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Abstract

Ecological interference between unrelated diseases, caused by the temporary or permanent removal of individuals susceptible to

one disease following infection with another, might be an important mechanism underlying epidemics. In this paper, we explore the

potential dynamic consequences of interference by analyzing a two-disease model. By studying the stability domain of the model’s

equilibria, we find that the stable region of the two-disease endemic state becomes increasingly smaller as the strength of interference

(largely determined by the disease-induced mortality) increases. When seasonal changes are included in the transmission rates, the

bifurcation structure of the model’s periodic cycles reveals that when the two diseases have similar mean transmission rates, multiple

attractors in which the two diseases are strongly correlated can coexist, and that when the two diseases have very different mean

transmission rates, the one with higher mean transmission rate may determine the dynamics of the system, with the other infection

mimicking the behavior. We conclude that ecological interference can have important effects on the dynamical pattern of interacting

diseases, the extent of which is determined by the epidemiological features of the diseases, their mean transmission rates in

particular.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Understanding the incidence and spread of infectious
diseases has been a major focus of both empirical and
theoretical epidemiologists (Anderson and May, 1991;
Diekmann and Heesterbeek, 2000). The great micro-
parasitic infections of childhood, such as measles and
whooping cough, have received substantial attention
from epidemiologists, due to the extensive available data
sets documenting their spatio-temporal dynamics and
the fascinating patterns observed in these data (e.g.
Bartlett, 1956; Schenzle, 1984; Bolker and Grenfell,
1993, 1995; Rohani et al., 1999; Bauch and Earn, 2003).
e front matter r 2005 Elsevier Inc. All rights reserved.
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Understanding the mechanisms underlying such epi-
demic behavior has been of great interest to mathema-
tical epidemiologists, who have developed a suite of
models, such as the well-known SIR and SEIR models,
to study these issues (Dietz, 1976, 1979; Smith, 1983a, b;
Aron and Schwartz, 1984; Kuznetsov and Piccardi,
1994; Earn et al., 2000).

Traditionally, epidemiologists have attempted to gain
insight into the dynamics of a particular infection by
focusing solely on the causative aetiological agent and
the host, assuming no interaction with other pathogens.
In recent years, single-host and single-pathogen ap-
proaches have been extended to incorporate multiple
hosts and pathogens (Gupta et al., 1994; Gog and
Swinton, 2002). These studies can be categorized
according to the scale of interest: the antigenic or
cellular scale and the population level. At the small
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scale, studies have typically explored the immunological
interaction between pathogens as a result of co-infection
(Nowak and May, 1994; Kirschner, 1999). At the
ecological level, shared pathogens have been demon-
strated to be influential in shaping extinction dynamics
by causing ‘‘apparent’’ competition between species
(Tompkins et al., 2001). The issue that epidemics of
unrelated pathogens might interact, however, has not
been given the attention it deserves.

In 1979, Dietz proposed (as far as we are aware) the
first one-host two-pathogen model to study the epi-
demics of adenoviruses. Since then, more complicated
models have been developed, most of which have
typically focused on the interactions between different
strains of the same pathogen (Castillo-Chavez et al.,
1989; Andreasen et al., 1997). Recently, Rohani et al.
(1998, 2003) have proposed a mechanism underlying the
interaction between antigenically distinct infections,
such as measles and whooping cough. The mechanism
that gives rise to an interaction is ecological (rather
than immunological) and is based on the (temporary
and/or permanent) removal of individuals from the
susceptible pool for one pathogen following infection by
a ‘‘competitor’’. A two-disease model has been devel-
oped to study this possible interaction. The results
of this modeling work identified a negative correla-
tion between the outbreaks of the two infections
as the dominant signature of disease interference.
Empirical patterns consistent with model predictions
have been observed in historical European data (Rohani
et al., 2003).

The previous work has focused exclusively on the
scenario where interacting diseases have the same basic
reproductive ratio. In this paper, we will explore the
dynamical consequences of disease interaction further
by studying a two-disease model. The following are the
key questions we aim to answer:
1 2
(i)
XSR

(v1)
XRS

(v2)
How does the (temporary or permanent) removal of
individuals after infection with one disease affect
the endemic equilibrium incidence of the other
disease?
(ii)
 What are the range of dynamical attractors
observed when the system is seasonally forced?
(iii)

XIR XRI
Is there a consistent relationship between the
predicted dynamics of the two diseases?
(z1) (z2)
(iv)
 How does the strength of interference depend on
the two diseases’ mean transmission rates?
(v)
XRR
Under what circumstances will the epidemics of one
disease mimic those of the other, exhibiting
dynamics that cannot be found in a corresponding
single-disease model?
Fig. 1. A flow chart for the epidemiologic process in the two-disease

model. The subscripts of the variable X indicate the infection history of

individuals. Detailed explanation is given in the text.
In order to answer these questions, we will investigate
the bifurcation structure of both the endemic states and
the seasonally driven oscillations.
2. The two-disease SICR model

Consider two infectious diseases that compete for one
host. Similar to Rohani et al. (1998), we assume the
following simplified natural history of infection for each
disease: individuals are Susceptible to infection at birth,
upon contracting an infection an Infectious period
ensues, which is followed by Convalescence upon
clinical diagnosis. During the convalescence period, we
assume that an individual is completely isolated from
the rest of the population and that it could die as a result
of infection. Upon Recovery, the individual is consid-
ered permanently immune to the disease and is now only
susceptible to the other disease if previously unexposed
to it. A flow chart illustrating the epidemiologic process
is given in Fig. 1. Note that for mathematical simplicity,
we ignore the incubation period, but our qualitative
results are not affected by this assumption. The
important ingredients in the model that are predicted
to give rise to interaction between different infections
are (i) the convalescence period, and (ii) disease-induced
mortality (DIM), which result in, respectively, tempor-
ary and permanent removal of individuals susceptible to
one disease following infection with the other.
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The model is described as follows:

_X SS ¼ �b1X SSX I : � b2X SSX :I � mX SS þ m, ð2:1Þ

_X IS ¼ b1X SSX I : � ðg1 þ mÞX IS, ð2:2Þ

_X SI ¼ b2X SSX :I � ðg2 þ mÞX SI , ð2:3Þ

_X CS ¼ g1X IS � ðd1 þ r1d1 þ mÞX CS, ð2:4Þ

_X SC ¼ g2X SI � ðd2 þ r2d2 þ mÞX SC , ð2:5Þ

_X RS ¼ d1X CS � b2X RSX :I � mX RS, ð2:6Þ

_X SR ¼ d2X SC � b1X SRX I : � mX SR, ð2:7Þ

_X IR ¼ b1X SRX I : � ðg1 þ mÞX IR, ð2:8Þ

_X RI ¼ b2X RSX :I � ðg2 þ mÞX RI , ð2:9Þ

_X RR ¼ g1X IR þ g2X RI � mX RR. ð2:10Þ

Here X I : ¼ X IS þ X IR and X :I ¼ X SI þ X RI are the
proportion of infectives with diseases 1 and 2, respec-
tively. The subscripts for each variable reflect the
infection history of individuals in that class. For
example, X IS represents the fraction of the total
population who are infected with disease 1, and have
not previously contracted disease 2. Note that no co-
infection is assumed in the model. In addition, there are
two more assumptions behind the model formulation.
First, the total population has reached its demographic
equilibrium which has been scaled to 1 in the absence of
diseases, so the birth rate always matches the death rate
(m). Second, the population can increase its birth rate in
response to disease-related deaths, which appears to be
realistic for human population, so the total population
still can approach to an equilibrium which would be
slightly smaller than 1 if the birth rate remains to be m.
These two assumptions allow for a uniform model
formulation for both cases (with and without disease-
related deaths) after being scaled by the equilibrium
population size. The description of model parameters
are summarized in Table 1. While the notation
concerning model variables is informative, it is also
cumbersome. For this reason, we make the following
substitutions: x � X SS; y1 � X IS ; y2 � X SI ; z1 � X IR;
z2 � X RI ; u1 � X CS; u2 � X SC ; v1 � X SR; v2 � X RS.

The model with this notation, after dropping the
equation for X RR which is superfluous, becomes

_x ¼ �b1ðy1 þ z1Þx � b2ðy2 þ z2Þx � mx þ m, ð2:11Þ

_y1 ¼ b1ðy1 þ z1Þx � ðg1 þ mÞy1, ð2:12Þ

_y2 ¼ b2ðy2 þ z2Þx � ðg2 þ mÞy2, ð2:13Þ

_u1 ¼ g1y1 � ðd1 þ r1d1 þ mÞu1, ð2:14Þ

_u2 ¼ g2y2 � ðd2 þ r2d2 þ mÞu2, ð2:15Þ

_v1 ¼ d2u2 � b1ðy1 þ z1Þv1 � mv1, ð2:16Þ

_v2 ¼ d1u1 � b2ðy2 þ z2Þv2 � mv2, ð2:17Þ

_z1 ¼ b1ðy1 þ z1Þv1 � ðg1 þ mÞz1, ð2:18Þ

_z2 ¼ b2ðy2 þ z2Þv2 � ðg2 þ mÞz2. ð2:19Þ
In order to make latter expressions more compact and
informative, we introduce a few groups of parameters

Ri �
bi

gi þ m
; i ¼ 1; 2, (2.20)

qi �
gi

dið1 þ riÞ þ m
; i ¼ 1; 2 (2.21)

and

ai �
di

dið1 þ riÞ þ m
�

gi

gi þ m
; i ¼ 1; 2, (2.22)

where the first group is known as the basic reproductive

ratios.

3. Constant transmission rates: Equilibria and their

bifurcations

For two-disease interactions, one of the fundamental
questions is under what conditions is coexistence
possible. The question can be studied straightforwardly
by examining the existence and stability of model
equilibria. When the transmission rates of both diseases
(b1 and b2) are constant, there are up to 4 equilibria,
depending on parameter values: the disease-free equili-
brium E1; the single-disease endemic equilibria E2 and
E3; and the two-disease endemic equilibrium E4. It is not
difficult to derive the condition for the existence of all
equilibria and the stability of E1;E2;E3 by following the
computational procedure outlined by Dietz (1979) (see
Appendix A). An analytical proof for the stability of E4

and the exclusion of Hopf bifurcation are, however, far
from straightforward. Gumel et al. (2003) have numeri-
cally derived a normal form with a Lotka–Volterra type
of competitive interaction at the neighborhood of the co-
dimension-2 point ðR1;R2Þ ¼ ð1; 1Þ (for a two-disease
‘‘SEICR’’ model) (Kuznetsov, 1998) and demonstrated
that the two-disease endemic equilibrium must be stable
when both single-disease equilibria lose their stability
and that there is no Hopf bifurcation associated with the
two-disease endemic equilibrium. We found, by intensive
numerical experiments with AUTO (Doedel et al., 1998),
that these results are also true for our two-disease
‘‘SICR’’ model under the parameter setting considered.
However, we do not exclude the possibility of Hopf
bifurcations associated with equilibrium E4 for other
parameter settings that we have not explored in this
paper. Combining with the bifurcation conditions which
can be calculated analytically, we may summarize the
results for the equilibria of our model as follows:
(i)
 when R1o1 and R2o1 there is only a stable
disease-free equilibrium, E1.
(ii)
 when R141 and

R1

1 þ a1ðR1 � 1Þ
4R2 (3.1)
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Table 1

Brief description of parameters

Parameter description

m Per-capita natural death rate

bi Transmission probability per unit time per contact

associated with disease i

1=gi Average infectious period for disease i (prior to being

quarantined)

1=di Average convalescent or quarantined period for disease i

ri Disease-induced mortality which may be expressed as

� lnð1 � pÞ in which p 2 ½0; 1Þ is the disease-induced

probability of dying
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only disease 1 persists, giving rise to a unique stable
equilibrium E2.
R1
(iii)
Fig. 2. A two parameter bifurcation diagram for the two-disease SICR

model. In this diagram, we contrast the case where the disease-induced

mortality is ignored (r1 ¼ r2 ¼ 0) with the cases where it is

incorporated (for r1 ¼ r2 ¼ 0:2 and r1 ¼ r2 ¼ 0:4). For each pair of

r1 and r2, the ðR1;R2Þ parameter space is divided into 4 regions by 4
when R241 and

R2

1 þ a2ðR2 � 1Þ
4R1 (3.2)

only disease 2 persists, giving rise to a unique stable
equilibrium E3.
bifurcation curves. The other parameters are as follows: m ¼ 0:02,
(iv)

g1 ¼ g2 ¼ 45, d1 ¼ d2 ¼ 50. Namely, the average life expectancy of the

host is 50 years, the infectious periods are identically 0.01 year, and the
otherwise, there is a stable coexistent equilibrium
E4.
convalescent periods are identically 0.02 year.
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Fig. 3. A bifurcation diagram illustrating the equilibrium level of

incidence of one disease in relation to the two interference parameters

determined by the other disease. It is seen that at the equilibrium level,

the incidence level of one disease is negatively related to the DIM of

the other disease. The values of the other fixed parameters are the same

as in Fig. 2.
These results can be further illustrated by way of a
bifurcation diagram (see Fig. 2) which allows us to
explore how disease-induced mortality (i.e. ri, which will
be abbreviated as DIM hereafter,) affects the likelihood
of stable coexistence. By contrasting the stable coex-
istence regions for different DIMs, we find that the
domain of coexistence shrinks when the DIM of one or
both diseases increases (the region bounded by the two
solid-line curve shrinks to the region bounded by the
two dashed-line curves). More precisely, the higher the
DIM of one disease, the harder it is for the other disease
to invade.

Having established the effect of the convalescent
period and DIM on coexistence, we explore their effects
on disease incidence. To this end, we plot (in Fig. 3) the
equilibrium level of incidence of disease 1 (y�

1 þ z�1 ) as
the convalescent period (1=d2) and the DIM of disease 2
(r2) vary. We find that at the equilibrium level, the
incidence of one disease is negatively related to the DIM
of the other disease, which is not surprising because the
death caused by one disease reduces the number of
susceptible individuals to the other. So, it is the DIM
rather than the convalescent period that plays the
key role.

One may further ask how much is the fraction of
population that are not available for one disease due to
the presence of the other disease. To see that, we plot,
for different basic reproductive ratios, the percent of the
population at equilibrium that are not available for
disease 2 against the convalescent period for disease 1
(Fig. 4). As shown in the figure, the presence of disease 1
reduces the population available for disease 2 in a scale
of one percent. Thus, the presence of one disease does
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not seem to affect the magnitude of the population
associated with the other disease greatly.
4. Seasonally forced transmission rates: Periodic cycles

and their bifurcations

Now we consider the case where the transmission
rates are seasonally varying, which is intended to mimic
the transmission consequences of aggregation of chil-
dren in schools. More precisely, we assume that the
transmission rates change according to the following
functional form:

biðtÞ ¼ bi0ð1 þ s cos 2ptÞ; i ¼ 1; 2. (4.1)

Here bi0 is the mean transmission rate of disease i

and s measures the seasonal amplitude. The time is
scaled to units of year, so the period of seasonality
is 1 year.

When one or both transmission rates are seasonally
forced, the two diseases will oscillate periodically. To
demonstrate this and to explore possible bifurcation
events we use continuation methods in AUTO (Doedel
et al., 1998) as the principal numerical tool. The
numerical procedure is the following:
�
 Step 1: Select a set of symmetric (identical for the two
diseases) parameters that allow for a unique stable
equilibrium E4 (in the absence of seasonality (s ¼ 0)).
The elements of this equilibrium can be computed
explicitly as follows:

x� ¼
m

2w� þ m
,

y�
1 ¼ y�

2 � y� ¼
Rw�x�

b
,

z�1 ¼ z�2 � z� ¼
w�

b
� y�,

u�
1 ¼ u�

2 � u� ¼
g

dð1 þ rÞ þ m
y�,

v�1 ¼ v�2 � v� ¼
d

w� þ m
u�,

where

w� ¼
m
4
f½ð1 þ aÞR � 3

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ aÞ2R2 � 2Rð3a � 1Þ þ 1

q
g

while b; g; d;r;R and a are the corresponding sym-
metric parameters.
�
 Step 2: Starting from this analytically known
equilibrium, use AUTO to compute a branch of
periodic solutions as the amplitude of seasonality in
transmission rates (s in (4.1)) is varied.
�
 Step 3: Track further bifurcations of the cycles for the
amplitude of seasonality or any other parameters of
interest.

4.1. ‘‘Similar’’ mean transmission rates: Complex

interference patterns

As is pointed out in the introduction, it is important
to examine how the dynamical patterns of interference
are related to the competitive potentials of the two
diseases, as characterized by their mean transmission
rates (bi0). To this end, we need to check how cycles (for
a specific amplitude of seasonality) bifurcate as the
difference between the mean transmission rates of the
two diseases varies. As is summarized in Fig. 5, we have
identified 4 bifurcation curves which divide the ðs;b10Þ

parameter space into 6 regions. The bifurcation scenario
(for fixed b10) can be briefly described as follows. For
small s, there are only stable annual cycles, as also
found by Rohani et al. (1998). As s increases, two
period-doubling bifurcations ( ‘‘PD1’’ and ‘‘PD2’’)
occur, giving rise to, respectively, a type 1 biennial cycle
in which the two diseases are negatively correlated and a
type 2 biennial cycle in which the two diseases are
positively correlated. When the type 1 biennial cycle
(arising from ‘‘PD1’’) is continued (by changing s), a
fold bifurcation happens. The locus of this bifurcation
in the ðs; b10Þ parameter space is a curve labeled by
‘‘F1’’. When the type 2 biennial cycle (arising from
‘‘PD2’’) is continued (by changing s), a fold bifurcation
is also detected. The locus of this bifurcation in the
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the biennial cycles arising from, respectively, ‘‘PD1’’ and ‘‘PD2’’. The

meaning and the existence and stability of the cycles are described in

the main text and summarized in Table 2. Fixed parameters: b20 ¼ 600,

g1 ¼ g2 ¼ 45, d1 ¼ d2 ¼ 50 and r1 ¼ r2 ¼ 0.

Table 2

Existence and stability of the relevant cycles

Annual Biennial� Biennialþ

Region 1 s n n

Region 2 s s n

Region 3 u s n

Region 4 u s n

Region 5 u s u

Region 6 u s s

Biennial� and Biennialþ represent, respectively, the negatively and

positively correlated biennial cycles. The symbols ‘‘n’’, ‘‘s’’ and ‘‘u’’

mean, respectively, non-existent, stable and unstable.
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ðs;b10Þ parameter space, labeled by ‘‘F1’’, lies to the left
of ‘‘PD2’’. When the type 2 biennial cycle is continued
further, a period-doubling bifurcation can be found
(which is not shown in the diagram so as to focus on the
bifurcation events for small amplitude of seasonality),
giving rise to 4-year cycles. In the (d; b10) parameter
space the existence and stability of cycles in various
regions, as confirmed numerically, can be described as
follows:
2

n 
of

 in
�
 o
In region 1 there is only a stable annual cycle.

1rt

i

�

0ro
po
In region 2, a stable annual cycle and a type 1
biennial cycle (and an unstable biennial cycle) coexist.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2P
�

Time(Years)(c)

Fig. 6. Typical stable cycles as found in the various regions of Fig. 5.
In region 3, there is a stable type 1 biennial cycle
(together with an unstable annual cycle and an
unstable biennial cycle).
�
 (a) an annual cycle (b10 ¼ 700;s ¼ 0:0125, in region 1), (b) a negatively

correlated biennial cycle (b10 ¼ 673; s ¼ 0:0345, in region 4) and (c) a
In region 4, there are a stable type 1 biennial cycle
and an unstable annual cycle.
positively correlated biennial cycle (b10 ¼ 649;s ¼ 0:0797, in region 6).
�
 In region 5, there are a stable type 1 biennial cycle, an
unstable type 2 biennial cycle and an unstable annual
cycle).
�
 In region 6, a stable type 1 biennial cycle and a stable
type 2 biennial cycle coexist. There is also an unstable
annual cycle.

The meaning and the existence and stability of the cycles
are summarized in Table 2. The three types of cycle are
given in Fig. 6.
Next, we compute and plot the locus of the period-
doubling point ‘‘PD2’’ in (b10;b20) parameter space for a
fixed amplitude of seasonality in region 6. It turns out
that the locus is a loop (see Fig. 7). Inside the loop,
where the mean transmission rates of the two diseases
are ‘‘similar’’, the two types of stable biennial cycles, in
which the two disease strongly correlated, can coexist,
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transmission rate (and an appropriate infectious period) can dominate

the dynamics of the system, with the other infection mimicking the

behavior. s ¼ 0:111. d1 ¼ d2 ¼ 35; r1 ¼ r2 ¼ 0.
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in contrast to the situation outside the loop, where
dynamical patterns are relatively simple, with only
negatively correlated stable biennial cycles being
possible.

4.2. ‘‘Dissimilar’’ mean transmission rates: One disease

mimics the other

It has been demonstrated (both here and in Rohani et
al., 1998, 2003) that it is possible for a disease, such as
whooping cough, which exhibits rigidly annual cycles in
single-disease models, to exhibit biennial cycles in two-
disease models. In this subsection, we explore possible
mechanisms underlying this observation. To address this
question, we employ the following numerical procedure.
First, we choose a set of symmetric (i.e. identical for
both diseases) parameters for which the two-disease
model has only annual cycles. Second, we fix an
appropriate strength of seasonal force (s) to look for
possible bifurcations of the annual cycle from which
biennial cycles may arise, as the transmission rate of
disease 1 (b10) varies. Third, we compute the locus of
such a bifurcation point in the (b10; g1) parameter space
once it is detected. As is presented in Fig. 8, we have
indeed found a period-doubling bifurcation of the
annual cycle from which a biennial cycle, in which both
diseases oscillate out of phase, arises. Note that the
characteristic parameters associated with disease 2 (b20

and g2) always remain constant. Therefore, it is disease 1
(with a relatively high mean transmission rate and an
appropriate infectious period) that induces disease 2 to
mimic the behavior, exhibiting biennial oscillations that
are not possible in the corresponding single-disease
model. A typical biennial cycle of disease 2 is shown in
Fig. 9. It should be pointed out, as seen in Fig. 8, that
the period-doubling bifurcations occur even when the
two diseases have equal basic reproductive ratios. This
suggests that it is the difference between the mean
transmission rates rather than the difference between the
basic reproductive ratios, that determines such inter-
ference signature.
5. Discussion

For (one-host) two-disease systems, one of the
fundamental questions concerns the coexistence of the
two infections. By examining the existence and stability
conditions of equilibria of the model, we have found
that the conditions necessary for the two diseases to
coexist are generally not particularly restrictive. This is
partly because of the long host lifespan and the brief
infectious period of the diseases, typical of most human
diseases. Our results have demonstrated that the
condition for competitive exclusion, may be significantly
affected by the disease-induced mortality (ris). Increases
in these parameters result in a reduction of the
coexistence region.
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Using continuation methods, we have identified at
least three types of attractor when the amplitude of
seasonality is small: (i) annual cycles, (ii) biennial cycles
in which the outbreaks of both infections are positively
correlated, and (iii) negatively correlated biennial cycles.
More complicated dynamics such as 4-year cycles and
chaotic attractors are possible as the amplitude of
seasonality is increased, but we have concentrated on
parameters that we think realistic for childhood diseases
(Keeling and Grenfell, 2002; Earn et al., 2000). It is
interesting to note that the in-phase (or, negatively
correlated) biennial dynamics (also reported in Rohani
et al., 2003; Kamo and Sasaki, 2002) are highly sensitive
to stochasticity. The introduction of noise (be it
demographic or environmental) tends to force the
outbreaks of the two infections out of phase. Under-
standing the precise mechanisms behind this finding is
interesting and important, but is beyond the scope of the
present study.

One of our main findings was that (for a fixed
amplitude of seasonality) there is a threshold for the
difference between mean transmission rates at which the
dynamical properties of the system bifurcated. It
suggests that when the two-disease have similar mean
transmission rates the system may exhibit complex
dynamic interference patterns; in particular, multiple
attractors, in which the two diseases are strongly
correlated, can coexist.

Another interesting result is that in the presence of
seasonality, the disease with the lower mean transmis-
sion rate mimics the dynamical behavior of the other
infection. More precisely, when the mean transmission
rate of one disease becomes sufficiently high the annual
cycle of both diseases might undertake a period-
doubling bifurcation, giving rise to biennial cycles which
are not possible for the disease with a lower mean
transmission rate when evaluated in a corresponding
single-disease model. The result implies that one disease
with a sufficiently higher mean transmission rate than
the other, like the case of measles and whooping cough
(Anderson and May, 1991; Rohani et al., 2002), may
dominate the dynamical behavior of the system in which
they interact.

The classic SIR (and SEIR) models have exposed
some fundamental features of single-disease dynamics,
such as the mechanisms that cause periodic dynamics
and chaotic behaviors, with strong empirical evidence.
The findings in this paper imply that for infections with
a substantial convalescence period or an increased
disease-induced mortality following infection, it may
be impossible to understand epidemics by focusing on
single-infection dynamics. Previous work (Rohani et al.,
1998, 2003) has demonstrated that patterns from
measles and whooping cough case fatality data in
Europe are consistent with the predictions of two-
disease models. Further analysis of these data are
currently under way.

It has been argued by Rohani et al. (2003) that
interference effects are most pronounced between
infections with a similar basic reproductive ratio. The
rationale behind this argument was that interference is
most likely when diseases affect largely the same age-
cohort, as dictated by the distribution of the age at
infection. The next step in understanding disease
interference is, therefore, to consider age-specific contact
rates (Castillo-Chavez et al., 1989; Hethcote, 1988, 1997;
Greenhalgh, 1988; Greenhalgh and Dietz, 1994; Diek-
mann and Heesterbeek, 2000). We are currently explor-
ing this issue.

Finally, we note that much of the approaches to
studying immunological interactions between different
strains of the same disease (as mediated by cross-
immunity) can be ‘‘borrowed’’ to studying ecological
interactions between different diseases (arising from
convalescence or fatality). The former has been inten-
sively studied, giving rise to a series of heuristic
methods, concepts and theories (Castillo-Chavez
et al., 1989; Andreasen et al., 1997; Kamo and Sasaki,
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2002). A comprehensive comparison between the two
topics would be an interesting issue that deserves
attention.
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Appendix A. Calculation of equilibria

An equilibrium is the solution of the following system
of equations:

0 ¼ �b1ðy1 þ z1Þx � b2ðy2 þ z2Þx � mx þ m, ðA:1Þ

0 ¼ b1ðy1 þ z1Þx � ðg1 þ mÞy1, ðA:2Þ

0 ¼ b2ðy2 þ z2Þx � ðg2 þ mÞy2, ðA:3Þ

0 ¼ g1y1 � ðd1 þ r1d1 þ mÞu1, ðA:4Þ

0 ¼ g2y2 � ðd2 þ r2d2 þ mÞu2, ðA:5Þ

0 ¼ d2u2 � b1ðy1 þ z1Þv1 � mv1, ðA:6Þ

0 ¼ d1u1 � b2ðy2 þ z2Þv2 � mv2, ðA:7Þ

0 ¼ b1ðy1 þ z1Þv1 � ðg1 þ mÞz1, ðA:8Þ

0 ¼ b2ðy2 þ z2Þv2 � ðg2 þ mÞz2. ðA:9Þ
(i)
 For y1 ¼ y2 ¼ 0 we immediately obtain the disease-
free equilibrium

E1 ¼ ð1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ. (A.10)
(ii)
 For y1a0; y2 ¼ 0 one finds that u2 ¼ v1 ¼ z1 ¼

z2 ¼ 0 while the rest of the equilibrium components
are the solution of the following equations (with
some new notations Ri; qi which have been defined
in the main text)

0 ¼ �ðb1y1 þ mÞx þ m, ðA:11Þ

0 ¼ ðR1x � 1Þy1, ðA:12Þ

0 ¼ q1y1 � u1, ðA:13Þ

0 ¼ d1u1 � mv2, ðA:14Þ

which yields an equilibrium E2 ¼ ðx�; y�
1; 0; u

�
1; 0; 0;

v�2; 0; 0Þ in which

x� ¼
1

R1
; y�

1 ¼
mðR1 � 1Þ

b1

,

u�
1 ¼ q1y�

1; v�2 ¼
d1

m
u�

1. ðA:15Þ
One can easily derive the other single-disease
endemic equilibrium E3 by symmetry. Note that
the secondary parameters Ri; qi and ai have been
defined in (2.20)–(2.22), respectively.
(iii)
 For y1a0, y2a0, we find, by, respectively, summing
up (A.2) and (A.8) and (A.3) and (A.9), that

vi ¼
1

Ri

� x; i ¼ 1; 2 (A.16)

while (A.4) and (A.5) gives

ui ¼ qiyi ¼ qiRiðyi þ ziÞ; i ¼ 1; 2, (A.17)

where we used the relation yi ¼ Riðyi þ ziÞ given by
(A.2) and (A.3). Substituting these relations into
(A.6) and (A.7) one finds that

d2q2R2ðy2 þ z2Þx

¼ ðb1ðy1 þ z1Þ þ mÞ
1

R1
� x

� �
, ðA:18Þ

d1q1R1ðy1 þ z1Þx

¼ ðb2ðy2 þ z2Þ þ mÞ
1

R2
� x

� �
, ðA:19Þ

where

x ¼
m

b1ðy1 þ z1Þ þ b2ðy2 þ z2Þ þ m
(A.20)

as a result of Eq. (A.1).
By denoting

W i � biðyi þ ziÞ; i ¼ 1; 2, (A.21)

we end up with two decoupled equations

ðW 1 þ mÞðW 1 þ W 2 þ mÞ

¼ mR1ðW 1 þ a2W 2 þ mÞ, ðA:22Þ

ðW 2 þ mÞðW 1 þ W 2 þ mÞ

¼ mR2ða1W 1 þ W 2 þ mÞ. ðA:23Þ

The two equations (A.22) and (A.23) define two
hyperbolas in ðW 1;W 2Þ plane

W j ¼
ðW i þ mÞ½ðW i þ mÞ � mRi

�ðW i þ mÞ þ mRiaj

, (A.24)

which have exactly one intersecting point in the
positive quadrant if and only if

R141; R241 (A.25)

and

R14
R2

1 þ a2ðR2 � 1Þ
and

R24
R1

1 þ a1ðR1 � 1Þ
. ðA:26Þ

This intersecting point corresponds to a positive
equilibrium which we denote as E4.
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Appendix B. Linear stability analysis of E2
Let us rearrange the components of the state variable
as ðx; y1; y2; z1; z2; u1; u2; v1; v2Þ. The Jacobian of the
linearized system evaluated at an equilibrium ðx�; y�

1;
y�

2; z
�
1; z

�
2; u

�
1; u

�
2; v

�
1; v

�
2Þ has the following form:

B ¼

b11 �b1x� �b2x� �b1x� �b2x� 0 0 0 0

w�
1 b22 0 b1x� 0 0 0 0 0

w�
2 0 b33 0 b2x� 0 0 0 0

0 b1v�1 0 b44 0 0 0 w�
1 0

0 0 b2v�2 0 b55 0 0 0 w�
2

0 g1 0 0 0 b66 0 0 0

0 0 g2 0 0 0 b77 0 0

0 �b1v�1 0 �b1v�1 0 0 d2 b88 0

0 0 �b2v�2 0 �b2v�2 d1 0 0 b99

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

,

where b11 ¼ �ðw�
1 þ w�

2 þ mÞ, b22 ¼ b1x� � ðg1 þ mÞ,
b33 ¼ b2x� � ðg2 þ mÞ, b44 ¼ b1v�1 � ðg1 þ mÞ, b55 ¼ b2v�2
�ðg2 þ mÞ, b66 ¼ �ðd1 þ mÞ, b77 ¼ �ðd2 þ mÞ, b88 ¼

�ðW �
1 þ mÞ and b99 ¼ �ðW �

2 þ mÞ while w�
i ¼ biðy

�
i þ

z�i Þ (for i ¼ 1; 2). For equilibrium E2, we have y�
2 ¼ z�2 ¼

u�
2 ¼ v�1 ¼ 0 while the non-zero components x�; y�

1; u
�
1

and v�2 are given by (A.15). The corresponding
characteristic polynomial can be computed as

jlI9 � Jj ¼ ½lþ ðy�
1 þ mÞ½lþ m½lþ ðd1 þ mÞ

� ½lþ ðd2 þ mÞ½lþ ðg1 þ mÞ

� ½l2
þ ðb1y�

1 þ mÞlþ b2
1x�y�

1

� l2
�

b2

R2
ðR2ðx

� þ v�2 � 2Þl
�

�
b2

2

R2
2

ðR2ðx
� þ v�2Þ � 1Þ

�
. ðB:27Þ

It is easy to see that all roots other than those of the last
quadratic factor are negative. The last quadratic factor
can be further elaborated as

l2
�

b2

R2
R2

1 þ a1ðR1 � 1Þ

R1
� 2

� �
l

�
b2

2

R2
2

R2
1 þ a1ðR1 � 1Þ

R1
� 1

� �
ðB:28Þ

whose two roots are

l1 ¼
b2

R2

R2ð1 þ a1ðR1 � 1ÞÞ

R1
� 1

� �
; l2 ¼ �

b2

R2
,

which are both negative if R1=ð1 þ a1ðR1 � 1ÞÞ4R2. The
equilibrium E2 thus is stable as long as this condition is
met. Note that the stability of E2 also requires R141
which guarantees the existence of E2. Since the Jacobian
matrix B has no purely imaginary eigenvalues at any
circumstances, there is no Hopf bifurcation associated
with E2.
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