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F O C U S

Coinfection of hosts with more than one mi-
croorganism is ubiquitous in natural systems, 
but its ef ects are not simple. Upon coinfec-
tion with multiple parasites (def ned here as 
infectious organisms that cause harm to their 
hosts), a range of within-host outcomes may 
occur, including host pathological changes 
and immune responses as well as ef ects on 
the individual parasites (Fig. 1). Some out-
comes have ef ects at the population level, 
while others are conf ned to individuals (1, 
2). Now, Shrestha et al. use a mathematical 
approach to dissect the confounding ef ects 
of coinfection with the inf uenza virus and 
the bacterium Streptococcus pneumoniae (3).

In laboratory models and in studies of 
individual host pathology or immune re-
sponse, coinfection of en results in host or 
parasite responses beyond the simple addi-
tive ef ects of the two species (1, 4, 5). How-
ever, the extent to which such changes scale 
to population-level ef ects is a matter for 
debate (6). Coinfection-induced changes in 
host susceptibility and parasite-transmission 
potential can be observed in laboratory set-
tings, but of en, epidemiological signatures 
of these ef ects (such as changes in infection-
peak height or duration) are equivocal. Biotic 
and abiotic environmental factors inf uence 
host-to-host parasite transmission (e.g., cli-
mate and vector availability). Once an infec-
tious agent reaches a new prospective host, 
his or her susceptibility could be af ected by 
host genetics, physical condition, and behav-
ior. T ere are two possible consequences of 
such environmental and host inf uences: (i) 
these factors break the link between the in-
dividual-host and the population-level ef ects 
of coinfection or (ii) coinfection properties 
in one host could be retained in subsequent 
hosts, thus scaling the ef ects to the popula-
tion level; still, the epidemiological signatures 
of these ef ects could be obscured by inf u-
encing factors (6). In many systems, and par-
ticularly in humans, experimentation cannot 
be used as a method to tease apart these pos-

sibilities. Instead, mathematical tools must be 
developed to achieve this aim (7).

In laboratory investigations with animal 
models, inf uenza has been shown to increase 
both susceptibility and pathological response 
to subsequent pneumococcal infection (5, 
8); similarly, there is little doubt that inf u-
enza virus exacerbates the pathology that 
results from pneumococcal coinfection in 
human subjects (9). However, epidemiologi-
cal studies of coinfected human populations 
have not yielded such clear results, leading 
to questions of whether and how the within-
host dynamics of the coinfection scale to the 
population level.

In their new work, Shrestha et al. take a 
mathematical approach by using a mecha-
nistic transmission model within a Bayesian 
likelihood-based inference framework to de-
termine the role of within-host coinfection 
dynamics. T e authors model inf uenza virus 
as a potential driver of the epidemiological 
dynamics of Streptococcus pneumoniae infec-
tion in human populations. T is approach 
is based on a fairly simple and well-known 
structure, an adapted SIRS model (where 
S = susceptible, I = infected, and R = recently 
recovered). However, the model has been ap-
plied in a new way to address questions about 
the scaling of coinfection dynamics from the 
individual to population level.

T e SIRS model takes into account the 
coinfection with inf uenza by subdividing 
the susceptible and infected compartments 
of the model into inf uenza-infected and un-
infected hosts. T is model is then applied to 
two years of weekly epidemiological records 
of inf uenza and pneumococcal pneumo-
nia hospitalizations in Illinois, USA. Using 
this framework, the authors formally tested 
three potential hypotheses for the role of 
inf uenza in driving the pneumococcal epi-
demiology. T e three alternative hypotheses 
are not mutually exclusive; all have the poten-
tial to be supported or indeed, unsupported 
(suggesting no ef ect of inf uenza): (i) T e 
transmission hypothesis assumes that indi-
viduals recently infected with inf uenza will 
have a higher contribution to pneumococcal 
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Fig. 1. Is one plus one more than two? Shown 
are the potential within-host and between-
host consequences of coinfection. Two para-
site species are represented by P1 (orange) 
and P2 (green). Yellow arrows, infection of 
host by parasites; blue arrows, host eff ect on 
a parasite and/or direct parasite-parasite in-
teractions; orange or green circular arrows, 
transmission between hosts. Host eff ects 
(boxes) of P1 and P2 are shown in white and 
brown, respectively; simple additive eff ects 
of P1-P2 coinfection are shown in purple. (A) 
Coinfection exacerbates host pathology (pink 
box) but has no consequences for parasite 
dynamics or host susceptibility to infection; 
thus there is no change in between-host 
transmission. (B) Coinfection either causes 
direct interactions between parasites or in-
duced changes in the host (e.g., immune re-
sponses) that alter the dynamics of one or 
both parasite species (thin blue arrow for P2); 
the ultimate eff ect is a change in transmission 
potential for one or both parasites, resulting 
in between-host eff ects (thick green circular 
arrow). (C) Coinfection alters host susceptibil-
ity to the second infecting agent (change from 
thin to thick yellow arrow for P2). Although 
there is no inherent change in either parasite’s 
capacity to transmit between hosts, the next 
P1-infected host has an increased risk of P2 
infection (a between-host eff ect). Null case (not 
shown): Coinfection has a purely additive eff ect 
on the host, the parasites have no eff ect on 
one another, and coinfection does not change 
the host response to either parasite.
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transmission (Fig. 1B); (ii) the susceptibil-
ity hypothesis assumes that individuals are 
more susceptible to pneumococcus if they 
are infected with inf uenza (Fig. 1C); and (iii) 
the pathogenesis-impact hypothesis assumes 
that inf uenza infection only inf uences the 
severity of clinical symptoms of the pneumo-
coccal infection in individuals and that this, 
in turn, causes an increase in the probability 
of reporting. In hypothesis 3, there is no ef-
fect on between-host transmission or infec-
tion (Fig. 1A).

For each inf uenza-ef ect hypothesis, the 
model included a term that modulated the 
relevant process (transmission, susceptibil-
ity, reporting) as a ratio that described the 
inf uenza ef ect relative to the baseline of 
uninfected individuals. T e transmission 
function for the transmission hypothesis was 
modulated by the term θ, susceptibility was 
modulated by the hazard term ϕ, and altered 
pathology was accounted for by the term ξ, 
which modulated the probability of report-
ing pneumococcal pneumonia cases (which 
was assumed to increase with severity of the 
disease). In each case, the null hypothesis was 
that inf uenza had no inf uence, meaning that 
the modulation terms for transmission, sus-
ceptibility, or pathology reporting would be 
equal to 1, inferring no dif erence between 
inf uenza-infected and uninfected individu-
als. When any of these terms was signif cantly 
greater than 1, the alternative hypothesis, that 
inf uenza did have an inf uence, was accepted. 
T is approach yielded maximum likelihood 
estimates and 95% conf dence intervals for 
each focal term. % e authors found that only 
ϕ was signif cantly greater than one, indicat-
ing that inf uenza infection induced an in-
crease in S. pneumonia susceptibility but did 
not suggest changes in transmission or pa-
thology (as measured by increased reporting).

% e authors then examined one- to three-
week time windows for the inf uenza ef ect on 
subsequent transmission of S. pneumonia but 
found nothing to suggest that inf uenza could 
inf uence a subsequent pneumococcal infec-
tion that occurred more than a week later. 
% erefore, the interaction predicted between 
the parasite species was transient but signif -
cant and caused a substantial (~100-fold) in-
crease in infection risk, which equated to up 
to 40% of cases of pneumococcal pneumonia 
being attributable to inf uenza coinfection 
during inf uenza peaks; this, in turn, equated 
to between 2 and 10% of pneumococcal in-
fections on an annual basis. Using simula-
tions of their model and comparing these to 
their two years of epidemiological records, 

the authors found that the seasonal pattern 
of pneumococcal infection could be cap-
tured without incorporating inf uenza, but 
the interannual variability in the numbers of 
pneumococcal pneumonia cases could only 
be captured if inf uenza coinfection was in-
corporated in the model.

As a f nal step, the authors determined the 
impact of this demonstrated epidemiological 
ef ect by simulating artif cial inf uenza da-
tasets with a range of interannual inf uenza 
epidemic peak sizes. Using these data as a 
covariate in their model, the authors then as-
sessed the ef ect on predicted pneumococcal 
pneumonia hospitalizations. % is analysis re-
vealed a likely cause for the apparent dispari-
ty between the clear individual-level ef ects of 
inf uenza and the apparent lack of ef ect seen 
in the raw epidemiological data. Indeed, the 
magnitudes of the predicted pneumococcal 
pneumonia hospitalization peaks were rela-
tively insensitive to the interannual variation 
in inf uenza, such that a twofold increase in 
the inf uenza peak resulted in only a 25% in-
crease in the magnitude of the pneumococcal 
peak. % is relatively small change in pneumo-
coccal peak size could easily be overlooked in 
natural datasets but does not imply a small 
ef ect of inf uenza: % e  100-fold increase in 
inf uenza risk equated to an estimated total of 
3249 inf uenza-related pneumococcal hospi-
talizations in the two-year Illinois epidemio-
logical dataset.

Shrestha et al. have chosen to focus on 
one side of the inf uenza-pneumococcus re-
lationship, but there is evidence, at least from 
mouse models, that inf uenza viral titers are 
also af ected by the presence of a S. pneu-
moniae infection (10). % e current approach 
could be extended to explore the potential 
role of pneumococcus infection on inf u-
enza epidemiology. Indeed, variations of this 
modeling approach have great potential to be 
applied to a wide range of other coinfection 
systems and may of er a tool with which to 
determine what form the interaction between 
infecting species may take. It remains unclear 
whether this modeling approach can distin-
guish unidirectional interactions from those 
in which both parasite species have ef ects 
on each other (directly or indirectly through 
the host). What the approach does of er is a 
quantif cation of the epidemiological ef ect, 
which has not previously been possible.

% e majority of large-scale disease control 
programs are aimed at single parasite species. 
Further, current estimations of infection risk 
take only a cursory account of coinfection, 
and estimators of disease severity [for exam-

ple, Disability-Adjusted Life Years (DALYs)] 
consider the consequences of coinfection as 
simply additive. % e links between parasite 
interactions, infection risk, and host pathol-
ogy under conditions of coinfection are still 
poorly understood. largely because of the 
absence of suitable tools for the accurate de-
tection of parasite interactions and for quan-
titative prediction of their consequences. 
Shrestha et al. bring us one step closer to a 
solution by adding a new tool to this assess-
ment portfolio. A next step will be to model 
unidirectional and multidirectional interac-
tions, because knowing which parasites drive 
infection dynamics in a system will help de-
termine how best to target limited resources 
for ef  cacious control strategies.
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