 1994;
Kirschner, 1999); and between-host immune-mediated
interactions such as cross-immunity and antibody-depen-
dent enhancement (Ferguson et al., 1999; Cummings et al.,
2005). In particular, the significance of partial cross-
immunity in shaping the coexistence, dynamics and
evolution of strains has been at the core of a large body
of work (Elveback et al., 1968; Dietz, 1979; White et al.,
1998; Gog et al., 2002; Kamo and Sasaki, 2002; Abu-
Raddad and Ferguson, 2004; Pease, 1987).

Until recently, however, the possibility that epidemics of
unrelated pathogens might interact has been ignored.
Rohani et al. (1998) proposed an ecological mechanism—
termed interference—that may contribute to interaction
among unrelated acute infections. This ecological inter-
ference arises from the (temporary or permanent) removal
of potential hosts from the susceptible population for one
infection following an infection by one of its direct
competitors. The primary mechanism for removal is the
convalescent period, during which individuals are in
quarantine and hence unavailable to contract ‘‘competing’’
infections. In addition, depending upon the disease and
host age and condition, individuals may suffer death as a
result of infection, in which case removal from the
susceptible pool becomes permanent and the competitive
interaction between pathogens is predicted to become
stronger. Ecological interference has similar dynamical
consequences to cross-immunity in strain polymorphic
systems, whereby individuals previously infected with one
strain may have partial protection to other competing
strains (Kamo and Sasaki, 2002). The significant prediction
of the Rohani et al. (1998) model was that epidemics of
competing infections would be temporally segregated, with
major outbreaks out-of-phase with each other (Huang and
Rohani, 2005, 2006; Rohani et al., 2006). Empirical
support for interference effects is provided in case fatality
data for measles and whooping cough for several European
cities in the pre- and post-WWI eras when birth rates were
high and infection was associated with significant mortality
(Rohani et al., 2003), conditions which remain pervasive in
many developing countries today.

In addition to ecological interactions, unrelated patho-
gens may also interact through immune-mediated re-
sponses. This is likely to take place via a host’s innate,
non-specific immune response rather than the acquired,
specific response that mediates interactions such as cross-
immunity and antibody-dependent enhancement between
similar pathogen strains. There are perhaps two main ways
for this interaction to occur. First, during the initial stages
of infection, the host’s innate immune response is strongly
activated and may temporarily prevent the establishment
of other infections. Second, following infection with certain
pathogens (e.g. measles and influenza), a host’s immune
system is suppressed for a period of time during which an
individual may be more prone to colonization by other
(particularly bacterial) infections (Openshaw and Tregon-
ing, 2005; Openshaw, 2005; Thompson et al., 2003). In this
case, prior infection with one pathogen may actually
facilitate infection by another, unrelated pathogen. When
infection occurs by certain enteroviruses, it is thought that
tissue damage triggers a severe immunosuppressive re-
sponse within patients and that this ‘‘primes’’ the patient
for other pathogens by inducing dilated cardiomyopathy
and chronic inflammatory myopathy (Klingel et al., 1992).
Another well-studied example is infection with human
immunodeficiency virus (HIV) which has been shown to
increase susceptibility to infection with many other
pathogens and parasites (Corbett et al., 2002), and, in
particular, with Mycobacterium tuberculosis (TB) (Porco et
al., 2001; Corbett et al., 2003). Dynamically, these kinds of
mechanisms leading to immunosuppression between un-
related pathogens should exhibit strong similarities with
antibody-dependent enhancement between antigenically-
related pathogens, whereby individuals previously infected
with one strain may experience more severe disease when
infected with a second strain (e.g. dengue serotypes
(Halstead, 1970)). So far, however, a dynamical explora-
tion of immunosuppression as a mode of interaction
between pathogens has been lacking.
This body of past work makes clear that related and

unrelated pathogens can potentially interact through a
variety of immunological and ecological mechanisms,
many of which share common dynamical outcomes.
However, a systematic study of the different possible
routes of interaction between different infections is still
lacking. In this paper, we aim to fill this gap by developing
a general model for examining systems with multiple
pathogens. The proposed framework is flexible and may be
applied to strain polymorphic as well as to unrelated
diseases. The key ingredient of the formalism we develop is
the simultaneous inclusion of immune-mediated compo-
nents (coinfection, immunosuppression/cross-enhancement
and cross-immunity) and ecological factors (quarantine
and infection-induced mortality). Our approach is to
generalize the transmission process within a two-pathogen
single-host community. An important feature is that the
framework is built around a null model of no interaction,
which allows us to demonstrate how pathogen interaction
changes single-pathogen single-host dynamics in a pre-
dictable manner. We then use this framework to track the
dynamics of pathogen interactions over the immunoecolo-
gical ‘‘landscape’’. Specifically, we focus on four static and
dynamical properties of the two-pathogen system: coex-
istence and stability of equilibria, and period and phase of
periodic attractors. We demonstrate how a suite of
immunoecological interactions between pathogens in a
two-disease community can lead to transient or sustained
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oscillations in disease prevalence. These fluctuations may
be either asynchronous if competition is strong or
synchronous if cooperation is induced. Furthermore, we
show how the period of the two-disease attractor is affected
by key immunoecological interactions. The theory we use is
based upon numerical explorations of two key eigenmodes
(eigenvalue–eigenvector pairs). Although this paper does
not directly address the influence of seasonality, these
signatures are crucial for gaining insight into the system
trajectories observed under periodic forcing, and the
patterns we might expect to observe in epidemiological
data.

2. A generalized two-pathogen single-host model

Our generalized model builds on the traditional concept
of the SEIR (susceptible, exposed, infected, recovered)
paradigm (Kermack and McKendrick, 1927; Anderson and
May, 1991). In this framework an individual is categorized
according to their infection status and passes sequentially
through the series of SEIR classes. As mentioned in the
Introduction, various models have been developed in an
attempt to generalize this approach to include interactions
between different pathogens. In this paper we combine
several of these approaches into a single model. Specifi-
cally, ecological interactions between pathogens, such as a
period of convalescence (Rohani et al., 1998, 2003) or
disease-induced mortality (Huang and Rohani, 2005) are
incorporated as well as immune-mediated interactions such
as coinfection (Nowak and May, 1995), cross-immunity
(Kamo and Sasaki, 2002), or cross-enhancement (Ferguson
et al., 1999) and immunosuppression. This allows a
systematic investigation of these dynamical processes
within a unified modeling framework. We incorporate the
basic elements required to describe the natural history of
two distinct infections of a single host:
1.
 All new-borns are fully susceptible to both infections.

2.
 Upon infection, a susceptible individual enters the

exposed (infected but not yet infectious) class, and has
a relative probability of contracting the other disease
simultaneously, modulated by the coinfection para-
meter, fi ði ¼ 1; 2Þ.
3.
 After a latent period, the individual becomes infectious
and still has the same chance of contracting the other
disease (fi, i ¼ 1; 2). We note that coinfection is not a
competitive process within the host in the current model:
if coinfection occurs both infections are allowed to run
their course.
4.
 Often when symptoms appear, the disease is diagnosed
and the individual enters a convalescent phase for an
average period given by 1=di (i ¼ 1; 2). During con-
valescence, the other infection may be contracted but the
transmission rate is modulated by the parameter
xi ði ¼ 1; 2Þ. If 0pxio1, convalescence may represent a
period of quarantine (reduced contact rates) or tempor-
ary cross-immunity (reduced susceptibility). If xi41,
convalescence may represent, via increased susceptibil-
ity, immunosuppression (non-related pathogens) or
cross-enhancement (antigenically related pathogens).
5.
 Depending upon the pathogen and host age and
condition, an infection may be fatal, often due to
complications (such as pneumonia and encephalitis, in
the case of measles and pertussis). This is represented by
per capita infection-induced mortality probabilities ri

ði ¼ 1; 2Þ.

6.
 Upon complete recovery, the individual is assumed

immune to the first infection but remains susceptible to
the second infection, if not previously exposed to it. At
this stage, we introduce the term wi to explore the
implications of long-lasting cross-immunity ðwio1Þ or
cross-enhancement/immunosuppression ðwi41Þ for the
transmission rate of disease i following infection with
disease j.
7.
 An alternative way of introducing cross-immunity and
cross-enhancement is by assuming that infectiousness,
rather than susceptibility, is altered. We incorporate this
using the parameter Zi, so that comparisons can be made
with previous models that have used this representation.
If Zio1 then those contracting infection i after the other
infection will be less infectious (or equivalently only a
proportion Zi will transmit the infection), if Zi41 they
will be more infectious.

We note that for parameters describing the interaction
between pathogens (fi, wi, xi, Zi, i ¼ 1; 2) the subscript
always refers to the infecting pathogen.
The mathematical representation of these assumptions is

presented as the following system of ordinary differential
equations:

dS0

dt
¼ nN � ðl1 þ l2Þ

S0

N
� mS0,

dE1

dt
¼ l1

S0

N
� f2l2

E1

N
� ðs1 þ mÞE1,

dI1

dt
¼ s1E1 � f2l2

I1

N
� ðg1 þ mÞI1,

dC1

dt
¼ g1I1 � x2l2

C1

N
� ðd1 þ mÞC1,

dS1

dt
¼ ð1� r1Þd1C1 � w2l2

S1

N
� mS1,

dE2

dt
¼ l2

S0

N
� f1l1

E2

N
� ðs2 þ mÞE2,

dI2
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I2

N
� ðg2 þ mÞI2,

dC2

dt
¼ g2I2 � x1l1

C2

N
� ðd2 þ mÞC2,

dS2

dt
¼ ð1� r2Þd2C2 � w1l1

S2

N
� mS2,
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dS12

dt
¼ ð1� r1Þð1� r2Þ f2l2

E1 þ I1

N
þ x2l2

C1

N

�

þ f1l1
E2 þ I2

N
þ x1l1

C2

N

�

þ ð1� r2Þw2l2
S1

N
þ ð1� r1Þw1l1

S2

N
� mS12,

d�1
dt
¼ l1

S0

N
þ Z1 f1l1

E2 þ I2

N
þ x1l1

C2

N
þ w1l1

S2

N

� �
� ðs1 þ mÞ�1,

d�2
dt
¼ l2

S0

N
þ Z2 f2l2

E1 þ I1

N
þ x2l2

C1

N
þ w2l2

S1

N

� �
� ðs2 þ mÞ�2,

dl1
dt
¼ b1s1�1 � ðg1 þ mÞl1,

dl2
dt
¼ b2s2�2 � ðg2 þ mÞl2, (1)

where the class of all those susceptible to both infections is
denoted by S0. The variables Ei, I i and Ci (i ¼ 1; 2)
represent those currently exposed, infectious or convales-
cing (respectively) after infection with disease i, with no
previous exposure to any infection. The terms Si (i ¼ 1; 2)
represent all individuals that are recovered from infection i

but still susceptible to infection j. For bookkeeping
purposes we let �i and li represent the forces of latency
and infection for pathogen i (i ¼ 1; 2). Additionally, note
that S12 are all those no longer susceptible to either
infection, and may include those who are still exposed
or infectious with one or both diseases (i.e. included within
�1, �2, l1 or l2). The model parameters are explained in
Table 1.

In this paper, N represents the total population size in
the absence of disease-induced mortality, which is defined
to be constant by setting n ¼ m. In the presence of disease-
induced mortality, we do not reduce N when calculating
Table 1

Description of model parameters

Parameter Epidemiological description

n Per capita birth rate

m Per capita death rate

1=si Average latent period

1=gi Average infectious period

1=di Average convalescent period

ri Probability of infection-induced mor

fi Relative probability of coinfection w

xi Temporary quarantine/cross-immuni

xi Temporary immunosuppression/cros

wi Permanent cross-immunity to infectio

wi Permanent immunosuppression/cross

Zi Alternative permanent cross-immuni

Zi Alternative permanent cross-enhance

bi Transmission rate
frequency-dependent transmission since we want to ensure
that the level of mixing/contact remains the same. With this
assumption, the S12 class plays no dynamic role in the
system (see Appendix A for further details on how this
system of equations is derived from first principles). It is
also worth noting that historically, disease-induced mor-
tality has been incorporated into epidemiological models
by the addition of a mortality term to equations describing
the dynamics of infected. While this formulation may be
appropriate for some pathogens, a re-think is needed when
considering diseases such as measles and whooping cough.
Here, individuals may succumb to the pathogen as a result
of complications from the infection, such as hypoxia,
encephilitis or secondary lung infections, which typically
occur long after the effective infectious period has elapsed
(Behrman and Kliegman, 1998). Hence, we have chosen to
model this as the probability a convalescing individual
successfully re-enters the population.
We point out that most previous models investigating

the interactions of two pathogens and a single host are
nested within this generalized model as limiting cases of
certain parameters. In particular, setting fi ¼ xi ¼ 0, wi ¼

Zi ¼ 1 for i ¼ 1; 2 we arrive at the extension by Huang and
Rohani (2005) to the ecological interference model of
Rohani et al. (1998). Furthermore, the lower dimensional
models analysed by Ferguson et al. (1999) (which is a two-
strain version of a model formulated in Gupta et al.
(1998) and Kamo and Sasaki (2002)) can be derived if
1=si ! 0 and fi ¼ xi ¼ wi ¼ 1, and 1=si ! 0 and
fi ¼ xi ¼ wi; Zi ¼ 1, respectively.

3. Equilibria, invasability and coexistence

We now investigate the equilibrium properties of our
two-disease model with respect to changes in model
parameters. When the disease transmission coefficients
(bi) are constants, as we assume throughout this paper, it
can be shown that there are four possible equilibria: (i) the
disease-free equilibrium; (ii) two single disease equilibria
Typical range

1/40–1=75 yr�1

1/40–1=75 yr�1

1–15 days

1–20 days

0–9 months

tality 0–1

ith infection i 0–1

ty to infection i 0–1

s-enhancement to infection i 41

n i 0–1

-enhancement to infection i 41

ty to infection i 0–1

ment to infection i 41

100–2000 yr�1
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Fig. 1. Invasability diagram determining two-pathogen coexistence. This

figure demonstrates that coexistence of the two infections can be affected

by immunosuppression and disease-induced mortality. In the absence of

immune-mediated interactions ðfi ¼ xi ¼ wi ¼ 1; i ¼ 1; 2Þ, large levels of

disease-induced mortality (a 50% level is shown on the dot-dashed line),

can cause the region of two-disease coexistence to shrink. In contrast,

strong levels of permanent immunosuppression (fi ¼ xi ¼ 1; wi ¼ 2;
ri ¼ 0; i ¼ 1; 2) can expand the coexistence domain (dashed line).

Epidemiological parameters used to construct this diagram were for

measles (labeled disease 1 in figure) and pertussis (labeled disease 2 in

figure) and are given in Table 2.
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and (iii) the two-disease coexistence equilibrium. Condi-
tions for demonstrating the existence and computation of
these equilibria are developed in the Appendix. We show
that equilibrium values for all state variables of this
dynamical system are uniquely determined by numerically
solving two coupled equations in terms of the forces of
infection ðl1; l2Þ.

Given the number of parameters in our model, one
might expect a range of different effects on these equilibria.
Intuitively, one possible consequence of pathogen interac-
tions among infections is reduced abundance. Surprisingly,
however, detailed analyses have demonstrated that ecolo-
gical interference does not manifest itself by significantly
altering infection prevalence; changes in model parameters
such as the convalescent period translate into negligible
changes in the number of infectives of either infection
(Huang and Rohani, 2005). Perhaps more surprisingly,
ecological factors have been shown to exert little influence
on the coexistence likelihood of pathogens. To demonstrate
in detail how the different immunological and ecological
parameters of the generalized model affect the possibility
of pathogen coexistence, we now state the invasability
criterion. Given that the basic reproductive ratio of each
disease is determined by

Ri
0 ¼

bisi

ðsi þ mÞðgi þ mÞ
; i ¼ 1; 2,

it is then straightforward to show that pathogen j can only
invade the single-disease equilibrium of pathogen i if

R
j
04

Ri
0

1þ aiðR
i
0 � 1Þ

where Ri
041 (2)

and

ai ¼
Zj

si þ m
fjmþ

si

gi þ m
fjmþ

gi

di þ m
ðxjmþ wjð1� riÞdiÞ

� �� �
,

(3)

for i; j ¼ 1; 2 and iaj. Of greater insight is that ai �

Zjwjð1� riÞ under a fairly non-restrictive set of assump-
tions: namely, that host lifespan is significantly greater than
the length of the latent, infectious and convalescent periods
(m5si; gi; di) and that xj and Zj are not too large
(Zjfjm5si; gi and Zjxjm5di). For a limiting case of this
model ðfi ¼ xi ¼ 0; wi ¼ Zi ¼ 1; i; j ¼ 1; 2Þ, Gumel et al.
(2003) showed that the two disease coexistence equilibrium
must be stable when both single-disease equilibria lose their
stability, and this appears to hold for the general model
presented here. Fig. 1 illustrates how condition (2) affects
the coexistence of the two diseases as a function of the key
parameters r (¼ r1 ¼ r2 assuming symmetry) and w
(¼ w1 ¼ w2 assuming symmetry, which is equivalent to
varying Z ¼ Z1 ¼ Z2). Disease-induced mortality ðr40Þ
decreases the region of coexistence in exactly the same
way as permanent cross-immunity after infection ðwo1Þ: at
the population level, these two mechanisms have the same
dynamical consequences. However, immune-mediated in-
teractions may also act in the opposite direction: if
infection with one pathogen in some way primes the host
for infection with another ðw41Þ, the coexistence region
can significantly expand, so that one disease can invade
another even if its R0 is below 1.
4. Stability and qualitative dynamics of the model

In simple host–pathogen models, for R041, the system
exhibits damped oscillations towards a globally stable
endemic equilibrium. However, when competitive or
cooperative interactions between pathogens are permitted,
ecological theory would suggest that a range of dynamical
outcomes is possible. In this section our emphasis is on
using linear stability analysis of the pathogen coexistence
equilibrium, guided by numerical integration of the full
nonlinear system, to describe pathogen dynamics for a
number of different epidemiological scenarios. For each
scenario, a two-parameter bifurcation diagram illustrates
the stability of the coexistence equilibrium, and, when it is
unstable, the qualitative oscillatory dynamics we expect to
observe. These explorations of parameter space are divided
into those that are possible for multi-strain (related)
pathogens and those that are possible for unrelated
pathogens. In addition, for the analyses of dynamics
presented in this paper, we will focus on interactions
involving host susceptibility rather than infectiousness and
assume that Zi ¼ 1 ði ¼ 1; 2Þ. For purposes of illustration,
we adopt three baseline sets of parameter values from well-
studied childhood diseases (Anderson and May, 1991)
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Table 2

Baseline parameter sets used in the epidemic modeling

Parameter Measles Pertussis Rubella

1=s 8 days 8 days 9 days

1=g 5 days 10 days 11 days

1=d 7 days 14 days 14 days

R0 17 17 7

b ¼
R0ðgþ mÞðsþ mÞ

s
1242 yr�1 621 yr�1 233 yr�1

TI�2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mðR0 � 1Þ

1

mþ s
þ

1

mþ g

� �s
2.1 yr 2.5 yr 4.2 yr

D.A. Vasco et al. / Journal of Theoretical Biology 245 (2007) 9–2514
(see Table 2). However, in some analyses we also allow
epidemiological parameters to vary in addition to those
modulating pathogen interactions. In this section we do
not systematically vary the birth rate (m) or disease-induced
mortality (ri, i ¼ 1; 2), but the effects of these variations on
pathogen interactions will be discussed later (we set m ¼
0:02 and ri ¼ 0, i ¼ 1; 2, except where otherwise noted).

4.1. Interactions between two related pathogens (strains)

For the case of two strains, we assume that the
epidemiological characteristics of each strain are the same,
so that one set of our baseline parameters applies to both
strains (for illustration, we use measles). In Fig. 2, we
compare the following three case studies motivated by
possible antigenic strain interactions:
(a)
Fig. 2. Stability diagrams of different epidemiological scenarios for
temporary symmetric cross-immunity/enhancement be-
tween strains;
related strains. The gray region corresponds to a stable coexistence
(b)

equilibrium. White regions are unstable and correspond to either stable

antiphase or synchronous limit cycles: (a) temporary symmetric immunity/
temporary complete cross-immunity followed by con-
tinued symmetric cross-immunity/enhancement be-
tween strains;
enhancement between strains; (b) temporary cross-immunity followed by

continued symmetric immunity/enhancement between strains; (c) perma-
(c)
nent symmetric cross-immunity/enhancement between strains. The base-
permanent symmetric cross-immunity/enhancement
between strains.
line epidemic parameter set is that given for measles in Table 2. Note that

in all figures, the units of d are yr�1.
For (a) and (b), we simultaneously vary the average length
of the period of temporary cross-immunity. For (c), we co-
vary the basic reproductive ratio of the strains. We find
that a temporary period of cross-enhancement can
destabilize the equilibrium, leading to synchronous cycles
in strain dynamics (Fig. 2a) in a similar manner to
permanent enhancement (Ferguson et al., 1999) (Fig. 2c),
even for average periods of a few days. As the strength and
duration of cross-enhancement increases the dynamics
become chaotic (not shown). However, if there is a short-
lived period of cross-immunity before enhancement occurs
(of at least 3 weeks), as is thought to be the case for dengue
serotypes (Wearing and Rohani, 2006), then synchrony is
lost and the pathogens cycle out-of-phase with each other
(Fig. 2b). Permanent symmetric (partial) cross-immunity
has previously been shown to produce stable dynamics
independent of R0 (Kamo and Sasaki, 2002) and this is
reproduced in Fig. 2c. However, if partial cross-immunity
is assumed to be temporary or follows a period of complete
cross-immunity, then sustained asynchronous oscillations
can arise (Figs. 2a and b).
4.2. Interactions between two unrelated pathogens

For the case of two unrelated pathogens, we assume that
the epidemiological characteristics of each infection are
different. We also consider two different sets of disease
parameters: one where the diseases share the same R0 but
have different infectious periods (measles–pertussis) and
one where the diseases have different R0’s and different
infectious periods (measles–rubella). In this manner, and in
tandem with the results of the previous section, we can
detect the changes in pathogen interaction due to
differences between the lengths of the infectious period,



ARTICLE IN PRESS

Fig. 3. Stability diagrams of different epidemiological scenarios for unrelated pathogens. The gray region corresponds to a stable coexistence equilibrium.

White regions are unstable and correspond to either stable out-of-phase or synchronous attractors: (a) and (f) quarantine/temporary immunosuppression

between diseases; (b) and (g) quarantine followed by permanent immunosuppression; (c) and (h) quarantine/temporary immunosuppression followed by

permanent immunosuppression between diseases; (d) and (i) quarantine followed by infection-induced mortality; (e) and (j) quarantine followed by

permanent asymmetric immunosuppression. The baseline epidemic parameter sets are given in Table 2.

D.A. Vasco et al. / Journal of Theoretical Biology 245 (2007) 9–25 15
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and those due solely to differences between values of R0. In
Fig. 3, we compare the following five case studies:
(a)
 quarantine/temporary immunosuppression between
diseases;
(b)
 quarantine followed by permanent immunosuppres-
sion;
(c)
 quarantine/temporary immunosuppression followed by
permanent immunosuppression between diseases;
(d)
 quarantine followed by infection-induced mortality;

(e)
 quarantine followed by permanent asymmetric immu-

nosuppression.
In each investigation we assume that the coinfection
parameter ðfÞ is equal to the quarantine/temporary
immunosuppression parameter ðxÞ to allow for direct
comparisons with results from the previous section.
However, if f is set equal to 1, representing the null
position of non-interacting coinfection, then similar
qualitative results are obtained although the regions of
instability tend to be smaller.

Our analysis of the effects of quarantine and temporary
immunosuppression on the dynamics of unrelated diseases
shows similar results to those of cross-immunity and
enhancement on strain dynamics. Figs. 2a, 3a and f, all
share similar qualitative features: quarantine/cross-immu-
nity periods longer than a certain amount of time lead to
sustained out-of-phase cycles, whereas temporary immu-
nosuppression/enhancement leads to sustained synchro-
nous cycles. The major difference is that the unrelated
pathogens with asymmetric infection parameters generate
smaller regions of instabilities, in particular the pathogens
with very different R0’s (measles–rubella). Moreover, the
length of quarantine required to achieve sustained cycles
(with x ¼ fo1) in the unrelated pathogens is much longer
than is realistic for many diseases.

If we assume short periods of quarantine and examine
how immunosuppression following these periods affects
the dynamics, then we find a substantial difference between
the diagram for measles–pertussis (Fig. 3b) compared with
that for measles–rubella (Fig. 3g). The interaction between
unrelated pathogens with similar R0’s but different
infectious periods (measles–pertussis) closely resembles
that for related pathogens with identical parameters
(measles–measles, Fig. 2b). The interaction between
unrelated pathogens with different R0’s (measles–rubella)
shows that for relatively short periods of quarantine,
permanent immunosuppression can give rise to sustained
synchronous cycles; asynchronous cycles only occur for
much longer periods of quarantine. This difference is
partially explained by considering Figs. 3c and h, in which
we simultaneously vary the quarantine/temporary immu-
nosuppression parameter with the permanent immunosup-
pression parameter. The unrelated pathogens with very
different R0’s (measles–rubella) interact to produce syn-
chronous cycles over a much larger area of parameter
space. We might infer from this that pathogens with similar
R0’s are more susceptible to competition induced by a
period of quarantine. This key difference is also demon-
strated in Figs. 3d and i, in which we vary the probability
of infection-induced mortality against the period of
quarantine. We can see that mortality only has a significant
effect on stability if the convalescent period is also long,
but this region is much larger for measles–pertussis than
measles–rubella. Again, asynchronous cycles are easier to
induce in the unrelated pathogens with similar R0’s.
Until this point, we have assumed that the interaction

parameters have been symmetric, i.e. the same for both
unrelated pathogens. Figs. 3e and j illustrate the effect of
assuming that immunosuppression following quarantine
occurs for only one of the two pathogens. Interestingly, in
both cases, almost all the unstable regions observed in
Figs. 3b and g become stable.
In summary, although we observe a range of behavior

varying a suite of immunological and ecological para-
meters, there are two opposing mechanisms that drive the
underlying dynamics: competition and cooperation. Cross-
immunity, quarantine or disease-induced mortality create
competition for the pool of susceptibles, of which the
dynamical consequence is a temporal separation of out-
breaks of each pathogen. Conversely, cross-enhancement
and immunosuppression lead to facilitation between
pathogens: infection with one strain or disease increases
an individual’s chance of contracting the second and thus
epidemics are more likely to coincide. These observations
give us a very intuitive signature of interaction: competitive
mechanisms lead to out-of-phase dynamics, cooperative
mechanisms lead to synchronous dynamics. However, the
mechanisms do not always generate sustained cyclic
dynamics and when they are acting together, for example
when there is a period of quarantine/cross-immunity prior
to enchancement/immunosuppression, then one (competi-
tion) seems to dominate the other.
In this section, we have focused on the stability of the

coexistence equilibrium and the phase of the cyclic
dynamics, but cycle period may also provide a key
interaction signature. In the next section, we pursue a
more rigorous examination of a subset of the analyses
presented here.

5. Period and phase of attractors in two-pathogen epidemics

We now investigate the properties of period and phase,
which characterize oscillations of the coexistence attractor.
This allows us to explore how ecological and immune-
mediated processes determine disease-specific dynamical
outcomes. We show that the interaction of two principal
eigenmodes (eigenvalue–eigenvector pairs) determines the
dynamical outcome of our model. Instability of the
coexistence equilibrium is generated when the real part of
the eigenvalue from one of these pairs moves from being
negative to positive across the imaginary axis, leading to a
Hopf bifurcation. Depending upon how the eigenmode
interactions generate the instability, the periodic attractors
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may be either in-phase or out-of-phase. Thus, disease
interactions may be tracked by continuously following the
magnitude and direction of the two eigenmodes in
parameter space. Our computational results demonstrate
how ecological and immune-mediated processes may
couple the amplitude and frequency components of two
complex eigenmodes of our model. Although it is clear that
in a 14-dimensional model many other eigenmode interac-
tions are possible, we focus on the two complex pairs that
appear to dominate the dynamic stability of the system.
These two pairs were determined by performing a
combination of extensive numerical exploration of the
parameter space underlying the model and model simpli-
fication and mathematical analysis. The model simplifica-
tion involves lumping several transient classes into one so
that the state-space dimension reduces from 14 to 7.
Approximate analytic results can then be obtained that
allow better understanding the observed dynamics of the
higher dimensional model.

Due to the complexity of our model we chose two
analyses from the previous section to demonstrate this
mechanism:
(a)
 permanent symmetric cross-immunity/enhancement
between strains;
(b)
 quarantine followed by permanent immunosuppression
between diseases.
5.1. Determinants of attractor properties

Of the 14 eigenvalues determined by the Jacobian of
Eqs. (1) five principally determine the stability pro-
perties of the attractors studied in this paper. One of these
is always real and is determined by the host lifetime m�1.
The others are two pairs of complex eigenvalues. These are
coupled by immune-mediated parameters (wi, fi, xi, Zi,
i ¼ 1; 2) and their interactions with the epidemiological
parameters (m, gi, si, di, i ¼ 1; 2). Since our model
decouples into two independent epidemiological models
when wi ¼ fi ¼ xi ¼ Zi ¼ 1 the eigenmode interaction
disappears at this point. We designate these two eigenmode
(eigenvalue, eigenvector) pairs as (y1, v1) and (y2, v2).
Throughout this section the eigenmodes will be labeled in
the graphs as red and blue colors, respectively, unless
otherwise noted.

We now reduce the general model to the special case of
two interacting strains, in which the classes Ei; I i;Ci;Si are
collapsed into a single class, X i (see Appendix C). The state
of the resulting model takes the form ðS0;X 1;X 2;
�1; �2; l1; l2Þ, where each of the remaining five state
variables represents the same quantity corresponding to
its value in Eqs. (1). As stated in Section 2 this reduces our
model to one similar to that studied previously by Kamo
and Sasaki (2002). Symmetrizing this reduced class of
models it can be shown that the periods and phases of a
stable periodic attractor are principally determined by two
dominant coupled eigenmodes, with eigenvalues,

y1 � �
ð2� fÞm

R0ðgþ mÞðsþ mÞ
s

2g
þ i

R0ðgþ mÞðsþ mÞ
s

m
� �1=2

,

(4)

y2 � �
fm

R0ðgþ mÞðsþ mÞ
s

2g
þ i f

R0ðgþ mÞðsþ mÞ
s

m
� �1=2

(5)

if fo1 and

y1 � �
fm

R0ðgþ mÞðsþ mÞ
s

2g
þ i f

R0ðgþ mÞðsþ mÞ
s

m
� �1=2

,

(6)

y2 � �
ð2� fÞm

R0ðgþ mÞðsþ mÞ
s

2g
þ i

R0ðgþ mÞðsþ mÞ
s

m
� �1=2

(7)

if f41. In other words, y1! y2 and y2! y1 if f41 and
the reverse occurs if fo1. Eqs. (4) and (5) were derived
previously by Kamo and Sasaki (2002) for the case
0ofo1. Their analysis of model equilibria was restricted
to the cross-immunity case and the equilibria they
examined are not defined when f41 or the special cases
f ¼ 0 and 1. Nonetheless, their two-epidemic model
decouples into two independent epidemics in the same
way that ours does when f ¼ 1 and all their results for the
case 0ofo1 can be used as benchmarks for the reduced
symmetric case we analyse in this section. Future work,
that is beyond the scope of the present paper, should allow
showing that several of the results we state in the rest of
this section also apply in some form, to the models
developed by Gupta et al. (1998) and Ferguson et al.
(1999). We showed earlier (see Fig. 2c) that for this class of
models, when f42 the system spontaneously erupts into a
stable periodic synchronous attractor. One can approxi-
mately compute the dominant interepidemic period for the
attractor from the imaginary parts (eigenfrequencies) of
one of the two dominant eigenmodes:

T�I ¼
2p

ImðyiÞ
, (8)

where � represents the dominant eigenmode propagating
through the attractor. Which mode dominates the periodi-
city properties of the attractor depends in a complex way
upon the types of biological interactions and forcing
mechanisms acting upon the system. We examine several
examples in Sections 5.2 and 5.3.
Phase of a periodic attractor for our system can be

studied by using the associated eigenvectors (vi, i ¼ 1; 2)
corresponding to Eqs. (4)–(7). Each vi has components that
represent the seven state variables ðS0;X 1;X 2; �1; �2; l1; l2Þ.
Since we are studying a symmetrized two-strain model we
can write pairs of components (for example, X 1;X 2) of
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each eigenvector as a ratio,

X 1

X 2
¼

r1e
iO1

r2eiO2
¼

r1

r2
eiðO1�O2Þ ¼

r1

r2
eiðDOÞ, (9)

where ri ¼ ða
2
i þ b2

i Þ is the magnitude of the complex
eigenvalue yi with ai ¼ ReðyiÞ, bi ¼ ImðyiÞ; Oi is the phase
angle in the complex plane and is equal to tan�1ðbi=aiÞ and
DO ¼ O1 � O2, the phase difference between infected
trajectories of the two strains. For these definitions the
two strains exhibit an in-phase attractor if DO ¼ 0 and a
out-of-phase (or antiphase) periodic attractor if DO ¼ p.
Thus, each of the eigenmodes represents a in-phase and an
out-of-phase signature of a periodic attractor. According
to Eqs. (4)–(7) the two eigenmode signatures will exhibit a
switch, depending on whether fo1 or f41. Thus, whether
an eigenmode exhibits an in-phase or out-of-phase
signature is determined by the immune-mediation para-
meter f. Analysis of the entire eigensystem shows that
there exists an eigenphase that synchronizes and desyn-
chronizes the dynamical system as its eigensystem rotates
by p radians.

5.2. Permanent symmetric immune-interaction between

strains

We now explore how the effects of permanent cross-
immunity (fo1) and facilitation (f41) determine unique
phase signatures for the reduced symmetric two-strain
Fig. 4. Scenario for temporary symmetric immune-mediated measles–measles

two eigenvalues (period ¼ 2p=ImðyiÞ), versus (R0, f ¼ x ¼ w) parameter space

space; (c) phase differences of ðX 1;X 2Þ components of two complex eigenvect
model. The results are shown in Fig. 4. Fig. 4a shows how
the predicted period changes as a function of the R0’s and
the cross-immunity/enhancement parameter f ¼ x ¼ w.
Our reduced model predicts that with cross-immunity f ¼
x ¼ w ¼ 0:8 we would obtain a pair of attractors, one
determined by a synchronous eigenvalue (the blue surface)
and one determined by an out-of-phase eigenvalue (the red
surface) both with period 2. As the system increases the
intensity of cross-immunity to f ¼ x ¼ w ¼ 0:2 our model
predicts a period 8 out-of-phase attractor.
For the case f ¼ x ¼ w41 we examine the onset of a

synchronous limit cycle as f ¼ x ¼ w42. Fig. 4b shows
that this limit cycle occurs as a result of a Hopf bifurcation
arising from the same eigenvalue that resulted in the out-
of-phase attractor in the case of cross-immunity. This
eigenvalue switching was predicted earlier by Eqs. (4)–(7).
Fig. 4c shows this phase switching as a function of R0 by
numerically computing the components of the eigenvectors
(Eq. (9)) corresponding to the dominant eigenvalues.
5.3. Quarantine followed by permanent immunosuppression

As shown previously in Fig. 1 and discussed in Section 3,
immunosuppression can lead to facilitation between
unrelated pathogens, whereby one pathogen can increase
the likelihood of persistence with another. We also
demonstrated in Section 4.2 that reducing the convalescent
interactions: (a) interepidemic periods computed from imaginary parts of

; (b) real parts of two eigenvalues (ReðyiÞ) versus (R0, f ¼ x ¼ w) parameter

ors ðviÞ versus (R0, f ¼ x ¼ w) parameter space.
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period can modulate the re-infection effect by further
reducing competition for susceptibles. Conversely, by
increasing the convalescent period, and making convales-
cent individuals less likely to be available for re-infection,
this parameter can enhance competition. These results were
obtained assuming a period of complete quarantine
(f ¼ x ¼ 0), but Fig. 5 shows that each of these effects
has a unique disease interaction signature which is still
present in the null case (f ¼ x ¼ 1). While both the
measles–pertussis and measles–rubella scenarios show
significant regions of synchronous and asynchronous
attractors in parameter space, the relative size of these
regions varies. In general, however, decreasing the con-
valescent period with increasing immunosuppression leads
to synchronous cycling, whereas increasing the convales-
cent period leads to out-of-phase attractors. The major role
of the convalescent class is to delay the onset of the
permanent immunosuppressive effect: thus, the degree of
facilitation between pathogens is significantly modulated
by this delay.

Intuitively, we would expect that decreasing the birth
rate should increase the intensity of competition between
diseases for the pool of susceptibles, since it is replenished
at a slower rate. Fig. 5b shows that increasing the birth rate
(from m ¼ 0:01 to 0.02) causes the synchronous region to
disappear for the measles–pertussis scenario. Conversely,
for the measles–rubella scenario, increasing the birth rate
causes the out-of-phase region to disappear (Fig. 5d). Thus,
increasing the birth rate for diseases with very different
R0’s (measles–rubella) appears to increase the effects of
facilitation but decrease those of interference: the opposite
of what occurs for diseases with similar R0’s (measles–per-
tussis). Such diseases may experience higher competition
for the pool of susceptibles. Fig. 5f shows that the real
parts of two complex pairs of eigenvalues exhibit two
distinct phase signatures depending on whether diseases are
showing interference or facilitation. In Fig. 5f the real part
of the eigenvalue y1 (represented as the red surface) loses
stability and gives rise to stable synchronous attractors.
The real part of the eigenvalue y2 (represented as the blue
surface) loses stability to give rise to regions of both stable
in-phase and out-of-phase attractors.

Fig. 5e shows that the eigenfrequency (imaginary part)
of the eigenvalue y2 (represented as the blue surface) is
sensitive to permanent immunosuppression while the
eigenfrequency of the eigenvalue y1 is relatively insensitive
unless wo1 (which would represent some form of
permanent quarantine between the two diseases). Inspec-
tion of Fig. 5e demonstrates that the sensitive eigenfre-
quency of this complex pair determines the expected
dominant period of the time series. Unless the convalescent
period becomes very long (i.e. d becomes very small) both
eigenfrequencies remain almost stationary over the part of
parameter space we consider. Table 2 gives the intrinsic
epidemiological periods (TI ) of measles, pertussis and
rubella, which are computed using the baseline parameters
listed in the table. The intrinsic period for uncoupled
epidemics is approximately two years for both measles and
pertussis. Using our computational results it is now
possible to explore the effects of immunoecological
interactions in modulating the intrinsic period of the
coupled epidemic time series via interaction of the two
principal eigenmodes, as shown in Fig. 5g.
The boldface letters A, B and C in Fig. 5a designate the

regions in ðd; wÞ parameter space in which eigenvalue
interactions between y1 and y2 modulate the dynamical
outcomes. Thus, at point A our theory predicts an intrinsic
period of the coupled time series with period 3.3 yr in-phase
cycles. The observed period of 3.3 yr in the time series
generated by numerical integration of the full system (Fig.
6c) bears out this prediction. At point B of Fig. 5a our
theory predicts an intrinsic period of the coupled time
series with period 1.5 yr out-of-phase cycles. Again, Fig. 6b
shows that the period 1:6 is close to what we observe in the
corresponding solution of the full system. At point C of
Fig. 5a our theory predicts an intrinsic period of the
coupled time series with 3.3 yr in-phase cycles. Time series
with a period 3.3 yr in-phase cycling are presented in Fig.
6a. Fig. 6d shows that the eigenvalue value interaction
surfaces also determine the maximum amplitude of the
cycles. As the real part of the dominant eigenvalue passes
through zero and continues to increase through ðd; wÞ
parameter space, the amplitude associated with the
dominant eigenvalue also increases.

6. Conclusions and discussion

The mathematical model we develop in this paper will
allow investigators to gain a better understanding of
currently available extensive data sets that have accumu-
lated from case report data with respect to multi-pathogen
epidemics. Thus, we are now in a better position to address
the potential benefits and pitfalls that may arise from using
mechanistic models of multi-pathogen epidemics to devel-
op robust statistical methodologies. Our framework also
allows the systematic exploration of public health implica-
tions arising from interactions between pathogens. Hence,
it may present a novel way of understanding prediction and
forecasting of multi-pathogen interacting epidemics in
disease communities.
There are several advantages of mechanistic modeling of

multi-pathogen epidemics. One significant advantage is
that specified mechanisms of disease transmission and
spread can be precisely stated and analysed. Our model
adds to previous work on mechanistic modeling disease
strain interactions (Elveback et al., 1968; Dietz, 1979;
White et al., 1998; Gog et al., 2002; Kamo and Sasaki,
2002; Abu-Raddad and Ferguson, 2004). With respect to
incorporation of immune-mediated processes in two
disease models, we considered the additional problem of
mechanistically distinguishing between related and unre-
lated pathogens. In our model we have started as simply as
possible. We model the immune-mediated processes in our
model in terms of three parameters w, f, x (for simplicity of
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Fig. 5. Stability diagrams of different epidemiological scenarios for unrelated pathogens. The gray region corresponds to a stable coexistence equilibrium.

White regions are unstable coexistence equilibrium points and correspond to either stable out-of-phase or synchronous attractors. (a) measles–pertussis

interaction with low birth rate ðm ¼ 0:01Þ; (b) measles–pertussis interaction with standard birth rate ðm ¼ 0:02Þ; (c) measles–rubella interaction with low

birth rate ðm ¼ 0:01Þ; (d) measles–rubella interaction with standard birth rate ðm ¼ 0:02Þ; (e) plots of the interepidemic periods computed from imaginary

parts of two eigenvalues (period ¼ 2p=ImðyiÞ), for (d, w) parameter space; (f) plots of the real parts of two eigenvalues (ReðyiÞ) in (d, w), for

measles–pertussis interaction; (g) contour plot showing how the period varies for the in-phase and out-of-phase attractors A, B and C regions. The baseline

epidemic parameter sets are given in Table 2.
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Fig. 6. Each panel illustrates summary properties characteristic of the two-disease time series: amplitude, phase and period of coupled oscillations. In this

paper we use these summary properties to mine disease-specific interference or facilitation signatures out of immunoecological interactions. To generate

these time series a measles–pertussis interaction scenario was assumed. The baseline epidemic parameter sets are given in Table 2: (a) synchronous (in-

phase) infected time series with low birth rate (m ¼ 0:01), short convalescence (1=d ¼ 5:2 days) and large permanent immunosuppression effect (w ¼ 5); (b)

out-of-phase infected time series with low birth rate (m ¼ 0:01), long convalescence (1=d ¼ 36:25 days) and large permanent immunosuppression (w ¼ 5);

(c) synchronous (in-phase) infected time series with low birth rate (m ¼ 0:01), long convalescence (1=d ¼ 36:25 days) and permanent quarantine effect

(w ¼ 0:1); (d) amplitude-response as measured by the maximum amplitude of square-root of force of infection for measles plotted versus convalescent rate.

Out-of-phase attractors show increasing amplitude as convalescent rate decreases. Synchronous attractors show increasing amplitude as convalescent rate

increases. The parameters determining the time series (a)–(c) of this figure are points of ðw; dÞ parameter spaces shown in Fig. 5 from the regions labeled

attractors C, B and A, respectively. Also see Fig. 5 with corresponding exposition in the text describing how eigenmode interactions generate oscillatory

instabilities and attractor properties.
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exposition, we assume here symmetry between the immune-
mediated parameters). Each of these are distinguished by
the permanency or temporary action of the immune
response in mediating the transmission and spread of
disease. The parameter w represents the effect of permanent
cross-immunity (or removal/quarantine) when it is less
than one and immunosuppression when it is greater that
one. The parameters f and x represent temporary cross-
immunity (or removal/quarantine) or immunosuppression.
With this parameterization we were able to distinguish
immune-mediated effects between related strains versus
unrelated pathogens. Although simple, this parameteriza-
tion allowed us to distinguish model mechanisms and infer
their dynamical effects. In our approach, depending
upon how these three parameters are specified in the
model, we were able to add complexity one step at a time so
that the dynamical effects of key mechanisms could be
identified. This proved to be particularly important in
distinguishing between the interaction signatures arising
from oscillatory instabilities in related strains versus
unrelated pathogens.

A second advantage is the introduction of key ecological
interactions into multi-pathogen epidemics. Previous work
has demonstrated the importance of introducing ecological
mechanisms for interaction, such as convalescence and
disease-induced mortality (Rohani et al., 1998, 2003;
Huang and Rohani, 2005, 2006). Our model simulta-
neously incorporates both ecological and immune-
mediated processes so that a comprehensive comparison
between these processes could be performed. Thus, our
model may permit the exploration of how covariation of
ecological and immune-mediated effects may produce
unique dynamical interaction signatures. One last advan-
tage of our mechanistic approach is that the interaction
parameters are hierarchically incorporated or nested within
the dynamical equations. For example, if we want to
examine the null hypothesis that diseases do not interact
then we may assert that w ¼ f ¼ x ¼ 1. This is equivalent
to assuming that the dynamical system decouples into two
independent epidemics. If we want to test the hypothesis
that permanent or temporary cross-immunity does not
exist between two unrelated pathogens then we may assert
that (wX1, fX1, xX1) must hold in the parameter space
for this case. For each of these cases we have shown that
there are clear dynamical consequences associated with
each assertion.
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While work is just beginning on the construction of
models general enough to incorporate realistic and
immune-mediated processes into multi-pathogen interac-
tions, the prognosis for progress is a good one. Combined
with disease-specific scenario modeling and a strong
database, a predictive theory of multi-pathogen epidemics
is now on the horizon.
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Appendix A

In this appendix, we provide the full equations tracking
the entire immune history of a general two-pathogen
single-host system. The equations we present in this
appendix would be used when developing a stochastic
analogue of the system, while the reduced system of
equations (1), are more conducive to an investigation of
deterministic dynamics, as has been carried out in this
paper.

First, we define the state variables X ij by their subscripts,
which track status with regards to each pathogen: i denotes
infection status (susceptible, exposed, infectious, convales-
cent or recovered) with respect to pathogen 1 and j denotes
infection status with respect to pathogen 2.

dX SS

dt
¼ nN � ðl1 þ l2Þ

X SS

N
� mX SS, (A.1)

dX ES

dt
¼ l1

X SS

N
� f2l2

X ES

N
� ðs1 þ mÞX ES, (A.2)

dX IS

dt
¼ s1X ES � f2l2

X IS

N
� ðg1 þ mÞX IS, (A.3)

dX CS

dt
¼ g1X IS � x2l2

X CS

N
� ðd1 þ mÞX CS, (A.4)

dX RS

dt
¼ ð1� r1Þd1X CS � w2l2

X RS

N
� mX RS, (A.5)

dX SE

dt
¼ l2

X SS

N
� f1l1

X SE

N
� ðs2 þ mÞX SE , (A.6)

dX SI

dt
¼ s2X SE � f1l1

X SI

N
� ðg2 þ mÞX SI , (A.7)

dX SC

dt
¼ g2X SI � x1l1

X SC

N
� ðd2 þ mÞX SC , (A.8)

dX SR

dt
¼ ð1� r2Þd2X SC � w1l1

X SR

N
� mX SR, (A.9)
dX EE

dt
¼ f2l2

X ES

N
þ f1l1

X SE

N
� ðs1 þ s2 þ mÞX EE ,

(A.10)

dX IE

dt
¼ s1X EE þ f2l2

X IS

N
� ðs2 þ g1 þ mÞX IE , (A.11)

dX CE

dt
¼ g1X IE þ x2l2

X CS

N
� ðs2 þ d1 þ mÞX CE , (A.12)

dX RE

dt
¼ ð1� r1Þd1X CE þ w2l2

X RS

N
� ðs2 þ mÞX RE ,

(A.13)

dX EI

dt
¼ s2X EE þ f1l1

X SI

N
� ðs1 þ g2 þ mÞX EI , (A.14)

dX EC

dt
¼ g2X EI þ x1l1

X SC

N
� ðs1 þ d2 þ mÞX EC , (A.15)

dX ER

dt
¼ ð1� r2Þd2X EC þ w1l1

X SR

N
� ðs1 þ mÞX ER,

(A.16)

dX II

dt
¼ s1X EI þ s2X IE � ðg1 þ g2 þ mÞX II , (A.17)

dX CI

dt
¼ s2X CE þ g1X II � ðg2 þ d1 þ mÞX CI , (A.18)

dX RI

dt
¼ s2X RE þ ð1� r1Þd1X CI � ðg2 þ mÞX RI , (A.19)

dX IC

dt
¼ s1X EC þ g2X II � ðg1 þ d2 þ mÞX IC , (A.20)

dX IR

dt
¼ s1X ER þ ð1� r2Þd2X IC � ðg1 þ mÞX IR, (A.21)

dX CC

dt
¼ g1X IC þ g2X CI � ðd1 þ d2 þ mÞX CC , (A.22)

dX RC

dt
¼ g2X RI þ ð1� r1Þd1X CC � ðd2 þ mÞX RC , (A.23)

dX CR

dt
¼ g1X IR þ ð1� r2Þd2X CC � ðd1 þ mÞX CR, (A.24)

dX RR

dt
¼ ð1� r2Þd2X RC þ ð1� r1Þd1X CR � mX RR, (A.25)

where l1 ¼ b1ðX IS þ X IE þ X II þ X IC þ X IRÞ and l2 ¼
b2ðX SI þ X EI þ X II þ X CI þ X RI Þ are the pathogen-speci-
fic forces of infection. Note that to incorporate the
parameter Z—which modulates infectiousness—into this
framework requires additional compartments to keep track
of the order in which individuals become infected. For ease
of exposition, we do not present these here, however, we do
describe how Z is incorporated within the reduced frame-
work below.
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These equations reduce to the system of equations (1) in
the following way:
(i)
 Define X ss ¼ S0, X iS ¼ i1 and X Sj ¼ j2 so that Eqs.
(A.1)–(A.9) are exactly the first nine equations of (1).
(ii)
 Also define �1 ¼ X ES þ X EE þ X EI þ X EC þ X ER and
�2 ¼ X SE þ X EE þ X IE þ X CE þ X RE , so that

d�1
dt
¼ l1

S0

N
þ f1l1

E2 þ I2

N
þ x1l1

C2

N
þ w1l1

S2

N

� r2d2X EC � ðs1 þ mÞ�1,

d�2
dt
¼ l2

S0

N
þ f2l2

E1 þ I1

N
þ x2l2

C1

N
þ w2l2

S1

N

� r1d1X CE � ðs2 þ mÞ�2,

dl1
dt
¼ b1s1�1 � r2d2X IC � ðg1 þ mÞl1,

dl2
dt
¼ b2s2�2 � r1d1X CI � ðg2 þ mÞl2.

When r1d1X EC , r2d2X CE , r1d1X CI and r2d2X CI are
relatively small then these terms can be neglected and
we obtain the equations given in (1) (with Z1 ¼ Z2 ¼ 1).
Numerical investigation can be used to show that for
the acute infections (those with ‘‘short’’ latent and
infectious periods) examined in this paper, this
approximation is reasonable. For chronic infections,
disease-induced mortality is likely to occur whilst an
individual is still infected and therefore an alternative
representation is necessary. Of course, when there is no
disease-induced mortality then this approximation is
exact, but we note that it is also exact when
fi ¼ xi ¼ 0; i ¼ 1; 2.
(iii)
 With this approximation, and since we assume that N

remains constant even in the presence of disease-
induced mortality, once individuals have been exposed
to both pathogens it is no longer dynamically
important to keep track of the final 16 variables (i.e.
solve Eqs. (A.10)–(A.25) explicitly). We therefore lump
all these states—X EE through X RR—into a single class,
S12. For short latent, infectious and convalescent
classes (relative to the average life expectancy), the
following equation is thus a reasonable approximation
tracking those individuals who have been exposed to
both pathogens and do not suffer disease-induced
mortality:

dS12

dt
¼ ð1� r1Þð1� r2Þ f2l2

E1 þ I1

N
þ x2l2

C1

N

�

þ f1l1
E2 þ I2

N
þ x1l1

C2

N

�

þ ð1� r2Þw2l2
S1

N
þ ð1� r1Þw1l1

S2

N
� mS12.
This approximation discounts mortality earlier than it
occurs and so slightly underestimates survival.
A.1. Incorporating Z: the forces of latency (�) and

infection (l)

We briefly describe how we can modify the reduced
system to incorporate the parameter Z. Let EiP (I iP) denote
individuals exposed to (infected with) pathogen i as a
primary infection and EiS (I iS) denote individuals exposed
to (infected with) pathogen i as a secondary infection. Then

dE1P

dt
¼ l1

S0

N
� ðs1 þ mÞE1P, (A.26)

dE2P

dt
¼ l2

S0

N
� ðs2 þ mÞE2P, (A.27)

dE1S

dt
¼ f1l1

E2 þ I2

N
þ x1l1

C2

N
þ w1l1

S2

N

� ðs1 þ mÞE1S, ðA:28Þ

dE2S

dt
¼ f2l2

E1 þ I1

N
þ x2l2

C1

N
þ w2l2

S1

N

� ðs2 þ mÞE2S, ðA:29Þ

dI1P

dt
¼ s1E1P � ðg1 þ mÞI1P, (A.30)

dI2P

dt
¼ s2E2P � ðg2 þ mÞI2P, (A.31)

dI1S

dt
¼ s1E1S � ðg1 þ mÞI1S, (A.32)

dI2S

dt
¼ s2E2S � ðg2 þ mÞI2S (A.33)

and defining �i ¼ EiP þ ZiEiS and li ¼ biðI iP þ ZiI iSÞ,
i ¼ 1; 2 we obtain the equations presented in (1).

Appendix B

In this appendix we state the equations used to
numerically compute the equilibrium states, the Jacobian,
and eigenvalues of the model specified by Eqs. (1). As
mentioned in the main text, we note that N remains
constant even in the presence of disease-induced mortality
so that the state equation for dS12=dt is uncoupled from
the dynamical system. As it plays no role in determining
the equilibrium of the other state variables it will therefore
be ignored in this appendix.
First, determine each of the state variables as a function

of the forces of infection ðl1; l2Þ,

Ŝ0 ¼
m

l̂1 þ l̂2 þ m
,

Êi ¼
l̂i

fj l̂j þ si þ m

 !
m

l̂1 þ l̂2 þ m

 !
,
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Î i ¼
l̂isi

fj l̂j þ gi þ m

 !
1

fj l̂j þ si þ m

 !
m

l̂1 þ l̂2 þ m

 !
,

Ĉi ¼
l̂igi

xjlj þ di þ m

 !
si

fj l̂j þ gi þ m

 !
1

fj l̂j þ si þ m

 !

�
m

l̂1 þ l̂2 þ m

 !
,

Ŝi ¼
l̂ið1� riÞdi

wj l̂j þ m

 !
gi

xj l̂j þ di þ m

 !
si

fj l̂j þ gi þ m

 !

�
1

fj l̂j þ si þ m

 !
m

l̂1 þ l̂2 þ m

 !
,

�̂i ¼ ðl̂iŜ0 þ Ziðfil̂iÊi þ fil̂i Î i þ xil̂iĈi þ wil̂iŜiÞÞðsi þ mÞ�1,

(B.1)

where the symbol ^ represents the equilibrium value of the
state variable scaled by N, and the indices i and j represent
the equilibrium states for the disease i interacting with
disease j (where i and j can take on the values 1; 2, with
iaj). Equilibria of Eqs. (1) can now be computed as
nonnegative solutions of the implicit equations:

l̂i ¼ bisi �̂i gi þ m
� ��1

. (B.2)

Appendix C

In this section we demonstrate the reduction of the 14-
dimensional system to a seven-dimensional system and
show how these two systems decouple into two single-
disease models.

Assume that there is no disease-induced mortality for
either disease, r1 ¼ r2 ¼ 0. Assume that w1 ¼ x1 ¼ f1,
w2 ¼ x2 ¼ f2 and Z1 ¼ Z2 ¼ 1. Let X i ¼ Ei þ I i þ Ci þ Si,
i ¼ 1; 2. Then

dS0

dt
¼ nN � ðl1 þ l2Þ

S0

N
� mS0, (C.1)

dX 1

dt
¼ l1

S0

N
� f2l2

X 1

N
� mX 1, (C.2)

dX 2

dt
¼ l2

S0

N
� f1l1

Z2

N
� mX 2, (C.3)

dS12

dt
¼ f2l2

X 1

N
þ f1l1

X 2

N
� mS12, (C.4)

d�1
dt
¼ l1

S0

N
þ f1l1

X 2

N
� ðs1 þ mÞ�1, (C.5)

d�2
dt
¼ l2

S0

N
þ f2l2

X 1

N
� ðs2 þ mÞ�2, (C.6)

dl1
dt
¼ b1s1�1 � ðg1 þ mÞl1, (C.7)
dl2
dt
¼ b2s2�2 � ðg2 þ mÞl2. (C.8)

Now assume f1 ¼ f2 ¼ 1 and let Zi ¼ S0 þ X i, i ¼ 1; 2

dS0

dt
¼ nN � ðl1 þ l2Þ

S0

N
� mS0, (C.9)

dZ1

dt
¼ nN � l2

Z1

N
� mZ1, (C.10)

dZ2

dt
¼ nN � l1

Z2

N
� mZ2, (C.11)

dS12

dt
¼ l2

Z1 � S0

N
þ l1

Z2 � S0

N
� mS12, (C.12)

d�1
dt
¼ l1

Z2

N
� ðs1 þ mÞ�1, (C.13)

d�2
dt
¼ l2

Z1

N
� ðs2 þ mÞ�2, (C.14)

dl1
dt
¼ b1s1�1 � ðg1 þ mÞl1, (C.15)

dl2
dt
¼ b2s2�2 � ðg2 þ mÞl2. (C.16)

These equations decouple into two dynamically distinct
systems (Z1; l2; �2) and (Z2; l1; �1):

dZ1

dt
¼ nN � l2

Z1

N
� mZ1, (C.17)

d�2
dt
¼ l2

Z1

N
� ðs2 þ mÞ�2, (C.18)

dl2
dt
¼ b2s2�2 � ðg2 þ mÞl2, (C.19)

dZ2

dt
¼ nN � l1

Z2

N
� mZ2, (C.20)

d�1
dt
¼ l1

Z2

N
� ðs1 þ mÞ�1, (C.21)

dl1
dt
¼ b1s1�1 � ðg1 þ mÞl1. (C.22)
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