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abstract: Few age-structured models of species dynamics incor-
porate variability and uncertainty in population processes. Motivated
by laboratory data for an insect and its parasitoid, we investigate
whether such assumptions are appropriate when considering the pop-
ulation dynamics of a single species and its interaction with a natural
enemy. Specifically, we examine the effects of developmental varia-
bility and demographic stochasticity on different types of cyclic dy-
namics predicted by traditional models. We show that predictions
based on the deterministic fixed-development approach are differ-
entially sensitive to variability and noise in key life stages. In par-
ticular, we find that the demonstration of half-generation cycles in
the single-species model and the multigeneration cycles in the host-
parasitoid model are sensitive to the introduction of developmental
variability and noise, whereas generation cycles are robust to the
intrinsic variability and uncertainty that may be found in nature.

Keywords: demographic noise, distributed maturation periods,
integro-differential equations, Plodia-Venturia, generation cycles,
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Variability and uncertainty are ubiquitous in nature, yet
many models designed to explore ecological dynamics re-
main largely rigid and deterministic. In part, this is due
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to the insights offered by analytical approaches, which are
often tractable when investigating relatively simple models.
The popularity of deterministic models may also be due
to the widely held assumption that when population num-
bers are considered to be sufficiently large, demographic
stochasticity can be ignored (Beverton and Holt 1956)
because the fluctuations in population numbers intro-
duced by demographic noise scale inversely with popu-
lation size (May 1973). However, a recent body of work
shows that incorporating stochasticity into a broad spec-
trum of models can have important dynamical conse-
quences (Higgins et al. 1997; Henson et al. 1998; Bjørnstad
and Grenfell 2001; Coulson et al. 2001; Rohani et al. 2002;
Turchin 2003) as well as strongly influence population
persistence (Wilson and Hassell 1997; Donalson and Nis-
bet 1999; Rosà et al. 2003). For example, in contrast to
conventional wisdom, decaying oscillations in a deter-
ministic model can be sustained in the presence of dem-
ographic noise, even for large population numbers (Bart-
lett 1960; Aparicio and Solari 2001). Clearly, establishing
how and under what circumstances stochasticity can affect
the conclusions drawn by purely deterministic models is
essential if we are to use models to adequately examine
empirical data and develop a sound understanding of pat-
terns and processes in population ecology.

Age- and stage-structured population models are a par-
ticularly rich source of interesting dynamical behavior and
have led to important insights into single-species popu-
lation dynamics as well as those of host-pathogen and
predator-prey interactions (Briggs and Godfray 1995;
Murdoch et al. 1997; Bonsall and Eber 2001; Caswell 2001).
A variety of formalisms have been used to model age-
structured populations, but almost all of these approaches
are characterized by the assumption that aging is a syn-
chronous process; that is, individuals born at the same
time mature at the same rate (McKendrick 1926; von
Foerster 1959), even in a periodic environment (Oster and
Takahashi 1974). Often the assumption is much stronger:
aging is uniform (i.e., every individual matures at the same
rate), which is generally the case for the lumped age- and
stage-structured frameworks (Leslie 1945; Gurney et al.
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1983). We suspect that the introduction of variability and
uncertainty into population age or stage structure may
play a key role in determining population dynamics. Ev-
idence for this comes from recent work on disease models,
which has explored the effects of variation in host sus-
ceptibility (Dwyer et al. 1997) and infectious period (Lloyd
2001; Keeling and Grenfell 2002) and shown them to have
important dynamical consequences. Furthermore, the
study of individual-based, size-structured models has dem-
onstrated that variability in individual life histories can
lead to population-level effects (De Roos and Persson
2001). Surprisingly, few other population-level models
have considered that an individual’s rate of development,
or the period of time an individual spends in a particular
stage, is described by a distribution of values (Blythe et
al. 1984; Plant and Wilson 1986; Briggs et al. 1993; Pfister
and Stevens 2003).

In this article we consider the effects of developmental
variability and demographic stochasticity on the dynamics
of a host-parasitoid model. The model was initially de-
veloped to investigate the laboratory population dynamics
of the Indian meal moth Plodia interpunctella (henceforth
Plodia) and its ichneumonid parasitoid Venturia canescens
(henceforth Venturia). We therefore begin by introducing
our study system and summarizing previous modeling
work that assumed that individuals mature in a uniform
manner. We then present experimental data to motivate
why we should be interested in incorporating develop-
mental variability into our modeling approaches. However,
our aim is not solely to consider the effects of variability
and uncertainty on a specific system. The Plodia-Venturia
interaction has a number of regulatory mechanisms that
are common to many host-parasitoid interactions: com-
petition for resources, cannibalism, and parasitism of the
larval stages. Furthermore, the model exhibits a range of
cyclic dynamics that are characteristic of stage-structured
host-parasitoid models in general: host generation cycles,
half-generation cycles, and multigeneration consumer-
resource cycles. It is this last property that is essential to
the core of our article: we would like to understand the
sensitivity of certain types of host-parasitoid dynamics to
the sequential introduction of variability in maturation
times and demographic stochasticity.

Our approach is to take parameter values from repre-
sentative examples of the dynamics of the original model
that assumes fixed developmental times and investigate
how the dynamical outcomes are qualitatively altered as
we manipulate the degree of variability in each develop-
mental stage, both in the presence and absence of dem-
ographic noise. Simultaneously, we explore the implica-
tions of these results for the study of our specific laboratory
populations by relating them to variability estimates from
experimental data. We are, in fact, comparing the out-

comes of three model formulations: the original deter-
ministic fixed-delay model (FDM; development times are
fixed); the deterministic distributed-delay model (DDM;
development times are distributed, but the proportion of
individuals taking a particular time to develop is always
the same); and the stochastic distributed-delay model
(SDDM; on average, fecundity, development, and mor-
tality processes are the same as the DDM, but they are
discrete probabilistic events giving rise to integer-
valued populations).

Using these comparisons, we show that predictions from
the traditional FDM are differentially sensitive to varia-
bility and noise in key life stages. Specifically, we find that
the demonstration of half-generation cycles in the single-
species model and the multigeneration cycles in the host-
parasitoid model are sensitive to the introduction of de-
velopmental variability and noise, whereas generation
cycles are robust to the intrinsic variability and uncertainty
that may be found in nature. We discuss phenomena as-
sociated with the interplay of developmental variability,
stochasticity, and nonlinearity as well as with the repre-
sentation of populations as integer entities.

Variability in Insect Development Times

Like many insect species, our study organism, Plodia, has
a life cycle composed of distinct developmental stages: egg,
larva (five instars), pupa, and adult. Its parasitoid natural
enemy, Venturia, has a juvenile stage spent entirely within
the host and an adult stage that preferentially attacks late
instar larvae (Sait et al. 1997). Regardless of the instar
attacked, Venturia’s own development is delayed until the
host starts to pupate (Harvey et al. 1994). Published time
series data characteristically exhibit host generation cycles
(∼42 days) in both the host-alone and host-parasitoid sys-
tems (Begon et al. 1995). Evidence from a number of
empirical and modeling studies suggests that both asym-
metrical larval competition (whereby small larvae are more
susceptible to competition than large larvae and exert
weaker competitive effects) and larval egg cannibalism are
driving the Plodia dynamics (Richards and Thomson 1932;
Bjørnstad et al. 1998; Reed 1998; Briggs et al. 2000) and
that Venturia’s interaction reinforces these dynamics
(Bjørnstad et al. 2001; Wearing et al. 2004).

This system has been modeled previously by Briggs et
al. 2000 (Plodia alone), Wearing et al. 2004 (Plodia-
Venturia), and Sait et al. 2000 (three-species interaction
with Plodia’s granulovirus) using a delay-differential equa-
tion approach. (For the mathematical details of the Plodia-
Venturia model, see app. B.) In addition, Bjørnstad and
colleagues have adopted a statistical time-series approach,
which takes into account the demographic noise present
in the data (Bjørnstad et al. 1998, 2001). Both of these
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Figure 1: Histograms showing the distribution of maturation times for the egg, small larval (instars 1–3), large larval (instars 4–5), and pupal stages
of Plodia. We divide the larval stages into two groups, as this reflects the dominant intra- and interspecific interactions with natural enemies in this
system (see also Bjørnstad et al. 1998, 2001; Briggs et al. 2000). The solid curves show the best-fit gamma distribution using maximum likelihood
techniques. The two far-right panels illustrate the probability density function, (top panels) and the corresponding profilesn�1 �t/a nf(t) p t e /a (n � 1)!
of the probability of maturing out of the class at time t (in the absence of mortality) given that an individual entered at (bottom panels). Ast p 0
n increases ( ), the profile sharpens and approaches a step function, which is that represented by the fixed-delay models.a p 13.3/n

approaches assume a fixed stage duration even though it
is known that individual maturation times in insect pop-
ulations are variable and are often dependent on resource
availability and quality (e.g., Benson 1973; Daumal and
Pintureau 1985; Gordon and Stewart 1988; Johnson et al.
1992; Lane and Mills 2003). Furthermore, the mechanism
by which half-generation and generation cycles propagate
through the host population is dependent on the length
of time during which the strongest competitive effects oc-
cur. For example, in the host-alone model with only asym-
metric larval competition and no egg cannibalism, the
strongest competitive effects, that is, the effect of large

larvae on small larvae, occur for a relatively short period.
This allows two cohorts to propagate through the popu-
lation every generation, giving rise to half-generation cy-
cles (Briggs et al. 2000). We might predict that increased
variability in the large larval stage would sufficiently pro-
long the period of competition to suppress one of the
cycles.

From our own laboratory experiments, based on on-
going population studies of Plodia and its natural enemies
(Rohani et al. 2003; Wearing et al. 2004), we illustrate the
distribution of maturation times for the egg, small larval,
large larval, and pupal stages of Plodia (fig. 1; S. M. Sait,
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unpublished data). Each histogram is characterized by a
prominent mode within a left-hand skewed distribution.
To link the data to our model, we fit a gamma distribution
using maximum likelihood techniques. The choice of a
gamma distribution is partly governed by the ease with
which we can incorporate developmental variability into
our modeling framework but also by the natural inter-
pretation of one of the distribution’s parameters, n. Spe-
cifically, n controls the shape of the gamma distribution
(see the far-right panels of fig. 1): when , we obtainn p 1
an exponential distribution; intermediate values give
broadly bell-shaped distributions, and as , then r �
gamma approaches a single peak (a delta distribution).
The two extremes are equivalent to assuming that indi-
viduals mature out of a stage either at a fixed rate or after
a fixed period (the fixed-delay formalism). For compari-
son, we also fit a normal distribution to each data set (see
app. A for further details).

Incorporating Variability into a
Stage-Structured Model

The most general way of incorporating variability in stage
duration into the delay-differential equation models is to
introduce a distributed delay. (For a review of methods
applied to age-structured models—the McKendrick equa-
tion and Leslie matrices—see Plant and Wilson 1986.) The
easiest way to illustrate this formalism is by example: let
us consider the equation that describes the rate of change
of the small larval class, ,L (t)1

recruitment mortality maturation= = =dL1 p R (t) � f(L (t), L (t), P (t))L (t) � M (t) (1)L1 1 2 A 1 L1dt

(where L2(t) denotes large larval density and PA(t) denotes
adult parasitoid density), and focus on the rate of mat-
uration out of this class. When the maturation time is a
single fixed value, this term is just ,R (t � t )m(t, t )L1 L1 L1

where is the period spent as a small larva and m denotestL1

the through-stage survival probability (m p exp [�
). If we allow the maturation time to be drawnt f(x)dx]∫t�tL1

from a distribution, then

�

M (t) p K(s)R (t � s)m(t, s)ds, (2)L1 � L1
0

resulting in an integro-differential equation where K(s)
specifies the distribution of maturation times (Blythe et
al. 1984). In theory, we could take the function directlyK(s)
from the data so that the integral becomes a discrete sum,
and we obtain a delay-differential equation with consid-

erably more delays than in the fixed-delay case (one for
each bin of the distribution). However, if we wish to con-
struct a general formulation that allows us to manipulate
the degree of variability, then we assume that is aK(s)
continuous distribution that captures the qualitative fea-
tures of the data. When we want to incorporate a specific
data set, we fit the distribution to those data. If isK(s)
assumed to be a gamma distribution with the following
notation,

n n�1 �rsr s e
K(s) p , n ≥ 1, r 1 0, (3)

(n � 1)!

then we can use a property known as the linear chain trick
(MacDonald 1978) to rewrite the integro-differential equa-
tion as a series of n coupled ordinary differential equations:

1dL1 1 1p R (t) � f(L , L , P )L � rL ,L1 1 2 A 1 1dt

2dL1 1 2 2p rL � f(L , L , P )L � rL ,1 1 2 A 1 1dt

_
ndL1 n�1 n np rL � f(L , L , P )L � rL . (4)1 1 2 A 1 1dt

The sum of these equations is equal to 1, specified by 2
and 3. If we fix the average time spent in a particular stage,
say t, then the parameter n determines the relative vari-
ation of the distribution (coefficient of variation

) and the value of r ( ). Thus, changing�[CV] p 1/ n p n/t
n gives us a simple way of manipulating the variance of
maturation times while keeping the average maturation
time constant.

Under the assumption of a gamma distribution, we in-
vestigate how different degrees of variability affect the cy-
clic behavior in the host-alone and host-parasitoid systems
by contrasting the DDMs with their FDM counterparts.
In the host-alone FDM with asymmetric larval competi-
tion (large larvae exert a strong competitive pressure on
small larvae), the dynamical behavior shifts from half-
generation cycles to a stable equilibrium to generation
cycles as the strength of egg cannibalism increases (Briggs
et al. 2000). The level of egg cannibalism that occurs in
the laboratory populations is an unknown quantity, so it
is varied in the models to explore consistency with time
series data. We choose two values of the egg cannibalism
parameter (cE2) away from bifurcation points: one that
results in generation cycles and the other in half-genera-
tion cycles. For each value, we systematically alter the var-
iance in the duration of each stage (the average time spent
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Figure 2: Sensitivity of host-alone and host-parasitoid model dynamics to variation in maturation times. In A, we display the amplitude of the
long-term dynamics of the distributed-delay model as a fraction of the amplitude of the fixed-delay model (FDM) dynamics as we vary n, the
degree of variability, for different stages of the host-alone model, when (i) the FDM generates generation cycles, and (ii) the FDM generates half-
generation cycles. Zero amplitude indicates a stable equilibrium. Cycle periods are not shown because they scale with the average generation length
in the same manner as in the FDM. In B, we record the critical value of required to obtain the qualitative dynamics of the FDM for different�n
stages of the host-parasitoid model. The parameter cE2 represents the strength of egg cannibalism by large larvae. HE, HL1, HL2, HP, and HA corresponds
respectively to the host stages: egg, small larval, large larval, pupal, and adult. Similarly, PL and PA correspond respectively to the parasitoid juvenile
and adult stages. (For a color version of this figure, see the online edition of the American Naturalist.)

in a stage is fixed) to investigate the stage-specific sensi-
tivity of dynamics to variation.

In figure 2A, we show the amplitude of the DDM long-
term dynamics as a fraction of the amplitude of the cor-
responding FDM dynamics with increasing n (decreasing
variability). When the FDM exhibits generation cycles (fig.
2A(i)) it is clear that, unless variation is very high (n is
small) and in all stages, the DDM produces the same cyclic

dynamics as the FDM with a similar amplitude. In con-
trast, half-generation cycles (fig. 2A(ii)) are much more
sensitive to variation; even with low variability, the am-
plitude of these cycles is much smaller than in the FDM.
This is particularly the case when there is variability in
either of the two larval classes (denoted by HL1 and HL2).

In the host-parasitoid model, for fixed levels of para-
sitism, the FDM dynamics shift from multigeneration to
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generation cycles as the level of egg cannibalism increases.
The addition of variability in maturation times increases
the prevalence of multigeneration cycles. Therefore, to in-
vestigate the relative effects of variation in different stages,
we choose two values of the egg cannibalism parameter
( ) that give rise to generation cycles: one close to thec E2

bifurcation point in the FDM and the other away from it.
In figure 2B we record the critical value of required to�n
obtain the qualitative dynamics of the FDM (i.e., gener-
ation cycles). The size of this value tells us the relative
amount of variation ( ) in development rates that can�1/ n
be tolerated by the DDM before its dynamics differ qual-
itatively from those generated by the FDM. For the larger
value of egg cannibalism (fig. 2B(ii)), we can introduce a
substantial amount of variation into the DDM and still
obtain the same dynamics as the FDM. As we decrease
this parameter (e.g., fig. 2B(ii)), even small amounts of
variation in the host larval and parasitoid juvenile stages
give rise to multigeneration rather than generation cycles.

Thus far, we have shown that variability in host mat-
uration times decreases the amplitude of cyclic behavior
in the host-alone model and promotes multigeneration
cycles in the host-parasitoid model. If we now take the
level of variation from the data in figure 1, we can compare
the FDM and DDM outcomes of the four cases investi-
gated in figure 2 for our specific laboratory Plodia-Venturia
system. The time series are shown in figure 3. In the host-
alone cases (fig. 3a), the dynamics of the DDM are qual-
itatively the same as those of the FDM. However, the pe-
riod and amplitude of generation cycles are slightly shorter
(fig. 3a(i)) and the amplitude of half-generation cycles is
severely reduced (fig. 3a(ii)). The cyclic dynamics pre-
dicted by the FDM are sustained because Plodia exhibits
the least variability in one of the most sensitive stages—
the small larval class. In the host-parasitoid simulations,
we observe generation cycles for the robust case (fig. 3b(i)),
that is, where a large amount of variation in most stages
still gives rise to generation cycles and multigeneration
cycles for the more sensitive one (fig. 3b(ii)). This is to
be expected, because we know from inspection of the lower
panel of figure 2B that the variation in the large larval
class alone ( ) is enough to qualitatively change the�n ! 8
dynamics. Note that even when the host-parasitoid system
exhibits generation cycles in the DDM, cycle amplitudes
are considerably reduced. The time series illustrated in
figure 3a(i) and figure 3b(i) (where the strength of egg
cannibalism is given by ) are the most con-c p 0.0016E2

sistent with published data (Begon et al. 1995).

Introducing Demographic Stochasticity

In the last section, we briefly explored the consequences
of variability in development times and showed how some

dynamical patterns are more sensitive than others. Here,
we turn our attention to the consequences of allowing
recruitment, mortality, and maturation to be stochastic
processes; that is, we allow for random variation in the
fate of individuals (demographic stochasticity). This means
that, on average, probabilities determining reproduction
and mortality are identical or, in the case of development
times, drawn from an identical distribution, but chance
events result in each individual realizing different fates.
With the inclusion of demographic stochasticity, do we
still see the persistence of these cyclic behaviors?

Creating a stochastic analogue of the DDM is straight-
forward if we assume that maturation times are described
by a gamma distribution and use the ordinary differential
equation formulation given by equation (4). A method
developed by Gillespie (1977) provides an exact way of
converting a set of ordinary differential equations into a
Markov chain: the rates of the deterministic differential
equation model are reinterpreted to give the probability
of individuals reproducing, dying, or moving between clas-
ses in a given time interval. Specifically, we use Gillespie’s
direct method, which determines iteratively the time to
the next event and the type of event that occurs next
(further details are given in app. C in the online edition
of the American Naturalist). The original algorithm is not
computationally efficient for a large number of events (N),
but if this is due to individuals passing through many states
(as we have here), we can use an efficient modification by
Gibson and Bruck (2000). With their method, the number
of calculations per time step scales with rather thanlog (N)
N.

Host Alone

Introducing demographic stochasticity into the Plodia-
alone model (with distributed maturation times taken
from the laboratory data in fig. 1) shows no significant
difference from the deterministic equivalent (the DDM).
This is most likely due to large population numbers, which
average out the effects of demographic stochasticity, and
it explains why laboratory populations of Plodia exhibit
consistent dynamics in replicate experiments (Sait et al.
1994b; Begon et al. 1995; Bjørnstad et al. 1998). However,
experimental host population dynamics are strongly in-
fluenced by resource quality, with patterns ranging from
high-amplitude cycles on high-quality diets to damped
oscillations on poor diets (e.g., Sait et al. 1994b; Knell et
al. 1998; McVean et al. 2002). Here we can use the model
to test whether the dynamics of populations under stress
from increased competition on poorer resources are more
susceptible to the effects of demographic noise. In the
Plodia-alone model, it is possible to increase the overall
strength of larval competition so that equilibrium values
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Figure 3: Comparison of Plodia-Venturia fixed-delay model (FDM; light gray) and distributed-delay model (dark gray) dynamics. The time series
show adult host profiles from simulations with the model parameters used in figure 2 and average stage duration and stage variation from data
shown in figure 1. The time series in a(i) and a(ii) illustrate host-alone dynamics for parameter values giving rise to generation cycles and half-
generation cycles, respectively, in the FDM. The time series in b(i) and b(ii) illustrate host-parasitoid dynamics for parameter values giving rise to
generation cycles in the FDM; adult parasitoids are introduced after 200 days. Parameter values for the gamma distributions are taken from the fits
given in table A1 in appendix A (n is rounded to the nearest integer); all other stages are assumed to have (small variation).n p 150

are smaller but stability and cyclic behavior remain un-
affected. Under these circumstances, when persistence is
still possible, the stochastic model often produces cyclic
behavior with a dominant period around one generation
while the deterministic analogue exhibits half-generation
cycles (fig. 4B). Moreover, as figure 4A illustrates, this
phenomenon occurs more frequently for larger values of
n, when there is least variation in stage development.

Host with Parasitoid

For the host-parasitoid model, introducing stochasticity
has dramatic consequences both in terms of host-para-

sitoid coexistence and in the pattern of dynamics observed.
Multigeneration cycles such as those seen in figure 3b(ii)
are inhibited, giving rise to either system (both host and
parasitoid) or parasitoid extinction. Figure 5 shows the
proportion of different outcomes from 50 replicate sim-
ulations for increasing levels of egg cannibalism. The de-
terministic system exhibits multigeneration cycles for

and and host generation cycles forc p 0 c p 0.0008E2 E2

. It is apparent that generation cycles are ro-c p 0.0016E2

bust to the addition of demographic stochasticity, but mul-
tigeneration cycles give way to several possibilities. For no
egg cannibalism, about 25% of simulations result in system
extinction and the rest in parasitoid extinction. These



Figure 4: A, Dominant period from spectral analysis of realizations of the stochastic host-alone model with competition coefficient .c p 0.00411

For , the deterministic analogue generates half-generation cycles (HGCs), whereas the majority of stochastic realizations have a dominant�n 1 8
period closer to the average generation length (GCs). In each case, results are from 50 stochastic realizations. B, Deterministic simulation (dashed
line) and a typical stochastic realization (solid line) of the host-alone model analyzed in A with variation in each stage specified by . The�n p 12
lower panels show the spectral analysis of the deterministic and stochastic time series displayed in the top panel. The data are normalized before
spectral analysis to allow direct comparison between any periodic signatures. The deterministic dynamics are clearly HGCs (around 20 days), whereas
the stochastic realization exhibits a dominant period of a full generation.
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Figure 5: Introducing demographic stochasticity to the host-parasitoid
model results in dynamical outcomes not predicted by the deterministic
model. For 50 stochastic realizations, each run for a maximum of 2,000
days, the proportion of extinctions and existence behaviors is shown. In
the deterministic analogues, the models exhibit multigeneration cycles
for and and generation cycles for .c p 0 c p 0.0008 c p 0.0016E2 E2 E2

probabilities decrease as egg cannibalism is increased, per-
haps because this coincides with a reduction in the period
of multigeneration cycles; hence, the duration of the
“trough” is shortened. We should remark that time to
extinction may be longer than experimental time series,
so the probability of persistence on a laboratory time scale
could be higher, on average, than is shown in figure 5. We
also note that for , the deterministic host-c p 0.0008E2

alone model is stable, but there are significant periodic
signatures in the stochastic simulations.

These results demonstrate that multigeneration cycles
are extremely fragile in the presence of demographic sto-
chasticity in our host-parasitoid model. In the determin-
istic system, these cycles show extensive periods with very
low densities so that when population sizes are discrete,
extinction is likely (atto fox phenomenon [Mollison
1991]). Is this still the case with multigeneration cycles
whose population troughs are not so deep? As shown by
Wearing et al. (2004), the Plodia-Venturia model can ex-

hibit multigeneration cycles where minimum densities are
not drastically low for extended periods of time. This is
in the absence of egg cannibalism but with heightened
competition from large larvae on all larvae. In figure 6,
we alter the model parameters so that the deterministic
system exhibits these smaller amplitude cycles and sim-
ulate the stochastic analogue. As in figure 5, some sto-
chastic realizations still result in extinctions, but coexis-
tence of host and parasitoid exhibiting multigeneration
cycles is now possible.

Discussion

Our analyses indicate that the interaction between devel-
opmental variability and demographic stochasticity can
have important qualitative and quantitative consequences
for host-parasitoid population dynamics. We are led to
speculate that certain population dynamics are more likely
to be widespread in nature than others because they are
more robust to variability and uncertainty. In particular,
the addition of variability and stochasticity rarely inhibits
generation cycles (the dynamics most often observed in
the Plodia-Venturia populations [Begon et al. 1995]),
whereas half- and multigeneration cycles are often sensitive
to their presence. The manner in which this occurs may
depend on both variability in maturation times and dem-
ographic noise. Indeed, the prevalence of multigeneration
cycles in the host-parasitoid model increases with greater
variability, but the addition of demographic stochasticity
leads to extinctions or different coexistence dynamics. In
the host-alone model, greater variability reduces the like-
lihood of half-generation cycles and shortens transient os-
cillations while the introduction of noise sustains this pe-
riodic signal.

With reference to our specific study system of Plodia-
Venturia, the variability exhibited by Plodia is not sufficient
to substantially change the qualitative predictions of the
FDM. However, there are subtle changes in amplitude and
period that could be important when we are using these
dynamical measures to compare model outcome and data,
especially with the aim of directly inferring mechanism.
What is particularly interesting about Plodia development
is that one of the stages most sensitive to variability (small
larval) displays the least amount of variability. In the host-
alone model, with all other stages having a small coefficient
of variation, the egg and pupal stages can show a sub-
stantial amount of variability, more than twice the coef-
ficient of variation, without the qualitative results being
affected. In contrast, each larval stage is almost as sensitive
to variability as are all stages combined, which is most
likely due to the importance of larval competition in driv-
ing the host dynamics. Resource availability and quality
are known to directly impact developmental rates in large



552 The American Naturalist

Figure 6: Outcome of stochastic realizations of the deterministic host-parasitoid model that produces multigeneration cycles with narrower troughs
than in figure 5 (top right panel). Extinction still occurs, but coexistence via multigeneration cycles is now a possibility (bottom right panel). Adult
parasitoids are introduced after a period of 200 days. The egg cannibalism parameter , and the ratio of larval competitive effects .c p 0 x p 40E2

See appendix B for further explanation.

Plodia larvae (Reed 1998; S. M. Sait, unpublished data).
Recent work by Pfister and Peacor (2003) has also sug-
gested that population density can impact temporal cor-
relations in the growth of individuals via changes in re-
source heterogeneity. Hence, one area of further work is
to explore the consequences of density-dependent devel-
opmental variability.

When should stage-structured models incorporate var-
iability in maturation times? Previous work on a model
with a single developmental stage found that as long as
the maturation times are not broadly distributed (the co-
efficient of variation is sufficiently small), the FDM ade-

quately captures the dynamics of the DDM (Blythe et al.
1984). We have shown that when there is a series of de-
velopmental stages, differential sensitivity to variability can
lead to novel predictions. Determining the stage that is
the most dynamically sensitive is key. In our host-para-
sitoid model, developmental variability in the large larval
stage, which is preferentially attacked by the parasitoid,
has profound consequences for the patterns of abundance
of the host and parasitoid. Crucially, in the presence of
demographic noise, both parasitoid and system extinction
seem more likely than coexistence as developmental var-
iability increases. Any stochastic shift in host demographic
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profile, perhaps as a result of host resource limitation or
environmental changes, might be predicted to have a sim-
ilar impact on the predator dynamics in tightly coupled
predator-prey interactions where developmental syn-
chrony is necessary for persistence (e.g., Godfray et al.
1994).

The introduction of demographic noise to our deter-
ministic models results in two different phenomena: it
results in qualitatively different dynamics to those ob-
served in the deterministic system, and it introduces the
possibility of population extinctions. The reasons for these
phenomena may not be entirely due to uncertainty per se.
Extinction is possible in part because the stochastic for-
mulation allows the populations to be described as integer-
valued variables. Indeed, extinctions occur predominantly
when the deterministic system exhibits multigeneration
cycles in which population densities are extremely low for
extensive periods of time. The persistence of generation
cycles rather than multigeneration cycles in the host-
parasitoid system may be attributed to the presence of
multiple stable attractors in the deterministic system (this
has been shown in the FDM [Wearing et al. 2004]),
whereby the addition of noise perturbs the system from
one basin of attraction into another. However, the results
from the host-alone model with small population num-
bers, in which the introduction of demographic stochas-
ticity resulted in generation cycles rather than the half-
generation cycles of the deterministic analogue, are less
easy to explain; there are no multiple attractors in the host-
alone model. There may well be an interesting interaction
between integer-valued populations and stochasticity, but
disentangling the effects of a discrete-valued population

from stochasticity is not straightforward. A growing body
of research has been looking at so-called lattice effects of
discrete-state variables in discrete-time systems (Henson
et al. 2001, 2003). Developing similar models to investigate
discrete-state continuous-time populations may bring
greater understanding to the results of stochastic realiza-
tions of the models presented in this article.
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APPENDIX A

Distribution Fits to Maturation Data

Table A1 lists the maximum likelihood estimates (along
with 99% confidence intervals) for both gamma and nor-
mal distribution fits to the data shown in figure 1. If we
examine the coefficient of variation (CV) for each stage,
it is clear that the egg and pupal stages are subject to most
variation, whereas the small larval stage has the least. Table
A1 also gives the Kolmogorov-Smirnov coefficient, which
is a measure of how far the cumulative distribution of the
fitted distribution deviates from that of the data. None of
the fits do well in this test, especially for the egg stage, but
this is not surprising given the size of the discrete bins in
the data. In general, the gamma distribution does slightly
better because the data are skewed to the lower values for
most of the stages.

Table A1: Maximum likelihood estimates of parameters for the gamma and normal distributions
when fit to the data shown in figure 1

Developmental stage

Gamma distribution fit Normal distribution fit

n a CV ( )�1/ n m j CV ( )j/m

Egg 36.8
(26.0, 47.6)

.116
(.0841, .147)

.165
K-S .4071

4.25
(4.07, 4.43)

.745
(.636, .894)

.175
K-S .4073

Small larval (instars 1–3) 103
(62.6, 143)

.130
(.0806, .178)

.0985
K-S .2227

13.3
(12.9, 13.7)

1.35
(1.13, 1.67)

.102
K-S .2059

Large larval (instars 4–5) 57.9
(38.7, 77.1)

.211
(.147, .276)

.131
K-S .2440

12.2
(11.7, 12.7)

1.72
(1.43, 2.15)

.141
K-S .2536

Pupal 54.7
(35.9, 73.5)

.148
(.0946, .202)

.135
K-S .2132

8.10
(7.78, 8.42)

1.07
(.885, 1.34)

.132
K-S .2334

Note: Confidence intervals (99%) are given in parentheses. The coefficient of variation (CV) is calculated for each

distribution to compare the relative variation between each stage. The normal distribution fit gives the sample mean

( ) and variance ( ). K-S represents the Kolmogorov-Smirnov coefficient, the maximum deviation of the cumulative2m j

fitted distribution from the cumulative distribution of the data. Gamma pdf: . Normal PDF:n�1 �x/a nf(x) p x e /a (n � 1)!

.2 2�f(x) p (1/j 2p)exp [�(x � m) /2j ]
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APPENDIX B

Host-Parasitoid FDM Equations and Parameters

Host-Parasitoid Fixed-Delay Model

This is the host-parasitoid model without a delay in the development of the parasitoid, formulated and investigated
by Wearing et al. (2004). (The host-alone model [Briggs et al. 2000] is obtained by setting the adult parasitoid variable
to 0 in the host equations.) The regulation of each stage in the life cycle of the host or parasitoid can be divided into
three components: recruitment, mortality (both density-independent and density-dependent), and maturation. If there
is density-dependent mortality from competition, cannibalism, or parasitism, then the through-stage survival is an
integral equation. As is common practice when solving delay-differential equations, we then take the survival probability
to be a variable and solve for the derivative of the integral equation at the same time as the other equations.

Host Equations. For the host population, we only need to solve explicitly for eggs, , small larvae, , largeH (t) H (t)E L1

larvae, , and adults, . The delay-differential equations describing these stages are:H (t) H (t)L2 A

recruitment cannibalism by large larvae background death rate maturation= = = =dH (t)E p R (t) � ( c H (t) � d )H (t) � M (t) , (B1)E E2 L2 E E Edt

parasitism competition from small larvae competition from large larvae= = =dH (t)L1 p R (t) � (P (P (t)) � c H (t) � c H (t) � d )H (t) � M (t), (B2)L1 f1 A 11 L1 12 L2 L1 L1 L1dt

dH (t)L2 p R (t) � (P (P (t)) � c H (t) � c H (t) � d )H (t) � M (t), (B3)L2 f2 A 21 L1 22 L2 L2 L2 L2dt

dH (t)A p R (t) � d H (t) � M (t), (B4)A A A Adt

where the recruitment rates, Ri(t), and maturation rates, Mi(t), are given by

R (t) p rH (t),E A

M (t) p R (t � t )j S (t), (B5)E E E E HE

R (t) p M (t),L1 E

M (t) p R (t � t )j S (t), (B6)L1 L1 L1 L1 HL1

R (t) p M (t),L2 L1

M (t) p R (t � t )j S (t), (B7)L2 L2 L2 L2 HL2

R (t) p M (t � t )j � I (t),A L2 P P HA

M (t) p R (t � t )j , (B8)A A A A

, and the time-dependent survival probabilities arej p exp (�d t)i i i
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t

S (t) p exp �c H (x)dx , (B9)HE � E2 L2( )
t �tE

t

S (t) p exp �[c H (x) � c H (x) � P (P (x))]dx , (B10)HL1 � 11 L1 12 L2 f1 A( )
t �tL1

t

S (t) p exp �[c H (x) � c H (x) � P (P (x))]dx . (B11)HL2 � 21 L1 22 L2 f2 A( )
t �tL2

The probabilities are evaluated by differentiating equations (B9)–(B11) with respect to t and solving the resulting
delay-differential equations with those for the other variables. For example, from equation (B9) we obtain

dS (t)HE p �c [H (t) � H (t � t )]S (t). (B12)E2 L2 L2 E HEdt

The inoculation of adult hosts, IHA(t), is defined as a constant iHA over the time interval and 0 elsewhere.(0, 1]

Parasitoid Equations. For the parasitoid population, we only need to solve explicitly for adults, PA(t):

dP (t)A p R (t) � d P (t) � M (t), (B13)PA PA A PAdt

where

R (t) p P [P (t � t )]H (t � t )j � P [P (t � t )]H (t � t )j � I (t), (B14)PA f1 A PL L1 PL PL f2 A PL L2 PL PL PA

M (t) p R (t � t )j . (B15)PA PA PA PA

The parasitism function is defined as

a Pi AP (P ) p k ln 1 � , i p 1, 2. (B16)fi A ( )k

The inoculation of adult parasitoids, IPA(t), is defined as a constant iPA over the time interval and(i start, i start � 1]PA PA

0 elsewhere.

Parameter Values. Tables B1 and B2 list the parameter values used in the simulations, unless otherwise specified in the
main text.

Table B1: Host parameters

Host parameter Description Value

tE Duration (in days) of egg stage 4.3a

tL1 Duration (in days) of early larval stage 13.3a

tL2 Duration (in days) of late larval stage 12.2a

tP Duration (in days) of pupal stage 8.1a

tA Duration (in days) of adult stage 5.5b

r Daily adult fecundity (female eggs) 21b

dE Background mortality of eggs .017b

dL1 Background mortality of early larvae 0b
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Table B1 (Continued)

Host parameter Description Value

dL2 Background mortality of late larvae 0b

dP Background mortality of pupae 0b

dA Background mortality of adults .1
cE2 Rate of egg cannibalism by late larvae Varied (see main text)

c11 Mortality of HL1 from competition by HL1 .00004
c12 Mortality of HL1 from competition by HL2 x # c11

c21 Mortality of HL2 from competition by HL1 1/w # c11

c22 Mortality of HL2 from competition by HL2 x/w # c11

x Ratio of competitive effects 20
w Ratio of competitive sensitivities 10
iHA Inoculation of adults 2

a Data from table A1.
b Data from Sait et al. 1994a.

Table B2: Parasitoid parameters

Parasitoid parameter Description Value

tPL Duration (in days) of juvenile stage 20a

tPA Duration (in days) of adult stage 2a

dPL Background mortality of juveniles .1
dPA Background mortality of adults .1
a1 Attack rate on early larvae .005
a2 Attack rate on late larvae .025
k Interference parameter 1
iPA Inoculation of adults 2
iPAstart Timing of inoculation of adults 200

a Data from Harvey et al. 1994.
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