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Abstract. Despite the effectiveness of vaccines in dramatically decreasing the number of
new infectious cases and severity of illnesses, imperfect vaccines may not completely pre-
vent infection. This is because the immunity afforded by these vaccines is not complete
and may wane with time, leading to resurgence and epidemic outbreaks notwithstanding
high levels of primary vaccination. To prevent an endemic spread of disease, and achieve
eradication, several countries have introduced booster vaccination programs. The question
of whether this strategy could eventually provide the conditions for global eradication is
addressed here by developing a seasonally-forced mathematical model. The analysis of the
model provides the threshold condition for disease control in terms of four major parameters:
coverage of the primary vaccine; efficacy of the vaccine; waning rate; and the rate of booster
administration. The results show that if the vaccine provides only temporary immunity, then
the infection typically cannot be eradicated by a single vaccination episode. Furthermore,
having a booster program does not necessarily guarantee the control of a disease, though the
level of epidemicity may be reduced. In addition, these findings strongly suggest that the
high coverage of primary vaccination remains crucial to the success of a booster strategy.
Simulations using estimated parameters for measles illustrate model predictions.

1. Introduction

Infectious diseases continue to be of substantial concern to health professionals,
with a major focus on vaccine administration. Since the pioneering work of Edward
Jenner on smallpox [12], the process of protecting individuals from infection by
immunization has become routine, with substantial historical success in reducing
both mortality and morbidity. In modern times, vaccination has had perhaps the
largest impact on the incidence and persistence of childhood infections such as
measles and whooping cough [13]. However, decreased immunization coverage
together with irregularities in the supply of vaccines, incomplete protection offered
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by low-efficacy vaccines, and the loss of vaccine-induced immunity, are known
to be major factors in the resurgence and epidemic outbreaks of some infectious
diseases [13,17,21,34].

One disease whose mortality and morbidity burden has been dramatically re-
duced following large-scale vaccination is measles [13]. Newborns are afforded
protection to measles through maternal antibodies, which may be effective for up
to one year after birth. Vaccination against measles is not recommended until these
antibodies have waned. It has been demonstrated that vaccine efficacy is substan-
tially higher in older infants with no maternal antibodies [23,31], hence current pol-
icy is to administer the MMR (measles-mumps-rubella) vaccine to infants between
their first and second birthdays. While it seems that measles is mostly controlled
in the US, Canada and other developed countries, it remains a major killer in the
developing world [13,34,46].

Although natural measles infection induces lifelong immunity [3,48], the
assumption that the measles vaccine also confers permanent protection has been
reconsidered following outbreaks among high school and university students in the
US in the 1980s; many of these students had been vaccinated 15–20 years prior
to infection [7,16]. Clinical studies have proposed several mechanisms for these
outbreaks, the most likely candidates being vaccine failure in some individuals and
the subsequent loss of immunity after vaccination [34,35,44]. Mossong et al. [34,
35] estimated the mean duration of vaccine-induced immunity to measles, in the
absence of re-exposure, to be 25 years. Additional cases of waning immunity in
vaccines that previously were thought to offer lifelong immunity have been reported
in many clinical studies (see, for instance, [17,47,50]).

Clearly, the high coverage of the single-dose measles vaccine has played a major
role in preventing the spread of measles infection [13]. However, several large mea-
sles outbreaks, such as those seen in the US during the 1980s, in Quebec in 1989
and in Ontario in 1991 and 1995 [38,48], have shown the limitations of the sin-
gle-dose vaccination program. A recent clinical study on measles vaccine efficacy
during an epidemic in Poland [22] shows that, despite high vaccination coverage
since the 1980s, a measles epidemic with 2255 reported cases occurred between
November 1997 and July 1998. In this epidemic, the age-group most affected was
15–19 year-olds who had received one dose of vaccine in their second year of life.
This study also reveals that the protection offered by the first-dose vaccine, started
in 1975, exceeded 90% and the protection induced by the second dose-vaccine
(booster), added in 1991 for children aged 7–9 years, exceeded 99%.

The failure to achieve eradication, even with the high coverage of a single-
dose vaccination program, has promoted many countries to introduce a booster [6,
10,13,18,38]. The results of this introduction have been impressive. For instance,
a two-dose MMR vaccination program was initiated in Finland in 1982, achiev-
ing coverage estimated to be 97–98%, and leading to the elimination of measles,
mumps and rubella from Finland [10]. In Canada, upon the recommendation of
the National Advisory Committee on Immunization (NACI), a two-dose measles
vaccination program was begun in 1992 [38]. A two-dose MMR vaccine, with a
coverage exceeding 90% was introduced in Sweden in 1982 [6]. In the US, a two-
dose schedule of MMR vaccine has been in effect since 1989 [18]. Based on the
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implications of administration of a two-dose vaccine, mostly in developed coun-
tries, the WHO recommends this strategy in order to achieve global eradication [13].
Hence, it is necessary to develop a framework that would predict the consequences
of the introduction of a booster vaccination program.

The goal of this study is to provide such a framework by developing a mathemat-
ical model for the transmission dynamics of some vaccine-preventable infectious
diseases, such as measles, mumps, and rubella, in the presence of a booster. Math-
ematical models have widely been used to investigate the impact of a single-dose
vaccination strategy on disease control [27,28,32,33]. These models have discussed
the effect of vaccination coverage, vaccine efficacy, and the waning rate of vaccines
applied in a single-dose. However, the literature on the consequences of booster vac-
cination for disease dynamics is rather scant. A few studies of mathematical models
with multiple-dose vaccines are available in the literature (see [37] and references
therein). For instance, Dietz [9] considered an age-structured model with constant
transmission rate to assess the impact of single and two-dose vaccination against
rubella. Katzmann and Dietz [24] obtained results for disease eradication in a model
with constant transmission rate, passive immunity in children with maternal anti-
bodies, and loss of vaccine induced immunity. Anderson and Grenfell [1] obtained
numerical results on the impact of multiple-dose vaccination against rubella. Paulo
et al. [37] showed, in a simple age-independent model with constant transmission
rate, that the high coverage of the primary vaccination remains crucial even with a
booster.

In the model presented here, it is assumed that the primary vaccine induces
a partial degree of protection which wanes with time. As motivated by clinical
studies, it is also assumed that the booster vaccine induces complete protection
conferring permanent immunity to the disease. In a booster vaccination program,
two classes of individuals may be considered: (i) the individuals who have received
the vaccine and whose immunity has not yet waned (and therefore belong to the
primary vaccinated class); (ii) the individuals who never received the vaccine or
in whom the immunity induced by primary vaccination has waned (and there-
fore belong to the fully susceptible class). In practice, it may not be feasible to
distinguish between these two classes in a booster program. Therefore, while the
second-dose of vaccine may be intended as booster, it may in effect function as
primary vaccine to susceptible individuals. On the individual level, due to the
uncertainty of having received a primary vaccine, a booster will raise the probabil-
ity of being covered by at least one dose of vaccine. On the population level, it has
the potential of raising vaccination coverage and increasing herd immunity. Hence,
it is considered to be an effective control strategy in preventing disease outbreaks
[13].

The organization of this paper is as follows. The model is developed in section 2.
Using Floquet theory, the threshold condition for disease eradication is determined
in section 3 and feasibility of eradication using a booster vaccine is discussed. In
section 4, the existence of a unique stable periodic solution under certain condi-
tions, is shown using perturbation theory. Simulation results are also presented to
illustrate the model predictions. The paper ends with a discussion section.
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Fig. 1. Transfer diagram of the model.

2. Model derivation

In order to derive the model equations, the total population (N ) is divided into four
classes: fully susceptible (S), primary vaccinated (Sv), infected (I ), and protected
individuals (V ). Here we shall detail the transitions between these four classes as
depicted in Figure 1.

The class S of susceptibles is increased either by birth or immigration at a rate
�. It is decreased by infection following contact with infected individuals at a
time-varying rate β(t), and diminished by natural death at a rate µ. Furthermore,
it is decreased by primary vaccination at a rate ξ , which is administered under a
booster program. This term naturally disappears in the absence of booster doses.
The model also assumes that the primary vaccination wanes with time, leading to
the migration of individuals from Sv to S at a rate δ [34,35,49].

The class Sv of primary vaccinated individuals is generated through adminis-
tration of the first-dose vaccine to the susceptible class S, either by vaccination of
a fraction p of recruited individuals or under a booster program. Since the primary
vaccine may not induce complete protection to the infection, the individuals of this
class might still become infected, but at a lower rate of infectiousness, (1−σ)β(t)I ,
than fully susceptible individuals, where σ is the degree of protection induced by
primary vaccination. This partial immunity may be due to the presence of maternal
antibodies which interfere with vaccine-induced seroconversion [8]. This leads to
a response with a lower level of antibody titres and reduces vaccine efficacy [41].
This response could not entirely be attributed to the presence of maternal antibod-
ies (at the time of vaccination), as in addition the vaccine may not be sufficiently
immunogenic in inducing adequate antibody response after a single dose [49]. Fur-
thermore, the primary vaccine may wane with time, and thus vaccinated individuals
gradually become fully susceptible to the disease again [34,35,49]. The class Sv is
decreased by administration of a booster vaccine (as a second dose) at a rate γ and
diminished by natural death.

The class I of infected individuals is generated through infection of fully sus-
ceptible and/or primary vaccinated individuals. This class is decreased by recovery
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from infection at a rate α and diminished by natural death. The model assumes that
both recovered and booster vaccinated individuals become permanently immune to
the disease. This generates a class V of individuals who have complete protection
to the disease.

Since periodically high levels of incidence have been observed for some child-
hood infections [11,26,42,43], the model considers a time-varying contact rate β(t)

between susceptible and infected individuals. Models of this type, also known as
seasonally-forced, are common in the literature and we recommend [2,25,26] for
general references. As popularly used in the literature, we assume that the seasonal
forcing is approximated by a sinusoidal function:

β(t) = β0[1 + β1 sin(ωt)], (1)

where β0 ≥ 0 is the baseline transmission parameter, 0 ≤ β1 ≤ 1 measures the
amplitude of the seasonal variation in transmission, and β(t) is a periodic function
of period T = 2π/ω. There are a few studies [5,11,26] which have taken the con-
tact rate to be governed by some periodic functions such as the school term where
β(t) = β0[1 + β1Term(t)]. The function “Term" is assumed to be a periodic func-
tion which is +1 during school term and −1 during school holidays. However, the
results of our model do not depend on particular form of the periodic component
of β(t).

The transitions between model classes can now be expressed by the following
differential equations:

dS

dt
= (1 − p)� − β(t)SI − ξS − µS + δSv, (2)

dSv

dt
= p� + ξS − (1 − σ)β(t)SvI − (µ + γ + δ)Sv, (3)

dI

dt
= β(t)SI + (1 − σ)β(t)SvI − (µ + α)I, (4)

dV

dt
= γ Sv + αI − µV, (5)

A description of all the model parameters together with their estimated values
in published studies is given in Table 1.

3. Disease eradication

In this section, the model is analyzed for its disease-free equilibrium in order to
provide the threshold condition for disease control or eradication. Since the class
of protected individuals (V ) does not appear in equations (2)–(4), the analysis will
be restricted to the dynamics of (2)–(4). We also note that the equation for the
total population is dN/dt = � − µN . Thus, N → �/µ as t → ∞, and hence
V = �/µ − S − Sv − I . This shows that the feasible region


 = {(S, Sv, I, V ) : S, Sv, I, V ≥ 0, S + Sv + I + V = �/µ},
is a positively invariant set for the model. Therefore, we restrict our attention to the
dynamics of the model in 
.
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Table 1. Description and estimation of the model parameters.

Parameter Description Value Reference

� recruitment rate of individuals � 1 people year−1

p fraction of recruited individuals who
receive vaccine

0–1

1/µ mean duration of life expectancy 50 years [32,42,43]
1/δ duration of primary vaccine-induced

immunity
15–25 years [34,35]

1/α average infectious period 2 weeks [32,42,43]
σ primary vaccine-induced protection 90–99% [13,22,23]
γ rate of second-dose of vaccine

(booster)
≥ 0

ξ rate of primary vaccination under
booster administration

≥ 0

β0 baseline contact rate ≥ 400 people−1 year−1 [42,43]
β1 fluctuating contact rate amplitude 0–1 [42,43]
ω seasonal variation frequency 2π year−1

3.1. Disease-free equilibrium (DFE)

In the absence of infection, the model has a unique disease-free equilibrium E0 =
(S0, S0

v , 0, V 0) where

S0 = [(1 − p)(µ + γ ) + δ]�

(µ + γ )(µ + ξ) + µδ
, S0

v = (µp + ξ)�

(µ + γ )(µ + ξ) + µδ
,

V 0 = γ (µp + ξ)�

µ[(µ + γ )(µ + ξ) + µδ]
.

To analyze the stability of the DFE, the model (2)–(4) is linearized around E0
by setting:

S(t) = S0 + s(t), Sv(t) = S0
v + sv(t), I (t) = i(t).

Then, we have:

ds

dt
= −(µ + ξ)s − [(1 − p)(µ + γ ) + δ]β(t)�

(µ + γ )(µ + ξ) + µδ
i + δsv, (6)

dsv

dt
= ξs − (µ + γ + δ)sv − (1 − σ)(µp + ξ)β(t)�

(µ + γ )(µ + ξ) + µδ
i, (7)

di

dt
= [(1 − p)(µ + γ ) + δ + (1 − σ)(µp + ξ)]β(t)�

(µ + γ )(µ + ξ) + µδ
i − (µ + α)i. (8)

A fundamental matrix of (6)–(8) consists of the solutions Xj = (sj (t), s
j
v (t),

ij (t)), j = 1, 2, 3, which satisfy the following initial conditions:

X1(0) = (1, 0, 0), X2(0) = (0, 1, 0), X3(0) = (0, 0, 1).
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It is easy to see that the set of these solutions is given by:

X1 =



exp[−(µ + ξ)t]
0
0


 , X2 =




s2∗(t)
exp[−(µ + γ + δ)t]

0


 ,

and

X3 =




s3∗(t),
s3∗
v (t),

exp

{∫ t

0

(
[(1 − p)(µ + γ ) + δ + (1 − σ)(µp + ξ)]β(t)�

(µ + γ )(µ + ξ) + µδ
− (µ + α)

)
dτ

}


 ,

where s2∗(0) = s3∗(0) = s3∗
v (0) = 0. The monodromy matrix is the fundamental

matrix M(t) = [X1(t), X2(t), X3(t)] evaluated at the period T . Then, the local
stability of E0 is determined by the modulus of the eigenvalues of M(T ). These
eigenvalues are λ1 = exp[−(µ + ξ)T ], λ2 = exp[−(µ + γ + δ)T ], and

λ3 = exp

{∫ T

0

(
[(1 − p)(µ + γ ) + δ + (1 − σ)(µp + ξ)]β(t)�

(µ + γ )(µ + ξ) + µδ
− (µ + α)

)
dτ

}
.

Since 0 < λ1, λ2 < 1, the equilibrium E0 is locally asymptotically stable if λ3 < 1.
A simple calculation shows that λ3 < 1 if and only if

1

T

∫ T

0
β(τ)dτ <

(µ + α)[(µ + γ )(µ + ξ) + µδ]

[(1 − p)(µ + γ ) + δ + (1 − σ)(µp + ξ)]�
(9)

Since β(t) = β0[1 + β1 sin(ωt)] is a periodic function with the period T , the
inequality (9) can be written as R0 < 1 where

R0 = [(1 − p)(µ + γ ) + δ + (1 − σ)(µp + ξ)]β0�

(µ + α)[(µ + γ )(µ + ξ) + µδ]
. (10)

Consequently, the DFE is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1. The threshold quantity R0 is the basic reproductive number for the
model (2)–(5) [2]. This is the number of secondary infectious cases produced by
one primary infectious case introduced into the susceptible population of which a
fraction p has been vaccinated.

The expression (10) for R0 can be written as

R0 =
(

1 − (µp + ξ)(µσ + γ )

(µ + γ )(µ + ξ) + µδ

)
r0, (11)

where r0 = β0�/[µ(µ+α)] is the basic reproductive number for the vaccination-
free model with no booster (p = γ = ξ = 0). The expression (11) for R0 is used
in section 3.3 to discuss the feasibility of disease eradication.



M.E. Alexander et al.

Remark 1. Here, we comment on some erroneous results in the literature [40],
related to the determination of R0 in a seasonally forced SIR model. In [40], R0 is
derived through evaluation of the eigenvalues of a time-dependent Jacobian matrix
at disease-free equilibrium which makes R0 itself time-dependent. However, this
approach cannot be applied to non-autonomous dynamical systems. Also, contrary
to their results, there can be no endemic equilibrium of the model, and therefore any
such stability analysis is invalid. Furthermore, using a Dulac function, the global
stability of the disease-free equilibrium is claimed, from which the non-existence
of periodic solutions is deduced. This is incorrect, and inconsistent with the results
of their simulations, which confirm the existence of periodic solutions for some
values of the model parameters.

3.2. Global stability of the DFE

Here, we shall show that the local and global stability of the DFE are equivalent.
In fact, we have the following theorem.

Theorem 1. If R0 < 1, then the DFE is globally asymptotically stable.

Proof. Since 
 is a positively invariant region, it is sufficient to establish the global
stability of E0 in 
. Noting that S = �/µ − Sv − I − V and β(t) ≥ 0, for all
t ∈ R, it can be seen from (3) that

dSv/dt ≤ (µ + γ + δ + ξ)
[ (µp + ξ)�

(µ + γ )(µ + ξ) + µδ
− Sv

]
.

By the Comparison Theorem [29], we see that

lim
t→∞ sup

θ≥t

Sv(θ) ≤ (µp + ξ)�

(µ + γ )(µ + ξ) + µδ
. (12)

Thus, for a given ε > 0, there is a t0 > 0 such that

Sv(t) ≤ (µp + ξ)�

(µ + γ )(µ + ξ) + µδ
+ ε/δ

for t ≥ t0. Then, it follows from (2) that

dS

dt
≤ ε + (µ + ξ)

[ [(1 − p)(µ + γ ) + δ]�

(µ + γ )(µ + ξ) + µδ
− S

]
, for t > t0.

Consequently,

lim
t→∞ sup

θ≥t

S(θ) ≤ [(1 − p)(µ + γ ) + δ]�

(µ + γ )(µ + ξ) + µδ
. (13)

Using (12) and (13) in (4) for small enough ε gives:

dI

dt
≤ (µ + α)

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(t) − 1

]
I, for t ≥ t1, (14)
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where t1 > t0. Integrating this inequality gives:

I (t) ≤ exp

{∫ t

t1

(µ + α)

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(τ) − 1

]
dτ

}
, for t ≥ t1.

(15)

Suppose n0 is the smallest positive integer such that n0T > t1. Thus,

L ≡ exp

{∫ ∞

n0T

(µ + α)

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(τ) − 1

]
dτ

}

= exp

{
(µ + α)

∞∑
n0

∫ (n+1)T

nT

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(τ) − 1

]
dτ

}

= exp

{
(µ + α)

∞∑
n0

∫ T

0

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(τ) − 1

]
dτ

}

= exp

{
T (µ + α)

(
R0 − 1 + (2 − σ)εβ0

µ + α

) ∞∑
n0

1

}
.

Since R0 < 1, for ε > 0 sufficiently small we have R0−1+(2−σ)εβ0/(µ+α)<0,
and hence L = 0. This implies that

0 ≤ lim
t→∞ I (t) ≤ exp

{∫ n0T

t1

(µ + α)

[(
R0

β0
+ (2 − σ)ε

µ + α

)
β(τ) − 1

]
dτ

}
L = 0,

and consequently, limt→∞ I (t) = 0. In order to show that every solution with an
initial condition in the positively invariant region 
 approaches E0, we consider
the following two-dimensional system when I = 0:

dS

dt
= (1 − p)� − (µ + ξ)S + γ Sv ≡ X , (16)

dSv

dt
= p� + ξS − (µ + γ + δ)Sv ≡ Y . (17)

Consider the Dulac function D = 1/Sv for Sv > 0. Then, it can be seen that:

∂(DX )

∂S
+ ∂(DY)

∂Sv

= −µ + ξ

Sv

− p� + ξS

S2
v

< 0.

Thus, the system (16)–(17) has no limit cycle and hence, the model (2)–(3) has
no limit cycle in the SSv-plane. Since limt→∞ I (t) = 0, it follows that E0 is the
ω-limit set of every solution in 
. Therefore, E0 is globally asymptotically stable.

	

The above theorem shows that reducing R0 to values less than unity guarantees

disease eradication. The results of this section also show that the fluctuating contact
rate amplitude (β1) has no role in changing the basic reproductive number. Indeed,
if β1 = 0 (which makes the model time-independent), then evaluation of the corre-
sponding Jacobian at E0 yields the same expression for R0. However, the dynamics
of the seasonally forced model (i.e., β1 �= 0) are very much dependent on small
changes in the fluctuating contact rate amplitude β1, especially when R0 > 1.
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3.3. Feasibility of eradication

The expression (11) represents the overall basic reproductive number R0 in terms
of the reproductive ratio for a population that is wholly susceptible (r0), with no vac-
cination. Therefore, it gives a measure of the potential for the infection to spread in
the population. It is important to note that a high value of r0 requires a high coverage
level of primary vaccination to prevent the spread of infection, regardless of the type
of vaccine being administered [37]. However, it is practically impossible to vacci-
nate almost all individuals in the susceptible class, in particular, in countries where
finances play a major role in the number of people who receive the vaccines. Hence,
the next best strategy is to determine the critical number needed to be vaccinated.

In the absence of boosters (γ = ξ = 0), the minimum primary vaccination
level that is required to eliminate the infection is given by:

p0 =
(

1 − 1

r0

) (
µ + δ

µσ

)
, (18)

such that R0 ≤ 1 whenever p ≥ p0. This coverage is for a vaccine that confers a
protection σ that wanes with a mean duration of 1/δ, and reduces to p0 = 1−1/r0
for a perfect vaccine (σ = 1, δ = 0).

The most important implication of this result is that eradication likelihood is
determined by the effective period of immunity. Let us consider the optimistic case
in which the primary vaccine provides perfect immunity to infection (σ = 1), but
this protection wanes with time (δ > 0). In this scenario, equation (18) means
that the critical proportion of the population required to be vaccinated is greater
than unity (p0 ≥ 1) unless µ/(µ + δ) > (1 − 1/r0). This means that infection
eradication by paediatric vaccination is impossible unless the fraction of a vac-
cinated individual’s life during which they are protected from infection exceeds
(1 − 1/r0). For instance, if r0 = 2, then eradication is only possible if the vaccine
protects individuals for more than half their life. Furthermore, when no boosters
are administered (γ = ξ = 0), the expression (11) becomes:

R0 =
(

1 − pµσ

µ + δ

)
r0. (19)

This shows that a vaccine that offers a complete degree of protection (σ = 1)
with immunity that wanes at the same rate as the average death rate (δ = µ) is
only as good as a vaccine that does not wane (δ = 0), but offers a 50% degree
of protection (σ = 1/2). In this case, the basic reproductive number reduces to
R0 = (1 − p/2)r0.

In the presence of boosters for an imperfect vaccine, the expression (11) can
also be written as:

R0 =
[
1 − µσ + γ

µ + γ + δ

(
p + µ + γ + δ

(µ + γ )(µ + ξ) + µδ
ξ
)]

r0

+ (µσ + γ )(µ + γ )pξ

(µ + γ + δ)[(µ + γ )(µ + ξ) + µδ]
r0

>
[
1 − (

p + ξ

µ

)]
r0 + (µσ + γ )(µ + γ )pξ

(µ + γ + δ)[(µ + γ )(µ + ξ) + µδ]
r0. (20)
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This form of R0 clearly indicates that if [1 − (p + ξ/µ)]r0 > 1, then R0 > 1, so
that no amount of booster vaccination (as a second-dose) could lead to disease erad-
ication. It also reveals the fact that primary vaccination remains crucial in reducing
R0 to values less than unity, even in the presence of a booster (see [13,37] and
references therein). Here, we focus on the effect of the booster vaccination in terms
of two major parameters p and r0.

A recent study [14] has introduced a threshold quantity called the reinfection
threshold in transmission induced by partial immunity, above which levels of infec-
tion will be high and vaccination programs will fail to protect. Applying this thresh-
old to the model presented here, we considered a range of r0 below the reinfection
threshold, r0 < 1/(1−σ), where the impact of primary vaccination will be signifi-
cant. This, of course, is sensitive to the assumed parameter values associated with
the vaccine administered to susceptible individuals, such as vaccine efficacy and
waning rate [32]. As estimated in several studies on measles infection in England
and Wales [26,42,43], r0 is about 17 which would satisfy the reinfection threshold
if the vaccine induced protection is higher than 94%. We now introduce a new
parameter η as the rate of booster administration, and let ξ = λη and γ = (1 −λ)η

where 0 ≤ λ ≤ 1. Let pλ ≡ p(η, λ) represent the surface on which R0 ≡ 1.
With the value of r0 = 17, Figure 2A illustrates contour plots of pλ (for feasible
ranges of η and λ) using parameter values estimated for measles vaccination [22,
26,34,35,42,43]: µ = 0.02, δ = 0.05, σ = 0.95, α = 26. These values of µ, δ, σ ,
and α represent, respectively, a life expectancy of 50 years, a mean duration of 20
years for the loss of immunity induced by primary vaccination, a vaccine efficacy
of 95%, and a mean duration of 2 weeks for recovery from infection. For each pλ,
there is a critical value ηp (corresponding to a vertical tangent to pλ in Figure 2B)
such that disease control is not feasible if η < ηp. However, for η > ηp, there is
a range of λ (bold-line in shaded area in Figure 2B) for which R0 < 1 and the
disease can be eradicated. Decreasing the primary vaccination coverage pλ makes
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Fig. 2. (A) Contour plots for various values of primary vaccination coverage p(η, λ) (for
feasible ranges of η and λ) for which R0 = 1. Parameter values are: µ = 0.02, δ = 0.05,
σ = 0.95, α = 26 and r0 = 17. (B) Feasible region for disease control (η > ηp) with the
same parameter values and p = 0.5.
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the feasible range of λ shrink, and moreover, the lower limit of the range increases.
An important epidemiological consequence of this result is that, for relatively low
vaccine coverage pλ, a booster program may fail to control the disease if it is mostly
targeted to primary vaccinated individuals. This situation corresponds to values of
λ below the feasible range (dashed-line in white area in Figure 2B), defined by the
given η and pλ. The same conclusion holds when a booster functions, in effect,
as mostly primary vaccination (corresponding to values of λ above the feasible
range). More importantly, the probability of failure of a booster program increases
as primary vaccination coverage pλ decreases, leading to a more restricted range
of λ for disease control. This highlights the significant role that primary coverage
plays in ensuring a successful booster program.

Remark 2. There is a debate on the existence of a reinfection threshold in models
with partial immunity [4], which was claimed to behave as a bifurcation parame-
ter in the system [14]. However, Gomes et al. [15] emphasize the epidemiological
consequences of this threshold, regardless of the terminology used to describe this
phenomenon. They point out that above the threshold, vaccination programs will
fail to protect; while below the threshold, the disease can be controlled by vac-
cination, even when the basic reproductive number for the model (with no prior
exposure to the disease) is greater than unity.

4. Stable T -periodic solutions

In this section, the existence of T -periodic solutions of the model with β1 > 0 will
be discussed when R0 > 1. We note that the model (2)–(5) can be written as

dX

dt
= F(X) + β1G(X, t) (21)

where X = (S, Sv, I, V )T , F(X) = (f1(X), f2(X), f3(X), f4(X))T with

f1 = (1 − p)� − β0SI − (µ + ξ)S + δSv

f2 = p� + ξS − (1 − σ)β0SvI − (µ + γ + δ)Sv

f3 = β0SI + (1 − σ)β0SvI − (µ + α)I

f4 = γ Sv + αI − µV ,

and

G(x, t) =




S

(1 − σ)Sv

S + (1 − σ)Sv

0


 I sin(ωt).

When β1 = 0, the model (21) reduces to dX/dt = F(X). Solving f2 = f3 = 0
for S and Sv (assuming I �= 0), at equilibrium gives:

S = (µ + α)(µ + γ )

(µσ + γ )β0
− (1 − σ)�

µσ + γ
+ (1 − σ)(µ + α)

µσ + α
I. (22)

Sv = µ(µ + α)

(µσ + γ )β0
(r0 − 1) − µ + α

µσ + γ
I. (23)



Modelling the effect of a booster vaccination

Substituting (22) and (23) into f1 = 0 gives the following equation (at equilib-
rium) in terms of I :

Q(I) = a2I
2 + a1I + a0 = 0. (24)

where

a0 = (µ + α)[(µ + γ )(µ + ξ) + µδ](1 − R0),

a1 = β0{(µ + α)[(1 − σ)(µ + ξ) + µ + γ + δ] − (1 − σ)β0�},
a2 = β2

0 (1 − σ)(µ + α).

Since R0 > 1, it follows that a0 < 0 and hence (24) has a unique positive root.
Thus, the model dX/dt = F(X) has a unique positive endemic equilibrium (E ∗)
which is located in the feasible region 
. It is worth noting that if R0 < 1, then
Theorem 1 shows that the model has no positive endemic equilibrium.

Applying the technique used in [33, Theorem A2], it can be shown that E ∗ is
globally asymptotically stable and it attracts 
 \ 
0, where


0 = {(S, Sv, I, V ) ∈ 
 : I = 0}.
Theorem 2. Suppose R0 > 1. If β1 = 0, then the unique endemic equilibrium
E ∗ of the model dX/dt = F(X) is globally asymptotically stable and it attracts

 \ 
0.

Suppose now that the endemic equilibrium E ∗ exists (R0 > 1) and it is hyper-
bolic. Thus, the eigenvalues of the corresponding Jacobian at E ∗ have a strictly
negative real part. Then, it follows that there exist positive constants β∗, c∗ such
that if 0 < β1 < β∗, then a unique stable T -periodic orbit φ(t) of the model (21)
exists with ‖φ(t)−E ∗‖ ≤ c∗β∗ for all t ∈ R [19]. Therefore, we have the following
theorem.

Theorem 3. If R0 > 1, then there exist positive constants β∗, c∗ such that the
model (21) admits a unique stable T -periodic orbit φ(t) for 0 < β1 < β∗ with
‖φ(t) − E ∗‖ ≤ c∗β∗ for all t ∈ R.

In order to illustrate the results of this section when R0 > 1, numerical experi-
ments were carried out using the parameter values estimated for measles infection
[22,25,26,34,35,42,43]. With the notations of the previous section for ξ = λη and
γ = (1 − λ)η, Figure 3 shows the profiles of infected individuals for p = 0.8 and
different values of booster vaccination rate. For η = 0.375 > ηp, Figures 3A–B
illustrate the existence of a unique periodic solution (including transient behavior
of the model) for λ = 0.1 and λ = 0.9, respectively (which lie outside the feasi-
ble range of λ for disease control; see dashed-lines in Figure 2B). Similar results
were obtained when the model was simulated with η = 0.3 < ηp and λ = 0.5
(Figure 3C). However, simulations confirm that increasing η above ηp leads to
disease eradication whenever λ lies in the range defined by the given p and ηp

(see bold-line in shaded area in Figure 2B). These simulations are consistent with
the results of Figure 2, which identify the feasible region for disease control under
booster vaccination.
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Fig. 3. Profiles of the infected individuals (I ) with η = 0.375 (year)−1for (A) λ = 0.1; and
(B) λ = 0.9. Model parameters are [22,25,26,34,35,42,43]: � = 10000 people (year)−1,
p = 0.8, µ = 0.02 (year)−1, β0 = 442/N (people year)−1, β1 = 0.1, σ = 0.95, δ = 0.05
(year)−1, and α = 26 (year)−1, where the total population N = 5 × 105. (C) Profile of
infected individuals for η = 0.3 < ηp and λ = 0.5 with the same parameter values. In all
three cases, λ lies outside its feasible range for disease control.

5. Discussion

Ever since the identification of the basic reproductive number, the focus for public
health policy has been to explore the means by which it can be reduced to levels
below unity. Such a reduction can be achieved by changing the control parameters
associated with an appropriate intervention strategy, such as vaccination. In this
paper, we have focused on the impact of vaccination programs on disease epide-
miology, by developing a mathematical model that incorporates a booster vaccine
and time-varying contact rate. The dynamical analysis of the model, using Floquet
theory, led to the determination of the basic reproductive number in the presence
of both primary and booster vaccinations. It was shown that if R0 < 1, then the
disease-free equilibrium is globally asymptotically stable which leads to disease
eradication. Perturbation theory was also used to show the existence of a unique
stable T -periodic solution when R0 > 1. These results have been numerically
illustrated by simulating the model using parameter values estimated for measles
infection.

We have studied a seasonally forced epidemic model to evaluate the effect of
a booster dose of an imperfect vaccine in reducing R0. Our findings highlight an
important epidemiological implication namely, in relatively high incidence areas
where an infected individual can produce at least two new infectious cases, eradi-
cation will be impossible with only a single-dose strategy. We have shown that the
level of primary vaccination can significantly impact the outcome of booster pro-
grams. Having a booster program does not necessarily guarantee successful control
of a disease, though may result in reducing the level of epidemicity. The effect of a
booster strategy depends greatly on the proportion of individuals who receive the
vaccine as a second-dose to boost antibody titres. This poses the problem of estimat-
ing the optimal timing of the additional vaccine doses which depends significantly
on the levels of primary vaccination achieved [34,44]. While the reported global
routine vaccination coverage with the primary dose of measles vaccine among
children remained at about 80% between 1990 and 2000, many countries reported
vaccination coverage of less than 50% [20,46]. Recent estimates are that a threshold
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coverage of greater than 90% is required for being situated in the feasible region
of measles control [20,46]. If this criterion is met, then a minimum rate of booster
vaccination would be required to ensure elimination of infection. However, these
joint criteria impose stringent requirements for any practical public health policy,
and in order to achieve global eradication, public health efforts would have to be
directed towards maintaining these criteria above their respective thresholds.

The model studied here is based on a constant vaccination strategy with a booster
administration. There are several studies on different vaccination policies, including
pulse and time-dependent (see [34,39,45] and references therein), which have the
consequences of suppressing the complex dynamics of seasonally forced models
and reducing chaotic behavior in childhood epidemics. Models of age-structured
populations have also been studied in order to determine optimal vaccination strat-
egies, and to explain the re-emergence of some infectious diseases as a result of
the waning of vaccine-induced immunity [30,34,36]. The model in this paper can
be extended to incorporate age-structured populations, which would then allow for
the determination of time-varying vaccination strategies and optimal timing for the
administration of booster doses.

Acknowledgements. The authors would like to thank Professor Odo Diekmann for his help-
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paper.
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