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a b s t r a c t

Although many infectious diseases of humans and wildlife are transmitted via an environmental

reservoir, the theory of environmental transmission remains poorly elaborated. Here we introduce an

SIR-type multi-strain disease transmission model with perfect cross immunity where environmental

transmission is broadly defined by three axioms. We establish the conditions under which a multi-

strain endemic state is invaded by another strain which is both directly and environmentally

transmitted. We discuss explicit forms for environmental transmission terms and apply our newly

derived invasion conditions to a two-strain system. Then, we consider the case of two strains with

matching basic reproduction numbers (i.e., R0), one directly transmitted only and the other both

directly and environmentally transmitted, invading each other’s endemic state. We find that the strain

which is only directly transmitted can invade the endemic state of the strain with mixed transmission.

However, the endemic state of the first strain is neutrally stable to invasion by the second strain. Thus,

our results suggest that environmental transmission makes the endemic state less resistant to invasion.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Empirical studies show that environmental transmission is an
important pathway for viral infections in humans (e.g., gastro-
enteritis D’Souza et al., 2006) and animals (e.g., rabbit haemor-
rhagic disease Henning et al., 2005), water-borne pathogens (e.g.,
cholera King et al., 2008; Pascual et al., 2000, avian cholera
Blanchong et al., 2006), bacterial infections (e.g., tetanus Roper
et al., 2007, salmonella Xiao et al., 2007, epizootics of plague
Webb et al., 2006), prion diseases (e.g., chronic wasting disease
Miller et al., 2006, bovine spongiform encephalopathy Anderson
et al., 1996) and zoonoses (e.g., Nipah and Hendra viral diseases
Field et al., 2001). Environmentally transmitted diseases may
differ substantially from those that are only directly transmitted
in epidemiological dynamics and control implications. While the

first compartmental model to include environmental transmission
was proposed for cholera three decades ago (Capasso and Paveri-
Fontana, 1979), the modeling literature on the environmental
transmission of cholera has substantially expanded just over the
last decade (Codeco, 2001; Pascual et al., 2002; Jensen et al., 2006;
Hartley et al., 2006; Codeco et al., 2008; Joh et al., 2009). Recently,
environmental transmission has been considered in avian influenza
models (Roche et al., 2009; Rohani et al., 2009; Breban et al., 2009).
Although various questions about the dynamics of environmentally
transmitted diseases have been addressed (Capasso and Paveri-
Fontana, 1979; Codeco, 2001; Hartley et al., 2006; Codeco et al.,
2008; Joh et al., 2009; Rohani et al., 2009; Breban et al., 2009),
the evolution of environmental transmission has not been
considered.

Our work was motivated by the recent emergence of highly
pathogenic H5N1 strains in wild waterfowl (International Scien-
tific Task Force, 2006), which are known to host a pool of
influenza viruses rich in genetic and antigenic diversity (Webster
et al., 1992). In particular, we considered it important to under-
stand the conditions which favor newly emerging strains of highly
pathogenic H5N1 to successfully invade the existing assemblage
of avian influenza viruses. While there are conceptual similarities
with evolutionary studies of the life cycle of macroparasites
(e.g., Choisy et al., 2003), virulence of multi-host parasites
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(e.g., Gandon, 2004), and the tradeoff between transmissibility
and virulence (e.g., Alizon and van Baalen, 2005), our focus on the
evolutionary interplay between direct and environmental trans-
mission is novel.

Accordingly, here we develop an SIR-type model to explore the
dynamics of a multi-strain pathogen which may have either a direct
or both direct and environmental transmission mechanism, depend-
ing on strain identity, and with perfect cross-immunity between
strains. Our model is general in the sense that environmental
transmission dynamics are broadly specified by a few unrestrictive
axioms. We analyze the conditions under which a multi-strain
endemic state is invaded by a strain that is both directly and
environmentally transmitted. For concreteness, we then discuss
explicit forms of environmental transmission. Finally, we apply our
results to a two-strain model for avian influenza virus and discuss
how two strains with matching basic reproduction numbers (i.e., R0s)
but different transmission pathways invade each other’s endemic
state. The key finding of this study is that the endemic state of a
directly transmitted pathogen is neutrally stable to the invasion of a
pathogen with mixed direct and environmental transmission, while
a pathogen transmitted only directly is able to invade the endemic
state of a mixed transmission pathogen. This result suggests that
environmental transmission is a more fragile evolutionary strategy
than direct transmission and that the evolution of strains transmitted
wholly through long-term environmental persistence is unlikely.

2. Model

We consider n strains that are both directly and environmen-
tally transmitted and propose the following multi-strain model

dS=dt¼ p�mS�S
Xn

i ¼ 1

biIi�rSf ðVÞ,

dIj=dt¼ bjSIj�ðmþgjÞIjþrSf ðVÞejðVÞ,

dV j=dt¼ojIj�ZjVj, ð1Þ

where j¼1,2,y,n. S represents the number of susceptible
individuals, Ij represents the number of individuals infected with
strain j, and Vj represents the number of virions of strain j

contaminating the environment; we denote the mixed viral
population by V¼ fV1,V2, . . . ,Vng. The parameters bj, 1=gj, and Zj

are the strain-specific transmissibility, infectious period, and
clearance rate. oj represents the shedding rate of individuals
infected with strain j. p is the susceptible inflow, m is the natural
death rate of individuals and r represents the contact rate with
the environment. All variables and parameters are positively
defined. We assume that infection with any particular strain
provides permanent immunity to reinfection/infection with any
other strain (i.e., perfect strain-transcending cross-immunity).

The environmental transmission rate is modeled by the term
rSf ðVÞ. The function f : Rn-½0,1� represents the probability that
an individual is infected when exposed to a mixed population V of
virions in the environment. The environmental transmission rate
for the pathogen j is given by rSf ðVÞejðVÞ, where ejðVÞ ðej :

Rn-½0,1�Þ is the probability that pathogen j has caused the
infection when infection occurred. Evidently,

Pn
i ¼ 1 eiðVÞ ¼ 1.

For the time being, we leave the functions f(V) and ejðVÞ
(j¼1,2,y,n) unspecified and we only make use of properties that
derive from their biological meaning; later we discuss specific
examples. We thus postulate the following for f(V) and ejðVÞ
(j¼1,2,y,n):

Property 1. The probability of infection vanishes in absence of virus

[i.e., f(V)¼0 when Vj¼0 (j¼1,2,y,n)] and approaches one as the

viral load of every strain becomes very large [i.e., f ðVÞ-1 when

Vj-1 (j¼1,2,y,n)]. Furthermore, we assume that the probability of

infection increases with the viral load [f(V) is an increasing function

in all arguments]. Obviously, when Vj¼0 for every j¼1,2,y,n except

a given integer k, f ðVÞ ¼ f/1SðVkÞ, where f/1S is the probability of

environmental infection in a single strain model.

Property 2. The probability that the infection occurred with strain j,
ejðVÞ, is an increasing function in Vj that satisfies (i) ejðVÞ ¼ 0 when

Vj¼0,3(ii) ejðVÞ ¼ 1 when Vja0 and Vi¼0, for every i¼1,2,y,n, ia j,
and (iii) ejðVÞ-1 when Vj-1.

Property 3. f(V) and fe1ðVÞ,e2ðVÞ, . . . ,enðVÞg are chosen such that our

model is homogeneous in fIi,Vig, i¼1,2,y,n. In other words, if the

parameters of two strains j and k are the same and we do not

distinguish between the individuals in the Ij and Ik compartments and

between the Vj and Vk viral populations, then we can introduce the

variables I¼ Ij+ Ik and V¼Vj+Vk. The ordinary differential equation of

I is obtained by summing the equations for Ij and Ik; the equation for

V is obtained by summing the equations for Vj and Vk. Thus, a change

of variables is performed, leading to a dimensionally reduced, self-

consistent model with the same structure as the one described by the

Eqs. (1), except with a number of n�1 strains.4

3. Main results

3.1. Model equilibria

We denote an equilibrium of the model by E� ¼ fS�,I�1,
I�2, . . . ,I�n,V�1 ,V�2 , . . . ,V�n g. The set of equations generating the equili-
bria is obtained by setting the LHS of Eqs. (1) to zero. It reduces to
a system of n nonlinear equations in the unknowns V*

1, V*
2,y,V*

n

�ðmþgjÞZjV
�
j =ojþ½bjZjV

�
j =oj

þrejðV
�
Þf ðV�Þ� p=m�

Xn

i ¼ 1

ð1þgi=mÞZiV
�
i =oi

" #
¼ 0, ð2Þ

where V� � fV�1 ,V�2 , . . . ,V�n g and j¼1,2,y,n. The other entries of E*

are given by

I�j ¼ ZjV
�
j =oj, ð3Þ

S� ¼ p=m�
Xn

i ¼ 1

ð1þgi=mÞZiV
�
i =oi: ð4Þ

By virtue of Property 2, Vj
*
¼0, (j¼1,2,y,n) is a solution of Eqs. (2)

which further implies Ij
*
¼0, (j¼1,2,y,n) [see Eq. (3)] and S� ¼ p=m

[see Eq. (18)]. Thus the model admits a disease-free equilibrium

which for further reference we denote by E*
DFE and mark its

components by the subscript DFE. The general problem of
existence of endemic equilibria remains intractable, subject to
further assumptions about f and ej.

3.2. On the stability of equilibria

Proposition. Let E� ¼ fS�,I�1,I�2, . . . ,I�n,V�1 ,V�2 , . . . ,V�n g be an equilibrium

of the model with n strains given by Eqs. (1) where In
*
¼0 and Vn

*
¼0.

Then, the following statements hold:

(i) F� ¼ fS�,I�1,I�2, . . . ,I�n�1,V�1 ,V�2 , . . . ,V�n�1g is an equilibrium of the

system modeling only the first n�1 strains;

3 This implies @ejðVÞ=@Vi ¼ 0 when Vj¼0 for every i¼1,2,y,n, ia j.
4 Note that the model with f(V)¼0 is homogeneous.
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(ii) E* is linearly stable if and only if F* is linearly stable and

R½n�0 �
S�bn

mþgn

þ
S�ron

ZnðmþgnÞ

@½enðVÞf ðVÞ�

@Vn

����
E�½n�

o1 ð5Þ

Proof. See Appendix.

Corollary. Let E� ¼ fS�,I�1,I�2, . . . ,I�n,V�1 ,V�2 , . . . ,V�n g be an equilibrium of

the model with n strains where I�n ¼ I�n�1 ¼ � � � ¼ I�n�m ¼ 0 and

V�n ¼ V�n�1 ¼ � � � ¼ V�n�m ¼ 0, 0rmon.5 Then, the following state-

ments hold:

(i) F�½m� ¼ fS
�,I�1,I�2, . . . ,I�m,V�1 ,V�2 , . . . ,V�mg is an equilibrium of the

system modeling the first m strains;
(ii) E* is linearly stable if and only if F[m]

* is linearly stable and

R½n�0 �
S�bn

mþgn

þ
S�ron

ZnðmþgnÞ

@½enðVÞf ðVÞ�

@Vn

����
E�
o1,

R½n�1�
0 �

S�bn�1

mþgn�1

þ
S�ron�1

Zn�1ðmþgn�1Þ

@½en�1ðVÞf ðVÞ�

@Vn�1

����
F�½n�1�

o1,

^

R½n�m�
0 �

S�bn�m

mþgn�m

þ
S�ron�m

Zn�mðmþgn�mÞ

@½en�mðVÞf ðVÞ�

@Vn�m

����
F�
½mþ 1�

o1:

Proof. A proof is obtained by applying the main result (n–m)
times. &

Remark. For the disease-free state [i.e., Ij DFE
*
¼0 and Vj DFE

*
¼0

(j¼1,2,y,n)], the stability condition reduces to R0 �

maxðR½1�0 ,R½2�0 , . . . ,R½n�0 Þo1. Furthermore, we have S�DFE ¼ p=m and
R½i�0 o1 becomes identical to the stability condition of the disease
free state for the system that only models strain i

R½i�0 ¼
ðp=mÞbi

mþgi

þ
ðp=mÞroi

ZiðmþgiÞ

@f/1SðViÞ

@Vi

����
Vi ¼ 0

o1: ð6Þ

4. Functional forms for the environmental transmission
terms

In this section we discuss how certain functional forms for f and
ei result from several simple considerations. These analytical forms
satisfy Properties 1 and 2, and, with some caveats, Property 3.
However, other analytical forms satisfying Properties 1–3 might be
possible. In this sense, our main result (i.e., the invasion condition)
applies to more general situations than those described below.

4.1. Formulae for f in single strain models

In the case where we have only a single strain, the function
f : R-½0,1� represents the probability that an individual is
infected when exposed to a population V of virions in the
environment; evidently, eðVÞ ¼ 1. To obtain functional forms for
f(V), we develop an individual-level model where a susceptible
explores a uniformly contaminated area at a constant rate,
encountering infectious virions. We assume that the encounters
have a cumulative effect and, as the number of accumulated
virions increases, the probability of remaining susceptible
decreases.

This model is a structural analogy to mating models where a
female explores an area uniformly populated by males. One way

of mathematically formalizing such mating models is the theory
of birth processes; see Dennis (1989) for a review, general
properties of f, and particular formulae for f. We adopt these
results for our individual-level model of environmental transmis-
sion by giving them appropriate biological interpretation.

The fundamental assumption of these birth processes is that
the probability of an encounter while exploring a small area Da is
proportional to the density of targets (i.e., pathogens in our case)
and also depends on the number of previous encounters (as given
by a function dð�Þ, see below)

P½XðaþDaÞ ¼ xþ1jXðaÞ ¼ x� ¼ ðV=AÞdðxÞDa, ð7Þ

where X(a) is a random variable describing the number of
encounters in an area a, and A is the total area of the habitat.
The forward equations in the variables P[X(a)¼x] of the birth
process can be formally solved. However, as explained by Dennis
(1989), it might be reasonable to assume that the function dðxÞ
depends slowly on the number of contacts x and can be
approximated by the first order truncation of its MacLaurin series

dðxÞ � b�cx, ð8Þ

where b and c are positive constants. The positivity of c indicates
that the likelihood of an encounter decreases with the cumulative
number of encounters; i.e., the likelihood that newly ingested
virions determine the state of the individual decreases with the
number of virions already ingested. Using Eq. (8), it is immedi-
ately obtained that P[X(a)¼x] has a binomial form (say for
simplicity that b/c is an integer)

P½XðaÞ ¼ x� ¼
�b=c

x

� �
ð1�eacV=AÞ

x
ðeacnÞ

�ðb=cÞ�x, ð9Þ

where x¼0,1,y,�b/c. (See Dennis, 1989 and references therein
for all the details of the derivation.)

If we now consider a population of susceptible individuals that
all have the same constants b and c then, the probability of
ingesting one or more virions from the environment is the same
negative exponential function for every individual in the
population6

fNEðVÞ � P½XðAÞZ1� ¼ 1�exp�aV , ð10Þ

where a� b. More generally, Dennis (1989) shows that if ab is
distributed with finite variance, then f is concave, resembling fNE.
For example, if ab is exponentially distributed in the susceptible
population, one obtains a rectangular hyperbola at the population
level

fRHðVÞ ¼
V

Vþk , ð11Þ

where k is a constant. (See Dennis, 1989 for details.) On the basis
of biological data, Dennis (1989) argues that both fNE and fRH are
reasonable choices in mating modeling, with fNE fitting their data
slightly better, while fRH providing much more analytical tract-
ability. Both the exponential (Breban et al., 2009) and the
hyperbolic (Roche et al., 2009; Rohani et al., 2009) forms have
been used in modeling environmental transmission of a single
viral strain. Currently, the available empirical data are too scarce
to select one on the basis of evidence.

It is important to note that, even though they originate from
stochastic birth processes, the f functions derived above can
nevertheless be used in deterministic models based on ordinary
differential equations; see Dennis (1989). It is not too difficult to
build a stochastic multi-strain model of a pathogen that is both
directly and environmentally transmitted by merging a

5 This includes all equilibria except those which have all viral strains present.

6 For a different derivation of the negative exponential function in a similar

context, see Breban et al. (2009).
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multi-strain version of the traditional SIR stochastic model based
on continuous-time Markov chains (see e.g., Bailey, 1975) with a
birth process describing environmental transmission (see above)
and a birth–death process describing the persistence of virions in
the environment. Then, by applying the mean-field approxima-
tion (Bailey, 1975), the expectations of the state variables of this
stochastic model would satisfy Eq. (1).

4.2. Formulae for ei and f in multi-strain models

If the infection processes are independent, then the probability
that the infection occurred with strain i, eiðVÞ, is proportional to
the number of infectious doses of strain i that the susceptible
encountered. The infectious dose ID50 of a strain is defined as the
quantity of virus of that strain which gives 50% probability of
infection. Therefore, the eiðVÞ function is

eiðVÞ ¼
Vi=IDi

50Pn
j ¼ 1 Vj=IDj

50

, ð12Þ

where ID50
j represents the infectious dose of strain j. We note that

the parameters of the f-function of the single-strain model, f/1S

(e.g., fNE, fRH, etc.), are related to ID50 by f/1SðID50Þ ¼ 1=2. For
example, we obtain a¼ logeð2Þ=ID50 for fNE and k¼ ID50 for fRH.

Assuming that encounters of virions of various strains in the
environment are independent, the probability of escaping infec-
tion equals the probability of escaping infection from each
individual strain

1�f ðVÞ ¼
Yn

i ¼ 1

½1�f/1S
i ðViÞ�: ð13Þ

It is important to note that Eqs. (12) and (13) do not imply
homogeneity for our model (1). Requiring that Property 3 holds
further constrains the functional forms of ei and f. It is
straightforward to verify that homogeneity is satisfied given the
above choices of ei and f/1S

i ¼ fNE, (i¼1,2,y,n). However, if
f/1S
i ¼ fRH, (i¼1,2,y,n), homogeneity holds only in the limit of

small virion populations.

5. Analysis of a two strain model

5.1. The basic reproduction ratio

We now discuss the biological implications of a two-strain
model where we choose f/1S

i ¼ fRH (i¼1,2) for analytical tract-
ability. Without worrying too much about losing homogeneity,
we expect to recover the qualitative results of the model with
f/1S
i ¼ fNE (i¼1,2) if the strains are kept distinct. Note that by

rescaling the unit for the amount of virus, the parameters k1,2 can
be eliminated. In particular, the following change of variables

V̂ i � Vi=ki; ô i �oi=ki,

where i¼{1,2}, reduces the dimensionality of the parameter space
by two. The new quantities V̂ 1,2 and ô1,2 are measured in
infectious doses (i.e., units of corresponding ks) and infectious
doses per unit time, respectively. This transformation is formally
equivalent to setting k1,2 ¼ 1 in the original equations.

According to the Remark in Section 3.2, the basic reproduction
ratio of the model is

R0 ¼maxfR½1�0 ,R½2�0 g,

where

R½i�0 ¼
ðp=mÞbi

ðmþgiÞ
þ
ðp=mÞrô i

ZiðmþgiÞ
, i¼ 1,2:

We note that R0
[i] has two terms. One term, which is proportional

to bi, can be attributed to direct transmission

R½i�dir
0 �

p
m

bi

mþgi

: ð14Þ

The other term contains parameters related to the infectious dose,
and persistence and shedding of the virus in the environment and
can be attributed to environmental transmission

R½i�env
0 �

p
m

rô i

ZiðmþgiÞ
: ð15Þ

A discussion of this R0
[i] formula can be found in Rohani et al.

(2009).

5.2. Endemic states

Eqs. (2) lead to

V̂
�

1

b1Z1S�

ô1
þ

rS�

V̂
�

1þ V̂
�

2

1�
1

ð1þ V̂
�

1Þð1þ V̂
�

2Þ

" #
�
Z1ðmþg1Þ

ô1

( )
¼ 0,

ð16Þ

V̂
�

2

b2Z2S�

ô2
þ

rS�

V̂
�

1þ V̂
�

2

1�
1

ð1þ V̂
�

1Þð1þ V̂
�

2Þ

" #
�
Z2ðmþg2Þ

ô2

( )
¼ 0,

ð17Þ

where

S� ¼
p
m
�
X2

i ¼ 1

1þ
gi

m

� �
ZiV̂

�

i

ô i
: ð18Þ

Therefore, three types of equilibria are possible for this model:

(a) V̂
�

1 ¼ V̂
�

2 ¼ 0, which is the disease-free state previously
discussed,

(b) V̂ i ¼ 0 and V̂ ja0 where i,j¼1,2 and ia j, which is an endemic
state where either of the strain is present at the expense of the
other,

(c) coexistence of the two strains.

In case (b), the equilibrium where only the first strain is present
E½1�� ¼ fS�,I�1,0,V̂

�

1,0g has the entries given by

V̂
�

1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
þ

4mR½1�env
0

rR½1�dir
0

ðR½1�0 �1Þ

vuut �C

2
4

3
5, ð19Þ

C� 1þ
m
r

� �
R½1�env

0

R½1�dir
0

�
m
r

R½1�env
0 þ1, ð20Þ

I�1 ¼ Z1V̂
�

1=ô1, ð21Þ

S� ¼ S�DFE 1�
rV̂
�

1

mR½1�env
0

 !
: ð22Þ

The entries of the equilibrium where only the second strain is
present E½2�� ¼ fS�,0,I�2,0,V̂

�

2g are formally obtained by replacing the
index 1 with 2 in the above equations.

In case (c), Eqs. (16) and (17) form a linear system in the
variables S* and S�½1�1=ð1þ V̂

�

1Þð1þ V̂
�

2Þ�=ðV̂
�

1þ V̂
�

2Þ which yields

S� ¼
Z1ðmþg1Þô2�Z2ðmþg2Þô1

b1Z1ô2�b2Z2ô1
, ð23Þ

R. Breban et al. / Journal of Theoretical Biology 264 (2010) 729–736732
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and

1

V̂
�

1þ V̂
�

2

1�
1

ð1þ V̂
�

1Þð1þ V̂
�

2Þ

" #
¼

b1Z1Z2ðmþg2Þ�b2Z2Z1ðmþg1Þ

Z1ðmþg1Þô2�Z2ðmþg2Þô1
:

ð24Þ

Having thus determined S*, Eqs. (18) and (23) provide a linear
relationship between V1

* and V2
* . Consequently, Eq. (24) can be

rewritten as a cubic equation in either V1
* or V2

* that yields
cumbersome analytic solutions for V1,2

* . However, in the case
where one strain (say strain 1) is directly transmitted only (i.e.,
R0

[1]
¼ R0

[1]dir) while the other (strain 2) has a mixed transmission
mechanism, the algebra is more tractable and the coexistence
equilibrium is given by E� ¼ fS�,I�1,I�2,0,V̂

�

2g where

S� ¼ ðp=mÞ=R½1�0 , ð25Þ

I�2 ¼
r
b2

R½2�0

R½1�0 �R½2�dir
0

�
Z2

o2
, ð26Þ

I�1 ¼
p

mþg1

1�
1

R½1�0

 !
�
mþg2

mþg1

I�2, ð27Þ

V̂
�

2 ¼o2I�2=Z2: ð28Þ

From I�1,240, we immediately obtain that, in this case, coexistence
is possible if

ðR½1�0 �R½2�env
0 ÞoR½2�dir

0 oR½1�0 , ð29Þ

subject to further stability conditions.
We illustrate the above findings with numerical simulations

because they are particularly relevant for later analysis; see Fig. 1.
The parameter values and ranges used are inspired from the avian
influenza literature (Rohani et al., 2009; Breban et al., 2009) and
listed in Table 1. The two-strain model thus described here would
correspond to a sedentary population that hosts influenza viruses.
Fig. 1 shows that the parameter space (R0

[2]env, R0
[2]dir) of the

second strain is divided into three regions: (i) R½2�dir
0 4R½1�dir

0 where

strain 2 drives strain 1 extinct; (ii) R½2�dir
0 þR½2�env

0 oR½1�dir
0 where

strain 1 drives strain 2 extinct; and (iii) the complementary region
where the strains coexist. It thus becomes evident that
environmental transmission may offer a survival mechanism to
a strain which is not transmitted directly very well and would
otherwise go extinct.

5.3. Invasion condition for the endemic state with only one strain

We now examine the condition for successful invasion of the
endemic state that contains only the first strain
E½1�� ¼ fS�,I�1,0,V̂

�

1,0g by the second strain—we assume that both
strains have mixed transmission mechanisms. Our main result
implies that F� ¼ fS�,I�1,V̂

�

1g is an equilibrium of the model
describing strain 1 only. Assuming that F* is stable (i.e., R½1�0 41),
the only condition for successful invasion is

R½2��0 �
S�b2

ðmþg2Þ
þ

S�rô2

Z2ðmþg2Þ

1

1þ V̂
�

1

 !
41, ð30Þ

which can be rewritten as

R½2��0 �
S�

S�DFE

R½2�dir
0 þR½2�env

0

1

1þ V̂
�

1

 !" #
41, ð31Þ

Note that since S�rS�DFE, we have R½2��0 rR½2�0 , where equality
occurs when E* is the disease-free state. In other words, if the
second strain cannot invade the disease-free state, it would also
be unable to invade the endemic equilibrium. Furthermore, Eq.
(31) explicitly shows that the difficulty in invading the endemic
state of a pathogen with mixed transmission mechanism emerges
not only from the fact that the number of susceptibles is reduced
but also from the magnitude of the existent environmental
reservoir.

5.4. Comparison between strains with matching R0

The endemic level of a directly transmitted strain is linearly
neutral to the invasion of a second directly transmitted strain
with matching R0. Furthermore, the strains can coexist at
equilibrium when R½1�0 ¼ R½2�0 41 (Castillo-Chavez et al., 1989).
Here we discuss the case of strains with matching R0 where the
first strain is directly transmitted while the second strain is both
directly and environmentally transmitted which corresponds to
the dashed curved boundary in Fig. 1.

First, consider the case where the second strain invades the
endemic state of the first strain. We take our previous results in
the limit where the infectious dose of the first strain tends to
infinity (i.e., drop the ODE for V̂ 1 and take V̂ 1 ¼ 0 in the other
equations of the two-strain model) and obtain that the equili-
brium where only the first strain is present is given by
E½1�� ¼ fS½1��,I½1��1 ,0,0,0g where

I½1��1 ¼
mðR½1�0 �1Þ

b1

,

S½1�� ¼
S�DFE

R½1�0

:

Fig. 1. Maps of logarithm in base 10 of I*
1 (panel A), I*

2 (panel B) and V̂
�

2 (panel C)

versus R0
[2] env and R0

[2] dir which were varied by changing ô2 and b2, respectively.

(Note that the horizontal scales are logarithmic.) The parameter values are taken

from Rohani et al. (2009), Breban et al. (2009); see Table 1. The horizontal dashed

line represents R0
[2] dir

¼ R0
[1] dir, while the dashed curve represents R0

[2] dir+R0
[2] env

¼

R0
[1] dir; see Eq. (29). The figure shows that the dashed lines divide the parameter

space into three regions: (i) top region where R½2�dir
0 4R½1�dir

0 and strain 2 drives

strain 1 extinct; (ii) bottom left where R½2�dir
0 þR½2�env

0 oR½1�dir
0 and strain 1 drives

strain 2 extinct; and (iii) the complementary region in the bottom right where the

strains coexist. We performed the simulations with the MATLAB s R2008b

software; values below 10�6 are within the range of numerical noise. In particular,

we note that all the values in the upper half of panel A and low left corners of

panels B and C (i.e., the black regions) are in the range of numerical noise.

Table 1
A list of the two-strain model parameters, along with their biological description.

The first strain is directly transmitted only, while the second strain has a mixed

transmission mechanism. The values/ranges explored are tuned for the case of

avian influenza in wild waterfowl; see Rohani et al. (2009), Breban et al. (2009)

and for further details.

Parameter Biological description Value (range)

N Host population size 104

m Natural death rate 1/3 year�1

b1 Direct transmission rate of strain 1 0.0078 year�1

b2 Direct transmission rate of strain 2 0.0058–0.01 year�1

1=g2 Infectious period of strain 2 7 days

r Consumption rate 10�6 liters/year

1=Z2 Persistence time of strain 2 30 days

ô2 Shedding rate of strain 2 0.64–1010 EID50/year
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Furthermore, we obtain that E[1]* is linearly neutral to the
invasion of the second strain7

R½2��0 ¼
S½1��

S�DFE

R½2�0 ¼
R½2�0

R½1�0

¼ 1: ð32Þ

Second, consider the case where the first strain invades the
endemic state of the second strain. We denote the equilibrium
where only the second strain is present by E½2�� ¼
fS½2��,0,I½2��2 ,0,V̂

½2��

2 g where the nonzero entries satisfy equations
similar to Eqs. (19), (21), and (22); in this case we obtain

R½1��0 ¼ 1�
rV̂
½2��

2

mR½2�env
0

 !
R½1�0 : ð33Þ

In the situation where R½2�env
0 51, the series expansion of Eq. (33)

up to second order in R0
[2] env is

R½1��0 � 1þ
mðR½2�dir

0 �1Þ

r
R½2�env

0

R½2�dir
0

 !2
8<
:

9=
;41:

Thus, we obtain that the directly transmitted strain can invade the
endemic state of the strain with mixed transmission mechanism,
while the endemic state of the directly transmitted strain is
neutral to the invasion of the strain with mixed transmission
mechanism.

Finally, we discuss the case where both strains have mixed
transmission mechanisms and matching R0. Say for concreteness
that R½1�dir

0 ¼ R½2�dir
0 þD and R½1�env

0 ¼ R½2�env
0 �D, where D is a positive

number. The invasion condition given by Eq. (31) can be rewritten
as

S�

S�DFE

R½1�dir
0 þR½1�env

0

1

1þ V̂
�

1

 !" #
�D

S�

S�DFE

1�
1

1þ V̂
�

1

 !
41: ð34Þ

The first term in the LHS of Eq. (34) provides the condition that
strain 1 invades itself. Self-invasion relates to the homogeneity
property which we gave up for our model in favor of analytical
tractability. This prevents us from making a fair account of the
situation. However, it is worth noting that the self-invasion
condition should always be neutral (hence the corresponding
term should be 1) in a homogeneous model since, in this case, a
single strain endemic state is equivalent to a multi-strain endemic
state of strains with identical parameters. Furthermore, since the
second term in the LHS of Eq. (34) is always negative, it would
result that the strain with smaller direct transmissibility cannot
invade the endemic state of the strain with higher direct
transmissibility while the reverse can happen (i.e., set Do0).

6. Discussion and conclusions

Whether an emerging strain becomes endemic by either
eliminating or coexisting with existing strains is a central
question in the population biology of infectious diseases. Here
we addressed this question for the first time in the case where
pathogens with perfect cross immunity are both directly and
environmentally transmitted. We introduced an SIR-type multi-
strain model in which environmental transmission is broadly
defined and then established the conditions under which a multi-
strain endemic state is invaded by a strain with mixed transmis-
sion mechanism. We expressed this condition in the form of a
basic reproduction number where two terms can be distin-
guished: one corresponds to direct transmission and the other to
environmental transmission. The generality of our definition of

environmental transmission enables these results to be applied
broadly. In particular, the invasion condition derived in this work
generalizes the results obtained on the basic reproduction
number of single strain models (Rohani et al., 2009).

For concreteness, we then introduced some explicit forms for
the environmental transmission terms and applied our invasion
results to a two-strain paradigm model. After a brief analysis of
the equilibria that can occur between two strains with mixed
transmission mechanisms, we discussed coexistence and exclu-
sive competition between a strain that is directly transmitted only
and another one that has a mixed transmission mechanism. We
found that environmental transmission may provide means for
coexistence to a strain that otherwise would go extinct in
competition with directly transmitted strains. This specification
was suggested by our ongoing work on avian influenza viruses
in North American waterfowl, but may also apply to other
environmentally transmitted pathogens, such as cholera.

In the final section, we studied how two strains with equal R0,
one directly transmitted only and another one both directly and
environmentally transmitted, invade each other’s endemic state.
We found that the first strain which is only directly transmitted
can invade the endemic state of the strain with mixed transmis-
sion. However, the endemic state of the first strain is neutrally
stable to the invasion of the second strain. Thus, our results
suggest that environmental transmission makes the endemic
state of a strain less robust to invasion than direct transmission.
We are led to speculate that if a strain with mixed transmission
occurs by accidental mutation in a pool of directly transmitted
strain, and if the descendent and ancestral strain have matching
R0, then the mutant is given an evolutionary disadvantage by the
mixed transmission mechanism. This result can be understood
from the perspective that the environment acts like an inhos-
pitable intermediary host where the pathogens do not undergo
any other processes but death at a fairly high rate. It becomes thus
intuitive that it is advantageous for the pathogen to avoid the
environment. However, the epidemiological consequences (e.g.,
strain persistence) are not as obvious.

That co-circulation of a tremendous diversity of avian
influenza viruses occurs in nature is well known. For instance,
Hinshaw et al. (1980) collected 27 different antigenic subtypes in
one local area of Canada in three years. More recently, Hanson
et al. (2005) collected 7 subtypes from just 22 infected ducks
Texas. These results are in stark contrast to the pattern of
replacement that characterizes human influenza A (Smith et al.,
2004). Indeed, even co-infections of the same animal are not
uncommon (Sharp et al., 1997), giving rise to the concerns about
recombination that lend urgency to understanding the evolution
of this system and motivated our study in the first place.
However, cross-immunity of antigenic subtypes is poorly under-
stood and the ecological characterization of strains (i.e., relative
infectivity and environmental persistence Brown et al., 2009) has
just begun. Thus, the assumptions of cross-immunity and
matched R0 made here are only a starting point for understanding
the evolutionary dynamics compatible with mixed transmission
infections.

The empirical information necessary for a quantitative com-
parison of our predictions with any specific system remains
elusive. In the case of avian influenza viruses, persistence times in
the environment (Brown et al., 2009), shedding rates (Webster
et al., 1992) and ID50 infectious dose estimates (Swayne and
Slemon, 2008) for different strains have been obtained through
direct measurements. However, key epidemiological data, such as
reliable, consistently collected long-term prevalence estimates
are hard to come by Krauss et al. (2004) and Sharp et al. (1993).

In closing, we remark that the ubiquity of evolutionary
tradeoffs entails that other evolutionary consequences of

7 In fact, using Eqs. (36) and (37) in the Appendix, it can be shown that all

eigenvalues of E[1]* except one have strictly negative real parts.
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environmental transmission are likely to result. The results
presented here suggest that there is an evolutionary disadvantage
to environmental transmission. What downstream consequences
might such evolution have? The most immediate consequence is
likely to be selection on structural properties of the infectious
particle, for instance selection on properties that influence
environmental durability and host infectiousness. Evolutionary
consequences are not likely to end there, however. Cascading
evolutionary consequences might also include virulence, which is
predicted by the sit-and-wait hypothesis to correlate positively
with environmental durability (Ewald, 1994). It follows, then, that
evolution of phenotypic properties of great significance for host
health are only slightly removed from the mechanisms by which
transmission occurs. The extent of such evolutionary conse-
quences remains to be determined.
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Appendix A. Proof of the main result

Proof of statement (i). The proof follows immediately from the
fact that the equilibrium E* has In

*
¼0 and Vn

*
¼ 0. &

Proof of statement (ii). We first introduce necessary notation.
We denote by J the jacobian matrix of the n-strain model and by

Ĵ its corresponding determinant. 0l�m is the matrix with l lines and
m columns having all entries equal to zero ð0m�m � 0&mÞ and 1&m

the unit matrix with m lines and m columns. We also introduce
the following matrices

H&n �

Z1 0 . . . 0

0 Z2 . . . 0

^ ^ & ^

0 0 . . . Zn

0
BBBB@

1
CCCCA,

X&n �

o1 0 . . . 0

0 o2 . . . 0

^ ^ & ^

0 0 . . . on

0
BBB@

1
CCCA,

D&n �

@½e1ðVÞf ðVÞ�=@V1 @½e1ðVÞf ðVÞ�=@V2 . . . @½e1ðVÞf ðVÞ�=@Vn

@½e2ðVÞf ðVÞ�=@V1 @½e2ðVÞf ðVÞ�=@V2 . . . @½e2ðVÞf ðVÞ�=@Vn

^ ^ & ^

@½enðVÞf ðVÞ�=@V1 @½enðVÞf ðVÞ�=@V2 . . . @½enðVÞf ðVÞ�=@Vn

0
BBBB@

1
CCCCA,

Dv
ðn�1Þ�1 �

@½e1ðVÞf ðVÞ�=@Vn

@½e2ðVÞf ðVÞ�=@Vn

^

@½en�1ðVÞf ðVÞ�=@Vn

0
BBBB@

1
CCCCA,

Dh
1�ðn�1Þ � ð@½enðVÞf ðVÞ�=@V1 @½enðVÞf ðVÞ�=@V2 . . . @½enðVÞf ðVÞ�=@Vn�1Þ,

B̂&n �

Sb1�ðmþg1Þ 0 . . . 0

0 Sb2�ðmþg2Þ . . . 0

^ ^ & ^

0 0 . . . Sbn�ðmþgnÞ

0
BBBB@

1
CCCCA,

B0n�1 �

b1I1þre1ðVÞf ðVÞ

b2I2þre2ðVÞf ðVÞ

^

bnInþrenðVÞf ðVÞ

0
BBBB@

1
CCCCA,

D01�n � ð@f ðVÞ=@V1 @f ðVÞ=@V2 . . . @f ðVÞ=@VnÞ,

B1�n � ðb1 b2 . . . bnÞ,

and the scalar J11 ��
Pn

i ¼ 1 biIi�rf ðVÞ�m. With these notations,
Ĵ can be written in the following block-matrix form

Ĵ ¼

J11 �SB1�n �rSD01�n

B0n�1 B̂&n rSD&n

0n�1 X&n �H&n

�������
�������: ð35Þ

Our aim is to evaluate the characteristic polynomial
det½J�l1&ð2nþ1Þ� at E*. We first separate the columns and rows
that refer to the variables In

* and Vn
* and their equations in the

block-matrix form of Ĵ given by Eq. (35)

Using Properties 2 and 3, we obtain that if In
*
¼0 and Vn

*
¼0 then

bnI�n�renðV
�
Þf ðV�Þ ¼ 0 and Dh

1�ðn�1Þ evaluated at E* equals 01�ðn�1Þ.
Therefore, only two particular entries in the third block-matrix
line of Ĵ jE� may not be zero, one of them [i.e., Sbn�ðmþgnÞ] being a
diagonal entry. Since l1&ð2nþ1Þ is a diagonal matrix, the same
holds for det½J�l1&ð2nþ1Þ�E� . We expand det½J�l1&ð2nþ1Þ�E� over
its third block-matrix line (i.e., (n+1)th line) and obtain

det½J�l1&ð2nþ1Þ�E� ¼ ½S
�bn�ðmþgnÞ�l�

�

J11jE��l �SB1�ðn�1Þ �rSD01�ðn�1Þ �rS@f ðVÞ=@Vn

B0ðn�1Þ�1 B̂&ðn�1Þ�l1&ðn�1Þ rSD&ðn�1Þ rSDv
ðn�1Þ�1

0ðn�1Þ�1 X&ðn�1Þ �H&ðn�1Þ�l1&ðn�1Þ 0ðn�1Þ�1

0 01�ðn�1Þ 01�ðn�1Þ �Zn�l

����������

����������
E�

þð�1Þnþ1rS�
@½enðVÞf ðVÞ�

@Vn

����
E�

�

J11jE��l �SB1�ðn�1Þ �Sbn �rSD01�ðn�1Þ

B0ðn�1Þ�1 B̂&ðn�1Þ�l1&ðn�1Þ 0ðn�1Þ�1 rSD&ðn�1Þ

0ðn�1Þ�1 X&ðn�1Þ 0ðn�1Þ�1 �H&ðn�1Þ�l1&ðn�1Þ

0 01�ðn�1Þ on 01�ðn�1Þ

����������

����������
E�

,

where J11jE� ¼ �
Pn�1

i ¼ 1 biIi�rf ðVÞ�m. Further expanding the
determinants in the RHS of the above equation over their last
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lines, we finally obtain

det½J�l1&ð2nþ1Þ�E� ¼� ðZnþlÞ½S
�bn�ðmþgnÞ�l�þonrS�

@½enðVÞf ðVÞ�

@Vn

����
E�

� �

�

�
Pn�1

i ¼ 1 biIi�rf ðVÞ�m�l �SB1�ðn�1Þ �rSD01�ðn�1Þ

B0ðn�1Þ�1 B̂&ðn�1Þ�l1&ðn�1Þ rSD&ðn�1Þ

0ðn�1Þ�1 X&ðn�1Þ �H&ðn�1Þ�l1&ðn�1Þ

��������

��������
E�

:

Remark now that the remaining determinant is the characteristic
equation of F*. The pre-factor provides the extra stability
condition as follows. E* is stable if and only if the following
equation in l

ðZnþlÞ½S
�bn�ðmþgnÞ�l�þonrS�

@½enðVÞf ðVÞ�

@Vn

����
E�
¼ 0,

has solutions l1 and l2 with negative real parts. This happens if and
only if the following two conditions are simultaneously satisfied:

(a) l1þl2 ¼�Znþ½S
�bn�ðmþgnÞ�o0,

which further yields

S�bn

mþgn

�
Zn

mþgn

o1; ð36Þ

(b) l1l2 ¼ Zn½S
�b�ðmþgnÞ�þonrS�@½enðVÞf ðVÞ�

@Vn

���
E�
40,

which can be rewritten as

R½n�0 �
S�bn

mþgn

þ
S�ron

ZnðmþgnÞ

@½enðVÞf ðVÞ�

@Vn

����
E�
o1: ð37Þ

Note however that since the biological parameters are positively
defined and enðVÞf ðVÞ is an increasing function of Vn (Properties 1 and
2), Eq. (37) implies Eq. (36). Thus, the condition given by Eq. (37) is
both necessary and sufficient for l1,2 to have negative real parts. &
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