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Abstract

Dynamical systems theory predicts that inherently oscillatory systems undergoing periodic forcings will exhibit resonance phenomena, which
are characterized by qualitative dynamical consequences resulting from the amplification of small external perturbations. In this paper we use
extensive numerical simulations to demonstrate that the periodic nature of pulse vaccination strategies can make disease dynamics resonate. We
proceed step by step in order to tease apart the dynamical consequences of (i) the intrinsic nonlinearity of the host—pathogen system, (ii) the
seasonal variation in transmission and (iii) the additional forcing caused by vaccinating in pulses. We document that the resonance phenomenon
associated with pulse vaccination can have quantitative epidemiological implications and produce perverse effects such as an unexpected increase
in the number of infectives as the vaccination frequency increases. Our findings emphasize the importance of carefully taking into account the

dynamical properties of the disease when designing a pulse vaccination strategy.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of most directly transmitted childhood
diseases are characterized by pronounced oscillations, with
alternating “boom” (epidemic, outbreak) and “bust” (inter-
epidemic) periods [3,28,38,17,24]. This observation has
motivated an impressive number of studies, ranging from the
theoretical to the applied perspective. Ecologically, the most
commonly addressed questions concern infection persistence
[7,11,31,39], spatial synchrony of epidemics [6,12,34,18,38,
25], and the impact of vaccination [3,49,28,13,17,25,40]. From
a more theoretical point of view, there have been a number
of investigations into the complex and nonlinear nature of
epidemiological systems [41,10,37,19,50,32,8]. A particularly
interesting area has been to develop an understanding of
the interaction between the weakly damped oscillations of
epidemic systems and external forcing (e.g., the school year
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cycle), which can give rise to a plethora of complex patterns,
such as a cascade of period-doubling bifurcations and chaos
[15,26,43,22]. Surprisingly, the phenomenon of resonance,
i.e. the excitation of oscillations by external forcing, has
received little attention by epidemiologists and ecologists.
This is all the more surprising given the numerous potential
sources of resonance in such systems and their possible
dynamical consequences both in qualitative and quantitative
terms (see, for example, [50]). A recent exception is the work
of Greenman et al. [23], who showed that resonance has great
potential for shedding light on the dynamics of ecological and
epidemiological systems. In this paper, we explore resonance
phenomena in models of disease transmission. We begin
by studying the resonance associated with seasonality in
transmission (as due to the alternation of holidays and school
terms). In a second stage we focus on the resonance related to
the periodic nature of pulse vaccination, first without and then
together with seasonality in transmission.

The rationale underpinning classical vaccination policy is
to ensure the proportion of susceptible individuals in the
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population remains below the threshold necessary for an
epidemic [4]. The most commonly used scheme for the control
of childhood microparasitic infections is called paediatric
mass vaccination. It is based on the static properties of
the host—pathogen system and involves vaccinating a critical
fraction of infants before they reach a specific age cohort,
usually 0-2 years [4]. An alternative and potentially less
expensive strategy, called pulse vaccination, has been recently
proposed [2,36]. This scheme explicitly accounts for the host
population dynamics and involves the periodic immunization
of a specified proportion of the susceptible population to
prevent invasion of the infection. A number of elegant
studies have determined the optimal vaccination coverage and
frequency to eradicate common infections, such as measles
[2,45,16]. Interestingly, d’Onofrio [16] briefly mentioned the
potential for “parametric resonance” (defined below) resulting
from the periodic nature of vaccination pulses. However the
dynamical consequences of such a resonance phenomenon have
never been studied in detail. Moreover, the models exploring
periodic vaccination have ignored so far the well-documented
seasonality in disease transmission (primarily to facilitate
analytical tractability).

The present work addresses this problem through extensive
numerical simulations to study in detail the resonance-
induced quantitative consequences of pulse vaccination in
a context of seasonally varying disease transmission. Given
the potential for complex dynamics, we proceed step by
step in order to tease apart the consequences of interactions
between the inherent nonlinearity of these systems and different
external forcings (seasonality and vaccination pulses). We first
review the classical SEIR model, highlighting the source of
nonlinearity. We then introduce sinusoidal variation in disease
transmission (to mimic the alternation of school terms and
holidays). Within this simple set-up, we provide a description
of the different characteristics of resonance, both linear and
nonlinear, and contrast the quantitative predictions of resonance
due to seasonality in disease transmission with the patterns
observed in epidemiological data. We finally incorporate pulse
vaccination into the model. Despite the increased degree of
complexity in the dynamics, parametric resonance associated
with the periodic vaccination pulses is clearly identified. We
focus on its quantitative epidemiological consequences, in
terms of incidence, and reveal potential counter-intuitive effects
such as an increased number of infectives as the frequency
of vaccination rises. The results of this study have strong
implications for the design of pulse vaccination schemes and
these are discussed at the end of the paper.

2. The model

Consider the propagation of an immunizing, non-fatal, acute
disease in a constant population of N individuals. The dynamics
of diseases, such as childhood diseases, characterised by a
substantial period of asymptomatic latency following infection
can be modeled using the classical SEIR framework [15,4,14]
where the dynamics of the susceptible (), infected but not

infectious (F), infectious (1), and recovered (R) individuals are
described by the following differential equations:
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where © is the population turn-over rate, A is the force of
infection (the per capita rate of acquisition of infection) and 1 /o
and 1/y are the mean latent and infectious periods, respectively.
Note that the host population turn-over rate is equal to both the
birth and the death rates. The consequence of this assumption
is that high birth rates imply short life expectancy and low
birth rates imply long life expectancy. In the case of childhood
diseases, this is not a problem for two reasons. First, human
populations are actually characterised by a negative relationship
between the birth rate and the life expectancy, with developing
countries generally characterised by high birth rates and short
life expectancy, and developed countries more characterised by
low birth rates and long life expectancy. Second, in the case of
childhood diseases, where the mean age at infection is low and
the acquired immunity is life-long, we are not really concerned
about the life expectancy, only the birth rate really matters.

Here, the force of infection is modelled as proportional
to the infection prevalence: A = pBI, as usually assumed
for directly transmitted infections (such as measles, whooping
cough, influenza, etc.) [15]. The proportionality constant B
reflects the contact rate. The basic reproduction ratio Ry,
defined as the average number of secondary infections produced
by one infected individual introduced into a fully susceptible
population [4], is expressed as

BNo
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Note that for most childhood diseases like measles or whooping
cough, y > u and ¢ > p making Rop approximately
independent of w.

The system of Egs. (1)—(4) possesses two equilibria (the
disease-free and the endemic), the stability of which depends
solely on Rp. If Ry is less than unity, then the disease-
free equilibrium is stable, while Ry > 1 means the
endemic equilibrium is stable. Perturbations to the endemic
equilibrium result in damped oscillations before the equilibrium
is recovered. Linear stability analysis reveals the natural period
T and the damping time Tp of this system to be approximated
by

(&)

Ry =

T = 27vAG (6)
and
Tp = 2A (7)
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respectively, where A represents the mean age at infection,
A ~ 1/u(Ryp — 1), and G gives the ecological generation
length of the infection, i.e. the sum of latent and infectious
periods, G = [1/(u + v)] + [1/( + o)] [4,40]. For most
epidemiologically reasonable parameter values, the damping
time is typically much longer than the natural period: Tp >
T. This renders the endemic equilibrium weakly stable, with
relatively small perturbations (intrinsic or extrinsic) “exciting”
the inherent oscillatory behavior [26] and thus generating
sustained oscillations as observed on the dynamics of most
childhood diseases [35,20,3,21,28,38,17,24].

In this paper, the inherent oscillations of our system are
excited by a sinusoidal forcing on the contact rate g, intended
to reflect the alternation of school terms and holidays [35,20,
42,21,4]:

2
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The strength of seasonality 81 measures the amplitude of the
oscillations around the baseline coefficient of transmission S,
and T is the period of forcing. For childhood diseases, Ts = 1.
However, since we are interested in the value of Ty relative to
the natural period 7, instead of studying different combinations
of the epidemiological parameters By, o, and y, our approach
is to keep T constant and vary T [23]. Thus, in the simulations
presented in the next section, we will take classically estimated
measles values (g = 0.0002 yr_1 . individualfl, ol =
7.5 day, and y~! = 6.5 day; [4]) and let T vary from 0.1 to 10
yr. The population size will be fixed at N = 5 x 10° individuals,
yielding an R around 17.

3. Non-linearity and exploration process

The nonlinearity of a dynamical system is often the source
of complexity in the dynamics. Within the context of the SEIR
system, the sole source of nonlinearity is density dependence
in the transmission process (represented by the bilinear term
BI1S). For a sufficiently large rate of susceptible recruitment,
W, the uN term in Eq. (1) dominates and the transmission
term can essentially be considered linear. In order to derive the
approximate value of x for which this is true, we wish to ensure
that %—g > 0. This condition will be approximately satisfied
if the minimum number of susceptibles exceeds N /Ry [33].
Therefore, we obtain an expression for S by setting Eq. (1) to
Zero:

N
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In order to ensure S > N/Rp, we must have u > %.
Thus, we can obtain a conservative estimate for this criterion

by insisting it is satisfied at the peak of the epidemic:

Bo(1 + B1)
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Extensive numerical simulations reveal that, for much of
the parameter space, max(/) < 1073N [17]. Substituting
this, together with the other parameter values used in our
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simulations, into Eq. (10), we get p. =~ 0.07 yr~L
Consequently, for s > 0.07 yr~! the linear approximation
becomes reasonable. Conversely, the lower the recruitment rate
below 0.07, the larger the nonlinear influence and the more
complicated dynamics are expected. In practice, the recruitment
rate vary from 0.02 in developed countries to 0.05 in developing
countries, meaning that nonlinearity of the transmission process
is expected to influence the dynamics of the disease. This
influence of the recruitment rate on the complexity of the
dynamics has been verified in measles dynamics using both
simulations and time-series analysis [17,24]. These authors
also demonstrated the correspondence between the recruitment
rate ;o and the mean coefficient of transmission Sy, predicting
similar dynamical consequences of increasing p and increasing
Bo. For simplicity, in the following we will vary only u. We
illustrate the dynamical properties of the seasonally forced
SEIR model (with and without pulse vaccination) by first
considering the simple case of approximately linear dynamics
(harmonic resonance) observed for large (and rather unrealistic)
rates of susceptible recruitment w (i.e. 0.07 < u < 0.10). We
then explore the consequences of nonlinearity (subharmonic
and parametric resonance) by progressively decreasing the
recruitment rate p towards realistic values (i.e. 0.01 < p <
0.05).

3.1. Resonance and non-linearity

We now proceed to define some of the basic terminology
of resonance phenomena in forced systems. “Resonance” is a
generic term that indicates a relationship between the amplitude
of observed oscillations and the period of forcing, with a
clear maximum. This maximum is called the “resonance peak”,
with a corresponding “resonance period” (the forcing period
at which the resonance peak occurs). The simplest type of
resonance — harmonic or linear resonance — arises in the special
case where the system can be approximated as linear, i.e. for
high values of the population turn-over rate in our model (u >
0.07, see the previous section). In the more general case where
the system is nonlinear (i.e. when p decreases below 0.07 in
our model, see the previous section), we observe more complex
types of resonance: subharmonic and parametric resonance.
Below, these different kinds of resonance are detailed.

3.2. Linear systems and harmonic resonance

The two fundamental properties of linear systems are that
(1) they oscillate sinusoidally, and (ii) their natural period is
independent of their amplitude. When periodically excited,
linear systems exhibit harmonic oscillations, meaning they
oscillate with the same period as the forcing, which is not
necessarily equal to the natural period. This is because, in
some sense, the external forcing is additive [15]. When the
forcing period equals the natural period of the unforced
system, the amplitude of the oscillations reaches its maximum
(i.e. resonance peak). For this type of resonance — called
harmonic resonance — there is one unique resonance peak and
the resonance period is thus equal to the natural period [29].
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For the forced SEIR system, this would mean that whenever the
period of seasonality 75 equals the natural period 7', maxima
in the coefficient of transmission (8(¢)) and the number of
infectives I (¢) coincide, thus amplifying the magnitude of the
oscillations. These possibilities are explored in Fig. 1A, which
shows a resonance diagram [30] where the peak and trough
numbers of infectives are plotted against the logarithm of the
forcing period Ts. It demonstrates how, as Ts increases, we
observe a dramatic rise (decline) in the peak (trough) number of
infectives, with a clear turning point after which the amplitude
of oscillations declines. The excellent agreement between this
resonance period (resonance peak at T = 7 =~ 1.05 years;
Fig. 1A) and the approximate natural period from Eq. (7)
(vertical line at Ty = T ~ 0.95 years; Fig. 1A) is confirmation
of the linear approximation: (T — 7')/T = 0.10. Indeed, as
further increases, T — T tends towards O (results not shown).

3.3. Nonlinear systems and nonlinear resonances

In the more general case where the system is nonlinear,
the above-mentioned two fundamental properties of harmonic
oscillators do not hold anymore. Namely, (i) they do not
oscillate sinusoidally, and (ii) their natural period becomes
dependent of their amplitude. From the first property there
results subharmonic resonance where each harmonic of the
system can give rise to a resonance peak (see Fig. 1B-D). From
the second property there results a fold-over effect where the
dependency between the amplitude of the oscillations and the
natural period of the system progressively shifts this latter out
of the resonance domain as the forcing period increases. This
results in these characteristic asymmetric peaks of resonance.
When nonlinearity further increases, the period—amplitude
relationship accentuates the asymmetry of the peak, bending it
further and even folding it over itself (see for example, Fig. 1C
at Ts ~ 1 or Fig. 1D where it is even more pronounced).
This fold-over effect leads to bistability and hysteresis, i.e. the
system oscillations may have either a large or a small amplitude
with an unstable periodic solution in between. At the end of the
interval of bistability this unstable limit cycle annihilates with
one of its stable counterparts in a saddle-node bifurcation.

Focusing only on the peak values of the number of
infectives, Fig. 2A illustrates the nonlinear effect of a
continuous decrease in w (from 0.10 to 0.01 /person/yr) on the
resonance phenomenon.

3.4. Parametric resonance and dependency among parameters

Parametric resonance occurs when one of the parameters
(the coefficient of transmission 8 in our model) is not constant
but time-dependent. This type of resonance differs from
harmonic and subharmonic resonances in that it is an instability
phenomenon stemming from the weak stability of the endemic
equilibrium [29]. The fundamental property of parametric
resonance is that resonance peaks are expected at integer
fractions of the natural period, once a control parameter has
exceeded a certain threshold, with each parametric resonance
peak having its own threshold value. Grossman et al. [27]
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Fig. 1. Resonance diagrams showing the effect of seasonality in transmission.
The peak and trough values of the number of infectives (as determined by Eqs.
(1)-(4)) are plotted against the period Tg of the seasonal forcing modeled by
Eq. (8). Parameter values are N = 5 X 10° individuals, =1 = 7.5 days,
y~1 = 6.5 days, By = 0.0002 yr—! - individual ™!, and 8; = 0.1, yielding a
Ry approximately equal to 17. The recruitment rate takes the following values:
M*I = 10, 20, 40, 70 yr for A, B, C, and D respectively. The attractors were
determined from a 20-year period, after 180 years of transients were discarded.
For each diagram, 1001 dynamics were simulated, regularly spaced on the
decimal logarithm scale of the period. Initial conditions were S = 0.05N,
E =1 = 0.0001N. The vertical lines correspond to the estimation T of the
inherent oscillatory periods 7' from the linear approximation of Eq. (7). Note
the logarithm scale on the x-axes.
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Fig. 2. A, Resonance diagram showing the effects of seasonality in transmission and nonlinearity. The peak values of the number of infectives (as determined by
Eqgs. (1)—(4)) are plotted against both the period Tg of the seasonal forcing modeled by Eq. (8) and the recruitment rate . The model is given by Eqgs. (1)—(4) and
(8). Initial conditions and parameter values are as in Fig. 1 except that p varies from 0.01 to 0.1 yr_1 by steps of 0.001. The black line shows the values of the
surface corresponding to measles parameters with 7¢ = 1 yr and p varying from 0.01 to 0.035 yr*l. B, Relationship between the maximum number of infectives
and the birth rate in England and Wales in the pre-vaccine era (1944-1966). For each year from 1944 to 1966 the maximum number of infectives and the number
of births were recorded. Both of these numbers were divided by the median city size between 1944 and 1966. The green curve corresponds to the smoothed values
after a lowess regression with a tensor parameter equal to 2/3. The blue curve corresponds to the model prediction (black curve of A). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

and Grossman [26] have reported a threshold effect for the
seasonal forcing amplitude B; (see also, [44] and [46] for more
rigorous mathematical proofs for the SIR and SEIR models,
respectively). Another threshold effect is associated with the
value of the baseline coefficient of transmission Sy (or w,
recalling the aforementioned correspondence between p and
Bo). This is visible on Fig. 1: parametric resonance occurs
around 7s = 2 yr in Fig. 1A and when p decreases from
Fig. 1A to D, the number of parametric peaks increases. This
is even more apparent on Fig. 2A where the dependence of
the resonance period on Sy is responsible for the curvature
observed on the figure. Note that this effect of 8 is particularly
pronounced for the biologically realistic values of u (0.01 <
u < 0.05) where the nonlinearity is high. The relation
between the thresholds on i and on fy is treated in [5].
Grossman [26] derived analytical formulations of the thresholds
associated to each parametric resonance peak and showed a
direct correlation between the aforementioned local stability
of the system (defined by the 2A/T ratio) and its excitability,
here defined by the threshold value on B; (see [44] and [46]
for rigorous mathematical treatments). Subharmonic parametric
resonance has been suggested to explain the biennial cycles of
measles epidemics [35,47]. Moreover, Schwartz and Smith [44]
and Smith [46] showed that several subharmonics of different
periods can be simultaneously stable and further pointed out
that random effects in the environment could perturb the state of
the system from the domain of attraction of one subharmonic to
that of another, producing aperiodic looking levels of incidence.
This is greatly enhanced by the fact that the basins of attraction
of the different subharmonics are largely intertwined [43,17].

3.5. Detection of resonance in measles data

Figs. 1 and 2A illustrate, in a general theoretical context,
resonance phenomena for a given recruitment rate © when Tg
is varied. Because of the curvature observed in Fig. 2A, all
the resonance phenomena described above are also observed
for a given period Ts of the seasonal forcing when the

recruitment rate p is varied. This observation is practically
relevant for the study of a particular disease since it implies
that small variations in birth rate and/or vaccination coverage
may dramatically change the severity of the epidemics and not
necessarily in an intuitive manner. This generally echoes the
findings of Dietz [15], who studied the effect of Ry (see Eq. (5))
in an SIR framework with annual oscillations in the coefficient
of transmission. We explored these predictions using weekly
notification data for measles, and associated demographic data,
for 60 towns and cities of England and Wales in the pre-vaccine
era (1944-1966). See [9] for more details on the data set.

For measles parameter values, the model predicts parametric
resonance in the dynamics: setting 7s = 1 yr in Fig. 2A and
varying p within a biologically meaningful region (i.e. from
0.01 to 0.035/person/yr), we observe a peak followed by an
increase in the number of infectives (see the black line on
Fig. 2A which is the same as the blue curve on Fig. 2B). We
explored the data by calculating the maximum of the attractor
and plotting it against the per capita birth rate, with the trend
smoothed by a lowess regression (with a tensor parameter of
2/3). In practice, for each city, we truncated the measles case
notification and birth time series in adjacent intervals of a fixed
duration. On each of these intervals we considered the largest
reported number of cases and the mean number of births. Both
of these quantities were divided by the median city size between
1944 and 1966, producing our estimations of the maximum of
the attractor and its corresponding per capita birth rate. Fig. 2B
shows the results for a time interval of 1 year, though analyses
for time intervals of 2, 3, and 4 years gave similar results. The
observed patterns qualitatively fit model predictions rather well
(compare the two curves in Fig. 2B). Quantitative discrepancy
are certainly due to the simplicity of our model (in particular
the sinusoidal form of the periodic forcing), and the difficulty
to analyze such a dataset (the scale of birth rate variation is
lower than the mean age at infection). Also, in the data set,
the population sizes are assumed constant (and equal to the
median city sizes between 1944 and 1966) which obviously is
not the case. Such an approximation might also be responsible,
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to some degree, for the discrepancy between model predictions
and actual data. Therefore, these results highlight the fact
that changes in the recruitment in susceptibles (either due to
systematic trends in the crude birth rate or vaccination) not only
have qualitative consequences through dynamical transitions
but, due to resonance effects, may also have major quantitative
consequences such as dramatic changes in the amplitude of the
oscillations.

4. Pulse vaccination
4.1. Definition and theoretical background

The most commonly used strategy for control of infections
such as measles is to immunize infants once they have reached
a certain age (e.g. 12-25 months for the MMR vaccine
in the USA). This process however requires a rather high
vaccination coverage (around 95% for measles) for disease
eradication to be achieved in practice. An alternative (and
potentially less expensive) strategy is vaccination in pulses [2,
36]. This approach, based on theoretical results on population
dynamics in varying environments [ 1], consists of vaccinating a
proportion p of the susceptible population every Ty years. The
essential aim is to antagonize (or entrain) natural dynamics by
a different temporal process. This theory has been successfully
applied in campaigns against poliomyelitis and measles in
Central and South America and measles in the UK in 1994 (see
references in [16]).

The theoretical challenge of pulse vaccination is the
analytical determination (for specified values of p and w) of
the optimal value T'®* which ensures the eradication of the
disease. The rationale behind this, derived from the SIR model,
is simply to repeatedly remove susceptibles in order to ensure
that the proportion of susceptibles S(z)/N remains consistently
below the threshold s, = 1/Rg required for an increase in the
number of infectives. This led to the approximation T'** = A,
where A is the mean age at infection [2]. Further detailed
analyses revealed that to prevent an epidemic, it is sufficient that
the mean value of S(¢)/N, averaged over the pulsing period,
remains below s.. For an SIR model with constant coefficient
of transmission, this led to the following relationship between
Ty and p [45]:

Tmax — py .
v B —p/2—v/B)

This value of 77** can be substantially larger than the mean
age at infection A and remains a good approximation for
the SEIR model, as long as B is constant [16]. When the
transmission rate is periodic, 8 in Eq. (11) should be replaced
by its mean value By [45,16]. Once Ty < T3, the disease
is thus expected to disappear. Should Ty > T3"*, however,
the pulsed nature of this vaccination strategy may give rise
to a rich variety of dynamics [45]. One important potential
consequence is an increased likelihood in epidemic synchrony
across sub-populations [18]. Another possible consequence
of vaccination in pulses may be resonance effects associated
with the frequency of vaccination events (as briefly mentioned

an

by d’Onofrio [16]). We show here, via extensive numerical
simulations, the conditions under which pulse vaccination can
result in very large epidemics.

4.2. Investigating the resonance effect of pulse vaccination

A proportion p of the susceptible population is now
vaccinated every Ty years and the following equation should
be added to the previous model (Egs. (1)—(4) and (8)):

SKTy) = (1—p)-SKT;), keN (12)

where Ty, and TJ respectively refer to the instants that
immediately precedes and follows the vaccination pulse. Given
a vaccination proportion p and Ty > T'®*, two parameters
may further influence the onset of resonance: the susceptible
recruitment rate u (or, equivalently, the mean coefficient
of transmission fp), and the amplitude of seasonality in
transmission (81; Eq. (8)). In the previous section, we studied
the resonance effects associated with the seasonal transmission.
We are now interested in the resonance phenomenon arising
from the periodic nature of vaccination pulses. We proceed
step by step in order to distinguish the resonance effects due
to pulse vaccination from those due to seasonal variations in
transmission. First consider the model given by Egs. (1)-(4),
(8) and (12) with constant transmission (i.e. 81 = 0 in Eq. (8)).
In this setup, Fig. 3 shows resonance diagrams plotting the
peak and trough values of the number of infectives against
the logarithm of the period of vaccination Ty . To identify the
influence of the system nonlinearities we proceed as before
(c.f. Fig. 1) through variation in population turn-over rate pu,
though the range of u is smaller and more realistic in Fig. 3 than
in Fig. 1. More precisely, Fig. 3D corresponds to the birth rate
observed in western countries while Fig. 3A to that observed in
some African countries.

Shulgin et al. [45] pointed out that when Ty > T3
the solution /(t) = O becomes unstable and the number
of infectives begins to exhibit large amplitude oscillations.
When Ty is further increased, a sequence of period doubling
bifurcations interspersed with chaos is observed. Here, we
further observe that a realistic increase in the recruitment rate
w from 0.02 (Fig. 3D) to 0.05 (Fig. 3A) reduces the chaotic
region. A second effect of nonlinearity associated with the
decrease of the population turn-over rate u from Fig. 3A to
Fig. 3D is the shift of the attractor towards the high values
of the period of the forcing. This phenomenon has been
already observed on Fig. 1 and is due to the above-mentioned
increased dependency between the amplitude and the frequency
of the oscillations when the level of nonlinearity increases [29].
For simplicity, we will focus our analysis on the structure
of the attractor of a non-chaotic dynamics (Fig. 3A). Note
however that the following observations are robust relative to
the complexity level of the dynamics. This robustness appears
when taking into account the temporal dimension which is not
visible in the resonance diagrams of Fig. 3. Indeed, when we
estimate the duration spent by the dynamics in each part of its
chaotic attractor of Fig. 3D, we get a structure pretty close to
that of Fig. 3A (results not shown).
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Fig. 3. Resonance diagrams showing the effect of pulse vaccination, ignoring
seasonality in transmission. The peak and trough values of the number of
infectives (as determined by Eqgs. (1)-(4)) are plotted against the period Ty
of the pulse vaccination modeled by Eq. (12). The attractors were determined
from a period encompassing 200 vaccination events after the first 300 years
and the initial 100 vaccination events were discarded. For each diagram, 501
dynamics were simulated, regularly spaced on the decimal logarithm scale of
the period. Initial conditions were S = 0.05N, E = I = 0.0001N. Parameter
values are the same as in Fig. 1 except that here 8 = O and Ty = 1 yrin
Eq. (8). The vaccination coverage p = 0.4 in Eq. (12) and the recruitment rate
takes the following values: © = 0.05, 0.04, 0.03, 0.02 yr*1 for A, B, C,and D
respectively. Note the logarithm scale on the x-axes.

The amplitude of the oscillations changes with Ty. All
peaks occurring at a forcing period Ty greater than 2 are
harmonics of the main resonance peak observed at Ty =~ 2 yr.

The bifurcations associated with each increase in the amplitude
indicate instability and are characteristic of parametric
resonance. As visible in Fig. 3A, the resonance phenomenon
due to the periodic nature of this vaccination strategy may
locally give rise to unexpected increases in the epidemic peaks
as the frequency 1/Ty of vaccination increases. Moreover,
increases in the peaks tend to be associated with deeper troughs
(not shown) which thus may increase the probability of disease
extinction in the case of small populations. More importantly,
the duration of the epidemic is also influenced (see below).

4.3. Introducing seasonality to pulse vaccination’s resonance

Consider now the case where transmission is seasonal
(i.e. B1 > 0in Eq. (8)), with a fixed period Ts equal to 1 yr.
In practice, two B; values (81 = 0.01 and B8; = 0.10) have
been added to the dynamics described in Fig. 3A (where S
had been set to zero). In both seasonality cases, our simulations
tracked how four critical quantities behave when Ty varies: the
amplitude of infectives (Fig. 4A, B), the cumulative number
of cases (Fig. 4C, D), the mean annual number of infectives
(Fig. 4E, F), and the number of vaccinated individuals (Fig. 4G,
H). Clearly, increasing 81 from 0 (Fig. 3A) to 0.01 (Fig. 4A)
or the more realistic value [17] of 0.10 (Fig. 4B) increases
variation in the dynamics of infectives, eventually leading to
chaos. Note however that the general structure of the resonance
peaks is not affected by the level of complexity that may
be present in the dynamics. Indeed, the confusing patterns
obtained when 8; = 0.10 (Fig. 4B) resemble those obtained
for g1 = 0.01 (Fig. 4A) and for 81 = 0 (Fig. 3A).

The two levels of seasonality (81 = 0.01 and 8; = 0.10)
also differentially affect the instantaneous number of new
infectives (Fig. 4C, D). Here the number tracked corresponds
to the individuals entering the infectious compartment between
two vaccination pulses, scaled by the between-vaccination

duration: (1/Ty) fk(i;rl)TV o E(t)dt. Whatever the value of 8,
the peaks in incidence (Fig. 4C, D) are associated with those
observed in the resonance diagrams (Fig. 4A, B). When g8 =
0.10 it remains visible: incidence exhibits a sudden change at
Ty =~ 2 years (Fig. 4D), which precisely coincides with the
main peak on the resonance diagram (Fig. 4B).

More relevant from an epidemiological point of view may
be the mean annual number of infectives. Its variation with
Ty is shown in Fig. 4E, F. Here the mean considered was
computed over a period encompassing 200 vaccination events,
which has the advantage of smoothing the irregularities due to
the complexity of the dynamics. Despite the general increase in
the mean annual prevalence with Ty, these two plots clearly
exhibit peaks wherever parametric resonance is observed in
the resonance diagram (compare Fig. 4A, B with Fig. 4E,
F). As expected, the observed pattern is even more clear-
cut when the number of people actually vaccinated remains
fixed as Ty varies (not shown). Practically, these resonance
phenomena mean, somewhat counter-intuitively, that the mean
annual number of infectives may locally (i.e. on the resonance
domain) increase when Ty decreases. For example, in Fig. 4F,
vaccination every 24 months yields a mean annual number
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Fig. 4. Mixing seasonality and pulse vaccination. Dynamics of the model given by Eqs. (1)-(4) with an oscillating coefficient of transmission modeled by Eq.
(8) and pulse vaccination modeled by Eq. (12). As in Fig. 3A, u = 0.05 yr*1 and p = 0.4 in Eq. (12). In addition, Ty = 1 yr in Eq. (8). Seasonality is then
introduced with 81 = 0.01 (left column) and 8; = 0.10 (right column). Each row shows the behavior of four critical quantities when Ty varies. A, B, resonance
diagrams of the number of infectives. C, D, instantaneous number of people who get diseased between two vaccination pulses. This number is calculated by

k+1)T
/1) [T

o E(t)dt (see text). E, F, Mean annual number of infectives. This is calculated on the period encompassing the last 200 events of vaccination. G,

H, actual number of vaccinated people in the simulations (in black) and, in grey, the optimal number, as estimated by d’Onofrio [16]. The effective number is simply
p - S(kTy, ). The optimal estimation is pyn - S(kTy, ) where ppy;y is calculated from Eq. (11) and k € N. Initial conditions were S = 0.05N, E = I = 0.0001N.

Note the logarithm scale on the x-axes.

of infectives (1275,000) that is 10% higher than vaccination
every 28 months (1155,000). As B; decreases, this difference
becomes even more pronounced: in Fig. 4E, vaccination every
25 months yields a mean annual number of infectives equal
to 1315,000 which is 15% higher than a vaccination every 26
months which yields a mean annual number of infectives equal
to 1145,000. The reason of this paradox is that, by its periodic

nature, the pulse vaccination strategy make the recruitment
rate in pace with the intrinsic dynamics of the disease, thus
optimizing its transmission.

Finally, let’s focus on the number of people effectively
vaccinated and its variation with 81 and Ty (in black in Fig. 4G,
H). This number is simply calculated from p - S(kTy, ), k € N.
Fig. 4G, H also show in grey the minimum number of people
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to vaccinate to theoretically reach eradication according to
Shulgin et al. [45] and d’Onofrio [16]. This is calculated from
Pmin * S(kTy ), k € N, where pmin is derived from Eq. (11)
[45,16]. When Ty < 2 yr we observe on Fig. 4G, H that
the number of people actually vaccinated in higher than the
minimum required to theoretically reach eradication. However,
instead of reaching disease eradication as expected, we still
observe disease persistence (see corresponding Fig. 4A-F).
Eq. (11) was derived neglecting the effect of the amplitude 8; of
the seasonal transmission (see Eq. (8)) on the value of T'** [45,
16]. Our numerical results suggest that, for realistic parameter
values, neglecting the effect of the amplitude of the seasonal
transmission can lead to somewhat overoptimistic high values
of the optimal pulse period 7.

5. Discussion

Epidemiological systems describing strongly immunizing
infections are inherently oscillatory and thus are expected
to produce resonance phenomena when undergoing periodic
forcing [29]. For childhood diseases, one obvious mechanism
for forcing is the seasonal variation in transmission due to the
alternation of holidays and school terms [35,20,42,21,4]. A
second cause of external forcing is associated with the periodic
nature of pulse vaccination (when the vaccination coverage
and/or the pulse frequency are not high enough to eradicate the
disease; [16]). In this study, we have numerically explored the
dynamical effects of resonance, especially within the context of
pulse vaccination.

We first considered the simple SETR model with a sinusoidal
coefficient of transmission. Here, the source of nonlinearity is
the density-dependent transmission process and the strength
of nonlinearity increases as the population turn-over rate
w decreases or, equivalently, when the mean coefficient of
transmission By decreases [17]. Resonance diagrams with the
period Ts of the seasonal forcing as the control parameter
show the existence of two kinds of resonance: harmonic
and parametric, depending on the strength of nonlinearity.
Harmonic resonance is characterized by a single high peak
in the amplitude of epidemics and occurs when Ty ~ T,
with T the natural period of the system in the absence of
forcing. Parametric resonance is an instability phenomenon and
is characterized by a series of small peaks in the amplitude of
epidemics. These peaks occur at integer fractions of the natural
period T. The appearance of each parametric resonance peak
occurs at a threshold value on the level of nonlinearity (as
determined by, for example, the population turn-over rate )
and the values of these thresholds depend on the amplitude S
of the seasonal forcing. The curvature observed on Fig. 2A is
responsible for the fact that the effect of resonance may be also
detected when the level of nonlinearity varies, for a fixed period
of the seasonal forcing. This prediction has been successfully
verified on real data of measles cases from England and Wales
in the pre-vaccine era.

In a similar way, we investigated the potential for resonance
associated with the periodic nature of pulse vaccination. For
simplicity, we began by considering pulse vaccination in the

absence of seasonality in transmission. We clearly detected
parametric resonance, which results in higher peaks and deeper
troughs in infective numbers. Obviously, deeper troughs may
increase the probability of disease extinction, especially in
small populations. However, the effects of resonance are
substantially more dramatic on the peaks than the troughs
(Fig. 3). Moreover, we found an unexpected local (in terms
of vaccination frequency) increase in the number of infectives
as vaccination pulses become more frequent. This finding
holds even when the threshold vaccination level required
for eradication in the absence of seasonality is exceeded.
From then, we added seasonal variation in transmission. Our
simulations show that the inclusion of seasonality has little
impact on the system behavior (including the structure of the
resonance peaks) other than to force the oscillations into a
chaotic mode. For simplicity, the effects of resonance were
investigated on situations where the dynamics behave relatively
simply (i.e. high population turn-over rate p, high mean
coefficient of transmission Sy, and low amplitude B; on the
coefficient of transmission). Nevertheless, our conclusions were
robust relative to the level of complexity in the dynamics and
remained unchanged when considering realistic u, Bo, and B
values.

The results outlined in the paper have public health
implications pertaining to pulse vaccination strategies. The
classical mass vaccination scheme is based on the static
properties of the host—disease system. What makes the
recently developed pulse vaccination theory potentially more
efficient is that it explicitly accounts for the dynamics of
the host population through the influx of susceptibles (via
births). Substantial progress has been made in determining
the optimal vaccine coverage p and pulsing frequency Ty in
different epidemiological contexts [2,36,45,48,16]. However,
our numerical results warn that neglecting the effect of the
amplitude B; of the seasonal transmission on the optimal pulse
period Ty ([45,16]; see Eq. (11)) can be an overoptimistic
approximation which can have dramatic consequences in
practice in not leading the disease to extinction as expected.

We have also shown that the interference between intrinsic
diseases dynamics and the periodic nature of an imperfect pulse
vaccination scheme may produce unexpected results, such as
an increase in the number of infectives with the frequency of
vaccination. As a consequence, further refinements of the pulse
vaccination strategy need to take seasonal disease dynamics
into full account. From a theoretical perspective, there is thus a
need for the development of analytical epidemiological models
that incorporate information such as the natural period of the
disease in question. From a practical point of view, we may
adopt a more ad hoc approach. In other words, the design
of a pulse vaccination policy on a particular epidemiological
system should be preceded by the determination of the disease
dynamics characteristics and its resonance domain. Simulation
models will be of great help for such tasks.
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