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Abstract

Successful replication within an infected host and successful transmission between hosts are key to the continued spread of
most pathogens. Competing selection pressures exerted at these different scales can lead to evolutionary trade-offs
between the determinants of fitness within and between hosts. Here, we examine such a trade-off in the context of
influenza A viruses and the differential pressures exerted by temperature-dependent virus persistence. For a panel of avian
influenza A virus strains, we find evidence for a trade-off between the persistence at high versus low temperatures.
Combining a within-host model of influenza infection dynamics with a between-host transmission model, we study how
such a trade-off affects virus fitness on the host population level. We show that conclusions regarding overall fitness are
affected by the type of link assumed between the within- and between-host levels and the main route of transmission
(direct or environmental). The relative importance of virulence and immune response mediated virus clearance are also
found to influence the fitness impacts of virus persistence at low versus high temperatures. Based on our results, we predict
that if transmission occurs mainly directly and scales linearly with virus load, and virulence or immune responses are
negligible, the evolutionary pressure for influenza viruses to evolve toward good persistence at high within-host
temperatures dominates. For all other scenarios, influenza viruses with good environmental persistence at low temperatures
seem to be favored.
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Introduction

Influenza A viruses infect both humans and animals, causing

frequent outbreaks [1,2]. In humans, the infection can be life-

threatening for individuals with weak immune systems, leading to

an estimated annual worldwide mortality burden of *500,000
[3,4]. Due to its zoonotic nature, and frequent spillover from wild

and livestock populations, eradication of the virus is virtually

impossible [1,5]. Further, the danger that a novel influenza strain

with high virulence and pandemic potential will start to spread in

the human population is always present [6–8]. The 2009 H1N1

pandemic demonstrated that the emergence of novel pandemic

strains is still largely unpredictable. Improvement of our surveil-

lance, prediction and control capabilities requires that we obtain a

better understanding of the whole transmission cycle of the virus

and the mechanisms governing the complex processes of infection

and spread.

One useful approach for studying the whole infection and

transmission process is through the use of multiscale studies, wich

have seen increased general development and use in recent years

(see e.g. [9,10] for reviews and [11] for a recent application to

influenza). A multiscale approach allows one to address the

question of how different selection pressures on the within- and

between-host levels interact to impact overall fitness. This is

important if we want to better understand and predict the

infection and transmission dynamics and evolution of the virus.

Here, we use such a multiscale framework and focus on one

specific aspect, namely evolutionary pressures shaped by temper-

ature-dependent virus persistence. The importance of temperature

on influenza virus fitness is well established. For instance, the

attenuated live influenza vaccine is cold-adapted, which leads to

reduced fitness in human hosts, making it safe for vaccination

purposes [12,13]. Temperature has also been shown to impact

within-host dynamics and transmission in laboratory studies

[14,15]. Recent theoretical and experimental evidence suggests

that persistence in the environment is an important factor of

transmission for avian influenza [16–24]. Transmission through an

environmental stage (e.g. long-lasting droplets, fomites) seems to

also play a role for influenza transmission in humans [25–29].

Since temperatures in the environment and within a host can be

markedly different, it is possible that the virus faces a trade-off: It

can either optimize its ability to persist within a host, or optimize
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its ability to persist outside a host. It is well known that the decay

rate of most viruses depends on temperature, with faster virion

decay occurring at higher temperature [30–32]. Interestingly,

recent data [33] suggest that temperature-dependent decay rates

differ between influenza strains. Some strains are very stable at

environmental temperatures (&5{200C) but rapidly decay at

higher within-host temperatures (&35{400C), while others persist

less well at low temperatures but also have a less rapid decay as

temperature increases [33]. These data suggest that some virus

strains might optimize persistence within a host, while others

might optimize persistence outside a host, with a possible trade-off

between the two. This in turn can affect both within-host and

between-host dynamics. The dynamics on these two levels interact

to determine overall fitness. (Note that the data presented in [33] –

which we will analyze below – is for different HA-NA serotypes.

However, the phenomenon of temperature-dependent decay we

discuss is not specific to distinct serotypes. We will therefore use

the generic term ‘‘strain’’ throughout this study).

To analyze the impact that such a temperature-dependent trade-off

can have on virus fitness, we build a multi-scale model that embeds a

within-host infection process within a population transmission

framework. A number of theoretical studies have previously considered

trade-offs between environmental persistence and within-host perfor-

mance, see e.g. [34–38]. Those studies considered generic trade-offs

and models without direct relation to a specific pathogen or fitting to

data. A few notable studies that involved data looked at environmental

survival and virulence of human pathogens [39] and environmental

survival and growth in phages [40]. Here, we focus on avian influenza

A and combine experimental data with models to explicitly consider

temperature-dependent virus decay as the mediator of trade-offs. We

find that for direct transmission scenarios, viruses with long within-host

persistence perform overall best. For environmental transmission

scenarios, the balance was shifted toward viruses with good

environmental persistence. This was especially true if shedding or

infection rates were assumed to be proportional to the logarithm of the

virus load. We further show that the addition of an immune response

or pathogen virulence reduced the importance of differences in the

within-host decay rate between strains, and lead to an increased

importance of good environmental persistence.

Models

The within-host model
We consider a simple model for an acute viral infection. These

types of models have been used in several recent analyses of

influenza A virus within-host infection dynamics (see e.g. [41,42]

for reviews). Our model tracks uninfected cells, U , infected cells,

X , and infectious virus, V . Cells become infected at rate k,

infected cells produce virus at rate p and die at rate d. Infectious

virus decays at rate cw. The model equations are given by

dU

dt
~{kUV uninfected cells ð1Þ

dX

dt
~kUV{dX infected cells ð2Þ

dV

dt
~pX{cwV virus ð3Þ

The model is illustrated in figure 1, table 1 summarizes the model

variables and parameters.

This simple model can describe most data for influenza virus

infections rather well [41,42]. After an initial rise in virus load,

uninfected target cells become depleted, leading to a subsequent

virus decline and resolution of the infection. This so-called target-

cell limited model is basically equivalent to a simple epidemic

model, which produces a single infectious disease outbreak in a

susceptible population. However, it is also known that influenza

infections stimulate an immune response, which likely plays some

role in viral clearance, though the exact contributions of various

components of the immune response to virus clearance are still not

fully understood. We consider an alternative model with an

immune response in the supplementary materials.

The between-host model
To describe influenza transmission dynamics on the between-

host level, we use a framework that takes into account both direct

and environmental transmission routes, as has been recently

advocated [16,17]. Similar models – not specific to influenza – that

explicitly include an environmental stage have been designed and

analyzed previously [35,36,38,43–46].

We use coupled partial differential equations to allow for explicit

tracking of the age of infection within the infected population. This

allows for convenient linking of the within- and between-host scales as

described below. The model is shown and explained in figure 2 and

legend, table 2 summarizes model quantities. The model equations are

given by

dS(t)

dt
~{S(t) b2P(t)z

ð?
0

b1(a)I(t,a)da

� �
susceptible hostsð4Þ

I(t,0)~S(t) b2P(t)z

ð?
0

b1(a)I(t,a)da

� �
newly infected hostsð5Þ

LI(t,a)

Lt
~{

LI(t,a)

La
{g(a)I(t,a) infected hosts ð6Þ

dP

dt
~

ð?
0

w(a)I(t,a)da{cbP virus in the environment ð7Þ

Time t indicates the usual ‘‘system time’’, while a indicates the time

since infection of a host. The parameters b1(a), w(a) and g(a), i.e. the

Author Summary

It has recently been suggested that for avian influenza
viruses, prolonged persistence in the environment plays an
important role in the transmission between birds. In such
situations, influenza virus strains may face a trade-off: they
need to persist well in the environment at low tempera-
tures, but they also need to do well inside an infected bird
at higher temperatures. Here, we analyze how potential
trade-offs on these two scales interact to determine overall
fitness of the virus. We find that the link between infection
dynamics within a host and virus shedding and transmis-
sion is crucial in determining the relative advantage of
good low-temperature versus high-temperature persis-
tence. We also find that the role of virus-induced mortality,
the immune response and the route of transmission affect
the balance between optimal low-temperature and high-
temperature persistence.

Modeling Temperature-dependent Influenza Fitness
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rate of transmission between hosts, the rate of shedding and the rate of

recovery all depend on the time since infection. We will choose specific

forms for those parameters in the next section.

Note that we do not actually simulate the between-host

dynamical process. The reason for specifying the between-host

model is to compute the basic reproductive number, R0, which is

our measure of between-host fitness (see next section). Analysis of

other fitness measures that would require simulating the between-

host dynamical process (e.g. probability of extinction over multiple

outbreaks) is a suitable subject of future studies but will not be

considered here.

Defining fitness and connecting the two scales
Our main quantity of interest is fitness of the virus at the host

population level. One way to quantify fitness is through the basic

reproductive number, R0, which is defined as the expected

number of new infections caused by one infected host in a fully

susceptible population [47–49]. For our model, one can split R0

into two components, namely direct transmission from host to host

(Rd ), and indirect transmission through the environmental route

(Re), such that R0~RdzRe [17,36]. For direct transmission, we

have

Rd~S(0)

ð?
0

b1(a)G(a)da, ð8Þ

where S(0) is the susceptible population at time 0, G(a) is fraction

of hosts that are still infectious at time a after infection started, and

b1(a) denotes the rate at which an infectious individual at infection

age a infects new individuals. If we assume that all infected hosts

are infectious for a fixed duration, D, and non-infectious

afterwards, we can write

Rd~S(0)

ðD

0

b1(a)da: ð9Þ

Figure 1. Flow diagram for the within-host model. U , X , and V are the variables describing uninfected cells, infected cells, and infectious virus.
Uninfected cells become infected at rate k, infected cells produce virus at rate p and die at rate d. Virus decays at rate cw. Solid lines indicate physical
flows, dashed lines indicate interactions.
doi:10.1371/journal.pcbi.1002989.g001

Table 1. Initial conditions and parameter values for the within-host model.

symbol meaning values comment

U(0) target cells 2:5|107 based on [71]

I(0) initial number of infected cells 0 assumed

V (0) inoculum dose 1 EID50/mL assumed

cw virus clearance rate 2.78 per day fixed, see text

b infection rate 2:2|10{6 mL/EID50 per day fitted

p production rate of virions 1:2 EID50/mL per day fitted

d death rate of infected cell 1:9 per day fitted

Initial conditions and parameter values for the within-host model. EID50 = 50% Egg Infectious Dose.
doi:10.1371/journal.pcbi.1002989.t001

Modeling Temperature-dependent Influenza Fitness
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Mathematically, this corresponds to choosing the proportion of

host infectious after time a, G(a), as a Heaviside function, and the

recovery rate, g(a), in the between-host model equations as a

Dirac delta-function. While the infectious period could end either

due to resolution of the infection (recovery) or host death, for the

low pathogenic influenza strains we consider here, mortality is

negligible [50–52]. Therefore, for the main part of this study, the

end of the infectious period should be interpreted biologically as

recovery. In the supplementary materials we briefly consider virus-

associated mortality (i.e. virulence) and how it might alter the

results presented in the main part of the manuscript.

We can define the duration of infectiousness D in terms of

the within-host model, as the time from the start until the end

of the infection, which we define as the time virus levels drop

below a given level, VD (in our simulations chosen to be one

virion). Mathematically, this can be written as

D~ min
t

(V (t)ƒVD) ð10Þ

The rate at which direct transmission between hosts occurs,

b1(a), also likely depends on the within-host dynamics. One

possible assumption is that b1(a) is directly proportional to

virus load:

b1(a)~h1V (a), ð11Þ

where V (a) is the virus load at time a after infection and h1 is

some constant of proportionality. This assumption corresponds

to the ‘‘flu like infection regime’’ in [53], and seems to be a

reasonable approximation [54–57]. Defining

s1~

ðD

0

V (a)da ð12Þ

as the total infectious virus during the infection (area under the

curve), and substituting equations (12) and (11) into (9), we

obtain as expression for the directly transmitted virus fitness

Rd~S(0)h1s1: ð13Þ

While a linear relationship between transmission and virus

load, as described by equation (12), is plausible, it is certainly

not the only possibility. For instance, we previously showed

Figure 2. Flow diagram for the between-host model. S, I and P are the variables describing susceptible hosts, infected hosts, and pathogen
(i.e. virus) in the environment. Transmission can occur directly between uninfected and infected hosts at rate b1(a) and through contact of uninfected
hosts with virus in the environment at rate b2 . Infected hosts shed virus into the environment at rate w(a), and recover (and are assumed to become
immune to re-infection) at rate g(a). Virus in the environment decays at rate cb . Note that the parameters b1(a), w(a) and g(a), i.e. the rate of
transmission between hosts, the rate of shedding and the rate of recovery all depend on the time since infection. Solid lines indicate physical flows,
dashed lines indicate interactions.
doi:10.1371/journal.pcbi.1002989.g002

Table 2. Parameters for the between-host model.

symbol meaning

b2 environmental infection rate

cb virus decay rate in the environment

b1(a) direct transmission rate*

g að Þ rate of recovery*

w að Þ rate of shedding*

Parameters for the between-host model. Parameters marked with * depend on
time a since start of infection. Specific choices for these parameters are
described in the text. Note that we do not make use of specific numeric values
for any of these parameters, therefore none are given.
doi:10.1371/journal.pcbi.1002989.t002

Modeling Temperature-dependent Influenza Fitness
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that a sigmoid function of the form

discharge~
c1 log10 (V (a))c2

c
c2
3 z log10 (V (a))c2

ð14Þ

provides a good description of the total amount of nasal

discharge as function of virus load for human influenza A

infections [58]. Here, the coefficients ci describe the shape of

the sigmoid curve. While the hosts in the present study are

ducks, not humans, we submit that representing the total

amount of discharge by a sigmoid curve makes inherent

biological sense for any host. Multiplying virus load by the

amount of discharge and integrating over the duration of

infection gives

s2~

ðD

0

V (a)
c1 log10 (V (a))c2

c
c2
3 z log10 (V (a))c2

da: ð15Þ

For our numerical analysis below, we set c1~5, c2~5, c3~2:5,

which are values close to those previously determined by fit of

this sigmoid curve to shedding data for humans [58]. The

exact values for those coefficients matter little for the results we

present in this study. Using the equation for s2 instead of the

equation for s1 in equation (13) is an alternative for linking

within-host dynamics to between-host fitness. Another plausi-

ble scenario is one where the rate of transmission is

proportional to the logarithm of the virus load, giving

s3~

ðD

0

log V (a)ð Þda: ð16Þ

We can use this expression in equation (13) instead of s1. Such

a logarithmic dependence of transmission on virus load makes

especially good sense given that b1(a) and therefore Rd are a

measure for the number of new infections produced, which not

only includes the shedding and transmission process, but also

includes the probability that a subsequent infection in a new

host is started. A logarithmic dependence between pathogen

dose and the probability of infection occurring appears to be

common [53,59–63]. Since it is not known which assumption

for the link from within-host virus load to between-host

transmission is most applicable to the host-pathogen system we

study here, we will investigate all three possible functions sj

(j~1,2,3) and their impact on host population level fitness as

measured by R0.

The environmental transmission component of fitness, Re, can

be linked to the within-host model in the same way as just

described for the direct component, Rd . Specifically, we can write

Re~
b2S(0)

cb

ðD

0

w(a)da: ð17Þ

The rate of viral shedding into the environment, w(a), again

depends on the within-host dynamics. If we assume that w(a)
depends on the within-host virus load in the same way as the direct

transmission rate b1(a), we obtain

Re~
b2S(0)

cb

h2sj , ð18Þ

where the terms sj represent the different link functions described

in equations (12), (15) and (16), and h2 is another constant of

proportionality. Table 3 summarizes the important quantities we

introduced in this section.

Model implementation
All statistical analyses and simulations were done in the R

programming environment [64]. The scripts are available from

the corresponding author’s webpage (http://ahandel.myweb.uga.

edu/resources.htm).

Results

Both the within- and between-host models contain a term for

virus decay, namely cw and cb. It is obvious that to maximize fitness,

the virus should minimize both cw and cb, i.e. it should be able to

persist well both outside the host (in the air or on fomites for

humans, in water for avian species) and inside the host. However, as

we show below, there seem to be trade-offs between the ability to

persist at low versus high temperatures. While higher temperatures

lead to faster decay for all strains, some strains are better at

persisting in the environment at low temperatures (low cb), but this

comes at the cost of rapid decay inside a host at higher temperatures

(high cw). In contrast, other strains seem to persist less well at low

temperatures, but as temperature increases, their decay rate

increases less rapidly, making them more stable at higher

temperatures. Given this potential trade-off between cw and cb,

we analyze how within- and between-host levels interact to

determine overall virus fitness on the host population level as

measured by R0~RdzRe. Within-host decay, cw, affects within-

host viral dynamics and thereby, through the link-functions sj , both

the direct and environmental fitness components Rd and Re

(equations 13 and 18). The between-host decay term, cb, only affects

the environmental fitness component, Re. Therefore, we expect that

depending on transmission route and link functions, the impact of

good low- versus high-temperature persistence on fitness can

change. We will show how this plays out in the following.

Temperature dependence of viral decay
In a recent study [33] we found that for a panel of different

avian influenza A strains, the decay rate of infectious virus varies

as a function of temperature. We can quantify the virus decay rate,

c, as a function of temperature, T . The data suggest that a simple

exponential function of the form c(T)~aecT fits each strain well.

Figure 3 shows the data and best-fit exponential curves, with the

estimated values for a and c provided in table 4. The simple

equation c(T)~aecT allows us to compute decay rates at a within-

host temperature of around 400C corresponding to the body

temperature of a duck [15,65] and at a between-host environ-

mental temperature assumed to be cold lake water at around 50C.

Those quantities correspond to cw and cb in our within-host and

between-host models. Table 4 lists their values for the different

strains.

Figure 3 and table 4 suggest that while some strains have a

relatively low (e.g. H3N2) or high (e.g. H5N2) decay rate

irrespective of temperature, others appear to specialize. Some

strains (e.g. H6N4, H11N6) decay relatively slowly at low

temperatures but persist poorly at high temperatures, while others

(e.g. H8N4, H7N6) do relatively better at high versus low

temperature. Thus, some strains are able to persist for a long

time at low temperatures, but as temperature increases, their rate

of decay also rapidly increases. In contrast, other strains are not

able to persist for quite as long at low temperatures, but increases

in temperature leads to a slower rise in atrophy. As we illustrate in

figure 4A, this can lead to a cross-over in decay rates as function of

temperature. In figure 4B, we regress the strain-specific values for

Modeling Temperature-dependent Influenza Fitness
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the intercept of the decay rate curve, a, (quantifying virus

persistence at low temperature, specifically at 00C) against the

value for the temperature-dependence of the decay rate, c,

(quantifying virus persistence at high temperature). In figure 4C,

we provide the same information, but for the rank of those

parameters. These plots demonstrate a negative correlation

between persistence at low and high temperatures. Since the

center panel indicates a linear relation for the logarithm of a and c,

we fitted a regression line log(c)~gzk log(a) to the data. We find

for the regression fit g~{3:28, k~{0:26 (R2~0:70,

p~0:00068). Similarly, computing a correlation coefficient for

the rank-transformed data, we find a negative correlation of

{0:72 (p~0:011).

The analysis of this dataset can be taken as suggestion for the

presence of a trade-off between stability at low and high

temperatures – at least for the panel of strains we investigated

here. Since this is a small sample of strains, we do not want to

over-emphasize the finding. However it seemed real and

interesting enough to ask the questio: ‘‘How would such a

potential trade-off lead to interactions on the within-host and

between-host levels and affect overall virus fitness?’’. We address

this question in the remainder of the paper.

As a potentially interesting side question – not further

considered in the remainder of this paper – we wondered whether

there are systematic differences between strains belonging to

different groups. Based on amino acid differences, strains with

different HA types can be clustered into two groups, as indicated

in Table 4 (see e.g. [66–68]). We were curious to see if systematic

differences in the decay behavior between the two groups could be

observed. However, statistical tests applied to both the absolute

and rank-transformed values of a and c did not identify significant

differences between groups, suggesting that – based on the

available data – differences in HA sequences between the two

groups do not express themselves phenotypically as differences in

temperature-dependent decay characteristics.

Fitting the within-host model
To simulate a within-host infection, we need to specify

parameter values for the within-host model. While parameter

estimates are available for influenza infections in humans and mice

[41,42], they have not been previously estimated for ducks. We

therefore fitted the model to recent data from influenza infections

with H3N8 in mallards (Anas platyrhynchos) [69]. This virus strain

was not used in the decay experiments shown in table 4, therefore,

we do not have a direct estimate for the within-host clearance rate,

cw. The straightforward approach would be to obtain cw together

with the other parameters by fitting to the data, but this approach

is problematic. As has been shown previously, it is impossible to

use the within-host model (equations 1–3) to accurately estimate

both cw and death rate of infected cells, d, from virus titer data

alone [42,70]. Because of this, we instead set cw~2:78 per day,

which is the mean value of cw for the 12 strains reported in table 4.

We also tried to fit cw, and as expected, the fit did not improve and

cw could not be properly estimated. To perform the fit, we assume

that the infection was started by a 1 EID50=mL (EID50 is the viral

dose that results in a 50% chance of infecting an embryonated egg,

assumed to correspond to 1 infectious virion) and that the initial

number of uninfected target cells is 2:5|107 [71] (while this

estimate is for chickens rather than ducks, the exact value is not

qualitatively important: changes in the target cell numbers only re-

scale the model parameter p and otherwise produce the same

dynamics). In figure 5, we show the best fit to the data, with

parameter values presented in Table 1. We want to point out that

while these parameter estimates are useful and accurate enough

for the purpose of our study, they come with caveats. Most

importantly, estimates are based on the validity of the model used.

A model that does not include an immune response is likely an

over-simplification, albeit a necessary one since adding additional

immune response components and trying to fit such a model to

virus load data only would lead to over-fitting. See e.g. [41,42] and

references therein for further discussions of this and related points

concerning fitting influenza data to models.

Determining between-host fitness
For each strain listed in table 4, we can use cw and the

parameters determined in the previous section and simulate the

within-host infection dynamics. This allows us to numerically

determine the duration of infection, D, and the total virus load,

which in turn specifies the different link functions, sj . We also have

estimates for cb for each strain. To determine fitness as measured

by R0~RdzRe, we also need to know the population size S(0),
and several constants of proportionality, namely h1 and h2

describing the linkage between within-host virus load and

shedding and infection rates, and the environmental transmission

rate, b2. Those quantities are not well known and will likely differ

for different environments. Therefore, absolute values of Rd and

Re are hard to estimate. However, for any strain n we can consider

its fitness relative to some reference strain, Fn~Rn
0=Rr

0. If we

make the assumption that for a given scenario, S(0), h1, h2 and b2

do not differ between strains; and consider the two extreme cases

of either only direct (h2~0) or only environmental (h1~0)

transmission, relative fitness for strain n and link-function j
(j~1,2,3), relative to some reference strain, r, is given by

Fn
direct, j~

sn
j

sr
j

ð19Þ

for direct transmission and

Table 3. Summary of quantities linking the within-host and between-host scales.

symbol meaning

h1 constant of proportionality connecting virus load and direct transmission rate

h2 constant of proportionality connecting virus load and environmental transmission rate

D duration of infectiousness, obtained from the within-host model (equation 10)

s1 link-function to connect virus load with transmission, assuming linear relation (equation 12)

s2 link-function to connect virus load with transmission, assuming linear relation modified by total shedding (equation 15)

s3 link-function to connect virus load with transmission, assuming logarithmic relation (equation 16)

doi:10.1371/journal.pcbi.1002989.t003
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for indirect, environmental transmission. As expected, if we

consider only direct transmission (equation 19), the ability of the

virus to persist at low temperatures (low cb) does not impact its

fitness and therefore the strain that optimizes persistence at high

temperatures (low cw) and therefore optimizes within-host

dynamics (large sj ) performs best. In the presence of environmen-

tal transmission (equation 20), fitness is influenced by persistence

both inside the host (low cw, leading to high sj ) and in the

environment (low cb).

The two cases, environmental only and direct only transmission

represent extremes in terms of potential trade-offs. For direct

transmission alone, there is no trade-off; optimizing within-host

fitness is always the best strategy. The environmental transmission

only scenario represents the case where the importance of the

environmental stage is as large as it can possibly be. Mixture of the

two transmission routes leads to values with intermediate

importance of environmental persistence. While it is certainly

possible to consider the general case with both direct and

environmental transmission and compute absolute and relative

fitness values, this would require making rather arbitrary

assumptions about values for some of the unknown parameters

of proportionality. Since considering such a general mixed

transmission scenario would not add much beyond the results

for the two simpler extreme cases, we focus on these two extreme

cases in the following.

In figure 6, we show the relative fitness of the 12 different

strains, for exclusively direct or environmental transmission

scenarios. We plot relative fitness for the three different link-

functions between within-host virus load and transmission/

shedding described above (s1, s2 and s3 given by equations (12),

(15) and (16)). Strains are sorted according to within-host

performance (i.e. with increasing values of cw). We arbitrarily

chose H1N1 as the reference strain, which therefore always has

a fitness of 1. As expected, for direct transmission (figure 6A),

better within host persistence at high temperatures leads

overall to higher fitness. Results differ little between the link

function based on the simple linear assumption, s1, and the

additional inclusion of total discharge, s2. However, assuming

that the amount of shedding is proportional to the logarithm of

virus load, s3, reduces the relative importance of within-host

dynamics. Put another way, since s3 ‘‘counts’’ log(V ) instead of

V , the fitness impacts of differences in within-host virus load

between strains are diminished and, consequently, the relative

fitness advantage of strains with high within-host persistence is

reduced. This therefore increases the relative fitness of the

Figure 3. Decay rate for 12 different influenza strains as function of temperature. Symbols show data, lines show best fit of an exponential
function. Virus decay for all strains was measured at the indicated temperature, a pH of 7.2, and salinity of 0. Decay for each strain was measured once
for these specific conditions. See [33] for more experimental details.
doi:10.1371/journal.pcbi.1002989.g003

Table 4. Best fit values for the different influenza strains.

strain,
(group) a, (rank) c, (rank) cb, (rank) cw, (rank)

H1N1, (1) 0.019, (5) 0.097, (4) 0.031, (5) 0.914, (4)

H2N4, (1) 0.02, (7) 0.101, (6) 0.033, (6) 1.147, (5)

H3N2, (2) 0.015, (4) 0.098, (5) 0.025, (3) 0.772, (3)

H4N6, (2) 0.021, (8) 0.105, (7) 0.036, (8) 1.427, (7)

H5N2, (1) 0.07, (11) 0.108, (8) 0.121, (11) 5.316, (10)

H6N4, (1) 0.001, (1) 0.23, (12) 0.003, (1) 10.145, (12)

H7N6, (2) 0.034, (10) 0.076, (3) 0.049, (10) 0.697, (2)

H8N4, (1) 0.026, (9) 0.071, (2) 0.037, (9) 0.438, (1)

H9N2, (1) 0.014, (3) 0.123, (10) 0.027, (4) 1.948, (9)

H10N7, (2) 0.09, (12) 0.066, (1) 0.125, (12) 1.263, (6)

H11N6, (1) 0.011, (2) 0.163, (11) 0.025, (2) 7.334, (11)

H12N5, (1) 0.02, (6) 0.114, (9) 0.035, (7) 1.919, (8)

Best fit values for the different strains fitted to the function c(T)~aecT .
Parameter c is in units of 1/degree Celsius, a is in units of 1/day. Also shown are
decay rates (units of 1/day) for each strain at 5 (cb) and 40 (cw) degrees Celsius.
Numbers in parentheses following each strain indicate the genotype group (see
main text). Numbers in parentheses following the other values indicate the rank
of this value for each strain (with rank 1 given to the strain with the lowest
value, corresponding to better persistence.)
doi:10.1371/journal.pcbi.1002989.t004
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strains with high cw. In fact, for the three strains with the

lowest within-host fitness (H5N2, H11N6 and H6N4), the

somewhat reduced within-host fitness due to higher cw leads to

lower virus load but a longer duration of infection, and because

virus load factors into shedding only in a logarithmic fashion, a

longer duration of infection leads to a slightly increased fitness

despite higher cw. See also the next section for another

appearance of this phenomenon. Note that it is unclear how

biologically reasonable sustained within-host virus load (i.e. a

long duration of infection) is. In most immunocompentent

hosts, the immune response usually clears influenza relatively

rapidly [72–77]. In the supplementary materials, we investi-

gate an extended within-host model which includes an

antibody-mediated immune response.

Not surprisingly, for the environmental transmission scenario

(figure 6B), the trend of higher overall fitness for the strains with

better within-host persistence is less pronounced. For instance, the

H7N6 strain is the second fittest strain for the direct transmission

scenario, but is surpassed in fitness for the environmental

transmission scenario by several other strains with better low-

temperature persistence. Again, results for the different link

functions are rather similar. The one outlier is H6N4, which has

the best low-temperature and worst high-temperature persistence.

For this strain and link function s3, the reduction in relative

importance of the high-temperature within-host dynamics com-

pared to the low-temperature between-host persistence strongly

increases this strain’s relative fitness (see top left corner of

figure 6B).

General trade-off for viral decay
So far, we analyzed decay data for specific influenza strains and

documented differences in their ability to persist well at low and

high temperatures. We can go one step further and study the

hypothetical fitness of strains that we did not measure. To do so,

we can vary a (i.e. clearance rate at 0 0C) over a wide range of

values, and for each value we can compute a corresponding c
according to the regression equation log(c)~gzk log(a) estimat-

ed above. We then use the values of a and c to compute virus

decay rate, c(T)~aecT (specifically, cb and cw at 5 and 40 degrees

Celsius). These values for both the actual virus isolates and the

theoretical model are shown in figure 7. The figure shows that not

surprisingly, as a (clearance rate at 0 0C) increases, clearance rate

cb at a close-by low temperature (5 0C) also increases. In contrast,

as a increases (worse low-temperature persistence), the trade-off

leads to a decrease of the within-host clearance rate, cw, (better

high-temperature persistence) – at least initially: At high enough a,

within-host clearance rate starts to increase again. Mathematically,

this is due to the fact that at large a and small c, the linear term in

Figure 4. Temperature trade-off between strains. A) Decay rates for H8N4, H9N2 and H10N7, plotted on a log scale to illustrate the cross-over
of decay rates. B) absolute values of a and c for all strains, (note the log scale). C) Ranks of these parameters. Also plotted in each figure are regression
lines.
doi:10.1371/journal.pcbi.1002989.g004

Figure 5. Best fit of within-host model to fecal virus load from
influenza infections of mallards (Anas Platyrhynchos). The limit
of detection for the virus load was 4 EID50 (EID50 = 50% Egg Infectious
Doses) and is indicated by the dashed horizontal line. See [69] for more
details on the experiments and data. Fitting was done using a least
squares approach for the logarithm of the virus load, corresponding to
the assumption of log-normally distributed errors [89]. For data at the
limit of detection (i.e. left-censored data), differences between model
and data were accounted for if the model was above the data point, but
not if the model took on any value below the limit of detection [75].
doi:10.1371/journal.pcbi.1002989.g005
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the decay equation c(T)~aecT dominates. Biologically, this

indicates a strain with poor persistence largely independent of

the temperature (i.e. both large cb and cw). In our dataset, H5N2

seems to fit this description.

To determine between-host fitness for a generic strain with

given a and c values, we use cw for every value of a and simulate

the within-host infection model, compute duration of infection and

total virus load, determine the link functions sj , and finally

compute fitness as quantified by Re and Rd . We normalize fitness

to 1 to cancel out the different constants of proportionality, as

done previously. Figure 8 shows normalized fitness for direct and

environmental transmission for the different link functions sj . For

s1 and s2, results are virtually indistinguishable. For both s1 and s2,

an intermediate level of a leads to optimal fitness. For direct

transmission, with fitness measured by Rd , the maximum fitness

directly corresponds to the value of a at which cw is lowest (see

figure 7B). For environmental transmission, the maximum fitness

is shifted towards lower a (i.e. lower cb) values, meaning better

persistence at low temperatures becomes important.

For the scenario where shedding and infection rate are proportional

to the logarithm of virus load (s3) one finds that for environmental

transmission, within-host dynamics plays a minor role and persistence

Figure 6. Relative Fitness for the 12 influenza strains. A) direct transmission (equation 19) and B) environmental transmission (equation 20)
scenarios. We plot fitness for the three different link functions, sj , between within-host virus load and transmission/shedding described in the model
section, i.e. s1 , s2 and s3 given by equations (12), (15) and (16). Strains are sorted according to within-host fitness, with H8N4 having the best within-
host fitness (i.e. lowest value of cw, see Table 4). We arbitrarily chose H1N1 as the reference strain, which therefore has a relative fitness of 1.
doi:10.1371/journal.pcbi.1002989.g006
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at low temperatures (low a) is the dominating component for fitness.

Direct transmission for the s3 link function produces the most

interesting pattern. While this scenario shows a local maximum at

medium a like those seen for s1 and s2 link functions, fitness is highest

for either low or high a, close to the edge at which within-host infection

becomes impossible. This is because at those values, virus load is low

but the duration of infection is rather long. As explained in the previous

section, the long duration of infection can more than make up for the

reduced virus levels, leading to an overall increase in s3 and therefore

explaining the high fitness at the edges. The pronounced fitness peaks

resulting from long-lasting infections are not seen in a within-host

model that includes an immune response (see supplementary

materials), and are therefore likely not relevant for influenza in

immunocompetent hosts. However, such a long-lasting infection might

have relevance for immunocompromised hosts, and is likely important

for other pathogens (see e.g. the ‘‘sexually transmitted infection regime’’

in [53]).

Discussion

Trade-offs between different traits or phenotypes acting at

different scales are likely common and have been explored

Figure 7. Virus decay rate at different temperatures. A) environmental, between-host temperature, cb , and B) within-host temperature, cw, as a
function of a (decay rate at 0 degrees Celsius). Solid lines are theoretical values obtained by choosing a value of a and computing the corresponding
value for c from the regression equation log(c)~gzk log(a), where the values for g~{3:28 and k~{:026 are the best-fit values obtained
previously by fitting the decay data for the different strains. The dashed horizontal line indicates the level of cw above which within-host fitness is so
small that no infection takes place. H5N2 is highlighted as a strain with poor persistence at both low and high temperatures – see text.
doi:10.1371/journal.pcbi.1002989.g007

Figure 8. Normalized Fitness as measured by Rd and Re for direct transmission and environmental transmission. The dashed vertical
lines indicate the level of a above which cw becomes so large that no infection takes place (c.f. horizontal line in figure 7). Note that results for s1 and
s2 are virtually indistinguishable and therefore the curves are on top of each other.
doi:10.1371/journal.pcbi.1002989.g008
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previously (see e.g. [9,10,40,53,58,78–88] for some recent work).

In this study, we focused on trade-offs in temperature-dependent

virus decay and analyzed how the interaction of within- and

between-host scales determines overall fitness. Taking a panel of

influenza A strains, we found evidence that a trade-off exists

between the ability to persist at low temperatures versus high

temperatures. Of course, the negative correlation found in the data

should by no means be taken as proof of the existence of such a

trade-off. Further, more detailed studies are needed to investigate

this potential trade-off more carefully. If the finding holds up, it

would also be very interesting to elucidate the mechanism

responsible for this trade-off. As it currently stands, we consider

the observed pattern as an interesting suggestion that made it

worthwhile to investigate how – given such a trade-off – the

within-host and between-host scales interact to impact overall

fitness. By linking the within-host dynamics to the population level,

we were able to estimate population level-fitness as measured by

the reproductive number for both the cases where transmission is

through direct contact between birds and where transmission

occurs through an environmental stage (i.e. virus persistence in

water). We found that if direct transmission is dominant, viruses

that persist well at high temperatures and therefore perform well

within a host also had the best between-host fitness. This trend was

most pronounced if transmission or shedding was directly

proportional to the total within-host virus load. For the

environmental transmission scenario, the balance was somewhat

shifted toward viruses with good environmental, low-temperature,

persistence. This was especially true if shedding and infection rate

were assumed to be proportional to the logarithm of the virus load.

In the supplementary materials, we also explored the impacts of

taking into account an immune response. We found a somewhat

diminished importance of differences in the between-host decay

rate between strains. This, in turn, leads to greater emphasis on

the fitness contribution of environmental persistence. Along

similar lines, a brief analysis of a model including virulence

suggests that if high within-host fitness leads to host death and

thereby interruption of transmission, the balance would be further

tipped toward strains that have good environmental persistence.

Both more detailed within-host models including further aspects

of the immune response and more detailed virulence models are

worthwhile avenues for further studies. So are models with more

detailed links of the within-host and between-host scales. However,

to go beyond qualitative results, the right kind of data would need

to be available to allow proper specification and parameterization

of such more complex models.

In addition, it will be worthwhile to follow up with studies that

look at virus fitness beyond the reproductive number. Specifically,

given the epidemic behavior of influenza, a model that would

explicitly simulate multiple rounds of seasonal between-host

outbreaks (along the lines of [16]) and track persistence and

extinction of strains with different temperature-dependent persis-

tence strategies might be insightful. Similarly, a more detailed

model of environmental persistence, e.g. through inclusion of

seasonal variation and other dynamical features, and its effect on

fitness as measured by the reproductive number or some other

suitable quantity might be of interest.

Another fruitful topic for future studies is to investigate

additional potential trade-offs. It is known that temperature has

an effect on other phenotypes, such as virus binding efficiency or

the performance of polymerase. This could be included in a model

by making other model parameters temperature-dependent.

Provided the right kind of data were available, one could then

study how temperature impacts these additional parameters and

thereby overall fitness.

In summary, our results show that differences in fitness can at

times be substantial and strongly depend on transmission route

and how within-host and between-host models are linked. Based

on our findings, we predict that if shedding and infection rates are

proportional to virus load, virulence is negligible, and within-host

virus clearance is primarily determined by temperature-dependent

virus decay, there is strong evolutionary pressure for influenza

viruses to increase persistence at high temperatures. Conversely, if

virus shedding and direct transmission rates scale with the

logarithm of virus load, if virulence plays an important role, or if

within-host virus clearance is essentially via the immune response

or other non-temperature dependent mechanisms, influenza

viruses with good environmental persistence at low temperatures

should be favored.

Supporting Information

Figure S1 Flow diagram for the within-host model with
a B-cell/antibody immune response. U , X , V and B are

the variables describing uninfected cells, infected cells, virus and B-

cells/antibodies. Uninfected cells become infected at rate k,

infected cells produce virus at rate p and die at rate d. Virus decays

at rate cW . B-cells/antibodies expand exponentially through clonal

expansion at rate r and remove virus at rate q. Solid lines indicate

physical flows, dashed lines indicate interactions.

(TIFF)

Figure S2 Relative fitness for different strengths of the
immune response. Left column shows direct transmission

scenarios, right column shows environmental transmission scenar-

ios. The rows show from top to bottom the different forms of

linking within-host virus load to between-host transmission, i.e. s1,

s2, s3. Note that for clarity of representation, we use a linear scale

for the direct and a log scale for the environmental transmission

scenario.

(TIFF)

Figure S3 Fitness as measured by Rd and Re (normal-
ized to 1) for direct transmission and environmental

transmission, with immune response at q~10{1. The

dashed vertical lines indicate the levels of a where cw becomes so

large that no infection takes place. Note that results for s1 and s2

are virtually indistinguishable and therefore the curves are on top

of each other.

(TIFF)

Figure S4 Relative fitness for the A) direct and B)
environmental transmission scenario for different shed-
ding definitions in the presence of virulence. Fitness for

H6N4 in the environmental transmission scenario with link-

function s3 is 50 and not shown on the plot.

(TIFF)

Text S1 Additional Results for a within-model including
an immune response and a scenario including virulence.

(PDF)
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