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Theoretical studies of wildlife population dynamics have proved insightful for sustainable management,

where the principal aim is to maximize short-term yield, without risking population extinction. Surprisingly,

infectious diseases have not been accounted for in harvest models, which is a major oversight because the

consequences of parasites for host population dynamics are well-established. Here, we present a simple

general model for a host species subject to density dependent reproduction and seasonal demography. We

assume this host species is subject to infection by a strongly immunizing, directly transmitted pathogen. In

this context, we show that the interaction between density dependent effects and harvesting can substantially

increase both disease prevalence and the absolute number of infectious individuals. This effect clearly

increases the risk of cross-species disease transmission into domestic and livestock populations. In addition,

if the disease is associated with a risk of mortality, then the synergistic interaction between hunting and

disease-induced death can increase the probability of host population extinction.
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1. INTRODUCTION
The consequences of harvesting on the dynamics of wild

animal populations have been studied quite extensively

since the first development of optimal harvest theory (see,

e.g. Getz & Haight 1989). However, it is only recently that

the interaction between harvesting, density dependent

population processes and seasonality have been studied in

any detail (Kokko & Lindström 1998; Jonzén & Lundberg

1999; Boyce et al. 1999; Xu et al. 2005). In temperate

regions, births of most wild animal species are seasonal

and each year many more individuals are produced than

will be able to survive until the following year, because of

limited resources. This annual surplus, referred to as

‘doomed surplus’ by Errington (1934), allows the

population to tolerate additional mortality. It has been

demonstrated, both theoretically and in the field (Kokko &

Lindström 1998; Jonzén & Lundberg 1999; Boyce et al.

1999; Xu et al. 2005 and references therein), that

harvesting can thus be partially, fully, or even over-

compensated by density-dependence. Full-compensation

means that the population size at a given season of the year

(e.g. post-breeding season) is not affected by hunting,

whereas over-compensation means that the population

size is actually increased by hunting (Murton et al. 1974).

Although, the consequences of harvesting on the

dynamics of wildlife populations have been studied in

detail, no investigations, to our knowledge, have been

carried out on the consequences of harvesting on the

dynamics of the diseases that thrive in those wildlife

populations (McCallum et al. 2005). This is all the more

regrettable since epidemiological studies have demon-

strated how the demography of a host population can

influence the frequency and intensity of recurrent
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epidemics (Fine & Clarkson 1982; Anderson & May

1991; Keeling & Grenfell 1997; Rohani et al. 1999; Earn

et al. 2000; Grenfell et al. 2001; Jansen et al. 2003; Davis

et al. 2004).

The only hints that hunting could potentially disrupt

the dynamics of wildlife diseases ironically come from

attempts to control these pathogens. Indeed, the most

common means of fighting wildlife diseases is the old age

practice of culling animal reservoirs. Such policies,

however, have been shown to be inefficient in numerous

situations. Recent examples include the inability to

eradicate tuberculosis in badger populations in the UK

despite widespread culling (Donnelly et al. 2003) and

rabies in fox populations in Europe (Woodroffe et al.

2004). It has been suggested that social and physiological

plasticities of such animal populations confer them with a

remarkable capacity to recover from control and that such

a response to culling could actually increase the supply of

susceptibles to the disease (Woodroffe et al. 2004).

However, such potential perverse effects have not been

investigated within a quantitative framework.

In this paper, we propose a simple general continuous-

time model that accounts for the dynamics of a directly

transmitted infectious disease in a harvested population.

The disease confers permanent immunity to its host after

recovery. The host population is naturally regulated by

density dependent demographic processes, and births are

assumed to be seasonal. We show that harvesting can

increase disease prevalence and mortality, causing poten-

tial serious threats in terms of wildlife conservation.

Moreover, the interaction between seasonality and den-

sity-dependence can increase the host population birth

rate. In such situations, not only the prevalence but also

the absolute number of infectious individuals is increased.

Special attention is given to the effect of the timing of
q 2006 The Royal Society
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the harvest season on the dynamics of both the host

population and the disease. These results are discussed in

terms of wildlife management and prevention of

epizootics.
2. THE MODEL
The general framework we introduce here is intended to

mimic the dynamics of a directly transmitted micropar-

asitic disease in a temperate population of game with a

strong density dependent demography (intended to

mimic, for example, wild boar or waterfowl). The general

structure of the model, inspired from the classical SEIR

framework (Anderson & May 1991), reads

dS

dt
Z4ðtÞNðtÞBðNÞK½DSðNÞCjðtÞqSHS ClðtÞ�SðtÞ;

ð2:1Þ

dE

dt
Z lðtÞSðtÞK½DEðNÞCjðtÞqEHE Cs�EðtÞ; ð2:2Þ

dI

dt
Z sEðtÞK½DI ðNÞCjðtÞqIHI CgCv�IðtÞ; ð2:3Þ

dR

dt
ZgIðtÞK½DRðNÞCjðtÞqRHR�RðtÞ; ð2:4Þ

where the state variables S, E, I and R represent the

numbers of susceptible, exposed (infected but not yet

infectious), infectious, and recovered individuals, respect-

ively. The term BðNÞ is the per capita density-dependent

birth rate, and DiðNÞ is the per capita density-dependent

natural death rate in compartment i (i2fS;E; I ;Rg). The

size of the total host population is given by

NðtÞZSðtÞCEðtÞC IðtÞCRðtÞ, and may vary. Parameters

qi (0%qi%1) and Hi are, respectively, the catchability and

the harvest effort in compartment i, where i2fS;E; I ;Rg

(Kot 2001). Newborns are assumed susceptible and their

exposure to disease is determined by the force of infection

lðtÞ (see equation (2.7)). Recovereds stay immune for life.

We assume that the mean durations of the exposed and

infectious periods are 1=s and 1=g, respectively. The

disease can induce additional mortality on the infectious

individuals, with a rate v. Seasonality in births (Macdonald

1984) is accounted for by the function 4ðtÞ. In wildlife

management, the most common practice is to permit

hunting only during a specified season, usually short

compared to the rest of the year (Xu et al. 2005). This

seasonality in harvesting is rendered by the function jðtÞ.

While our model is deliberately kept as generic as

possible, the range of the parameter values used in the

numerical analyses are intended to correspond to a classical

swine fever-like disease in a wild boar-like host population.
(a) Density-dependence

In numerous game species, including large herbivores, it is

well documented that both birth and death are density-

dependent (Gaillard et al. 2000). For simplicity, we assume

that these two rates are linearly related to population density

such that

BðNÞZ bKqNðtKtÞ; ð2:5Þ

DiðNÞZ di CmiNðtÞ; ð2:6Þ

where b is the maximum per-capita birth rate, di is

the minimum per-capita death rate in compartment i
Proc. R. Soc. B (2006)
(i2fS;E; I ;Rg), and q and mi determine the strength of

the density-dependence in birth and death rates, in

compartment i (i2fS;E; I ;Rg). The time-delay t reflects

the duration of gestation between the mating and birth

seasons.

(b) Frequency-dependence

For directly transmitted diseases, the force of infection can

be approximated as proportional to the frequency of

infectious individuals (Anderson & May 1991; McCallum

et al. 2001):

lðtÞZ b
IðtÞ

NðtÞ
; ð2:7Þ

where the parameter b is the product of the contact rate

between two individuals and the probability of disease

transmission upon a contact between an infectious and a

susceptible individuals. In §5, we speculate on the

consequences of alternative formulations of lðtÞ.

(c) Seasonalities

The two seasonality functions—4ðtÞ affects the birth rate

and jðtÞ influences harvesting—are modelled by a simple

periodic square function:

4ðtÞZ1SB
ðt mod T Þ; ð2:8Þ

jðtÞZ1SH
ðt mod T Þ; ð2:9Þ

where TZ1 yr is the period of the seasonal functions, and

SBZ ½b1; b2� and SHZ ½h1; h2� are the periods of time

corresponding to the birth and harvest seasons, respect-

ively. The beginning of a year is defined arbitrarily and its

specific definition has no influence on the model

predictions.
3. PROPERTIES AT EQUILIBRIUM
In this section, we are interested in the total host

population size N� and the disease prevalence I�=N� at

equilibrium, as functions of the harvest effort H. To ease

analytical tractability, we make here some simplifying

assumptions on the model parameters. We use the same

density-dependence d for the per-capita birth and death

rates: dZqZmSZmEZmIZmR. The minimum death

rates are null (dSZdEZdIZdRZ0), and the maximum

birth rate b is re-defined such that the carrying capacity K

of the host population in the absence of harvesting and

disease-induced mortality is constant:

bh2Kd: ð3:1Þ

These parameter choices and this scaling of the maximum

birth rate allows one to isolate and investigate the effect of

the strength of the density-dependence on the model

outcomes. We consider that harvest effort and host

catchability are not specific to any clinical status of the

host: HSZHEZHIZHRZH and qSZqEZqIZqRZq.

Finally, we do not consider any of the seasonality functions

(4ðtÞZjðtÞZ1;ct). The results of this section are derived

analytically and compared to numerical solutions in

figures 1 and 2, for which the following parameter values

are used: KZ105 ind, qZ0:5, bZ2000 yrK1, sZ1=8 dK1

and gZ1=5 dK1.

First, consider dynamics in the absence of disease-

induced mortality (vZ0). Here, the effect of harvest effort



Figure 1. Effect of the harvest effort H on(a) the hostpopulation
size N� and (b) the disease prevalence I�=N� at equilibrium, for
different strength of the density-dependence: high
(dx2:7397!10K9, full line), medium (dx1:3699!10K9,
dashed line) and low (dx9:1324!10K10, dotted line). The
lines show numerical solutions which are exactly the same as the
analytical solutions of equation (3.3). The minimum per-capita
death rates are null (dSZdEZdIZdRZ0) and the maximum
birth rate b is adjusted so that the carrying capacity in the
absence of harvesting is KZ105 ind, whatever the strength of
the density-dependence (see equation (3.1) in the main text).
We thus have bZ0:20 indK1 yrK1 (full line), bZ0:10
indK1 yrK1 (dashed line) and bx0:04 indK1 yrK1 (dotted
line). Other parameter values are qSZqEZqIZqRZ0:5,
bZ2000 yrK1, sZ1=8 dK1, gZ1=5 dK1 and vZ0. The value
of H varies from 0 to 0.4745, every 365!10K6 and, for each H
value, the equilibrium values of the dynamics are sampled on
the 137 yr that followed a burn-out period of 1370 yr.

Figure 2. Effect of the harvest effort H on the host population
size N+ in presence of disease-induced mortality rates v. The
thick full line corresponds to the full line of figure 1(a) (i.e.
dx2:7397!10K9 and vZ0:0). The dashed line is the same
but with vZ0:1. The lines show numerical solutions which
are undistinguishable from the analytical approximations of
equation (3.9). The hatched area corresponds to the
mortality due to the synergistic interaction between harvest-
ing and disease-induced mortalities (see fourth term in the
r.h.s. of equation (3.9)). Other parameter values are as in
figure 1. The value of H varies from 0 to 0.4745, every 365!
10K6 and, for each H value, the equilibrium values of the
dynamics are sampled on the 137 yr that followed a burn-out
period of 1370 yr.
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H on the total population size NðtÞZNðtKtÞ can be

studied by summing equations (2.1)–(2.4), which gives:

dN

dt
Z ðbKqHÞNK2dN2: ð3:2Þ

For sufficiently small values of the harvest effort H, the

non-trivial equilibrium population size N� can then be

expressed by setting equation (3.2) to 0, which yields

N� ZKK
q

2d
H : ð3:3Þ

This result exemplifies the tendency of the natural

density-dependence d of the host population to
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compensate the harvest pressure H. This is consistent

with the numerical solutions of figure 1a where, for a given

harvest effort H, the higher the density-dependence d, the

higher the equilibrium population size N�.

The effect of harvest effort H on the equilibrium

prevalence I�=N� can be derived by replacing NðtÞ by N�

(equation (3.3)) in equations (2.1)–(2.4), equating them

to zero, solving the system to get I�, and dividing it by N�.

A linear approximation of the disease prevalence at

equilibrium then reads as (see appendix A for approxi-

mation details):

I�

N�
xK

d

g
C

q

2g
H CoðHÞ: ð3:4Þ

Not surprisingly, the equilibrium disease prevalence

depends on the mean duration 1=g of the infectious period

and the strength d of the density-dependence in the host

population. For a fixed carrying capacity, as assumed here,

the strength of density-dependence reflects the population

turn-over rate, and thus the rate of susceptible recruit-

ment, known as a major determinant of the dynamics of

strongly immunizing diseases (Earn et al. 2000). Interest-

ingly, here, density-dependence d does not interact with

the harvest effort H. This approximate result of equation

(3.4) is consistent with the numerical solutions of

figure 1b, where only the y-intercepts, and not the slopes,

depend on the value of the density-dependence d.

When the harvest effort H increases, the equilibrium

population size N� decreases (equation (3.3), figure 1a)

and the equilibrium disease prevalence I�=N� increases

(equation (3.4), figure 1b). Above a harvest threshold H+,

the equilibrium population size N� reaches zero (figure 1a)

and the equilibrium disease prevalence I�=N� tends
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towards its maximum value ðI�=N�Þmax (figure 1b).

Replacing N� by zero in equation (3.3), we can express

the threshold harvest value H+ which depends on the

density-dependence d:

H+ Z2K
d

q
: ð3:5Þ

Substituting H by H+ in equation (3.4), we get the

maximum value of the disease prevalence at equilibrium:

lim
H/H+

I�

N�

� �
Z

I�

N�

� �max

Z 2K
d

g
: ð3:6Þ

Interestingly, this means that the harvest pressure H can

make the equilibrium disease prevalence I�=N� vary

between its value in the absence of hunting (i.e. Kd=g,

see first term in the right-hand side of equation (3.4)) and

twice this value (i.e. 2Kd=g, see equation (3.5)). This

approximate result is consistent with the numerical

solutions of figure 1b, where the maximum values are

about twice the values of the y-intercepts.

Now, consider the possibility of disease-induced

mortality (vO0). Adding a constant mortality rate v in

equation (3.2) would decrease the equilibrium population

size (N�, equation (3.3)) by v=ð2dÞ individuals. As disease-

induced mortality actually affects only the infectious

individuals, this number should be multiplied by the

equilibrium disease prevalence I�=N� (equation (3.4)) to

yield the expression of the total number D� of individuals

dying from the disease at equilibrium:

D� Z
v

2d

I�

N�
xK

v

2g
C

qv

4dg
H CoðHÞ: ð3:7Þ

We can then express the equilibrium population size N+ in

the presence of disease-induced mortality as

N+ ZN�KD�xK 1K
v

2g

� �
K

q

2d
1C

v

2g

� �
H CoðHÞ:

ð3:8Þ

Note that when vZ0 in equation (3.8), we obtain the

exact result of equation (3.3). Equation (3.8) shows

that, in the absence of harvesting, disease-induced

mortality decreases the equilibrium population size by

a factor v=ð2gÞ and, in the presence of harvesting,

disease-induced mortality mitigates the compensatory

effect of density-dependence by a factor 1Cv=ð2gÞ.

Developing equation (3.8) lists all the causes of

mortality:

N+xKK
K

2g
vK

q

2d
HK

q

4gd
vH CoðHÞ: ð3:9Þ

Thus, Kv=ð2gÞ individuals die from the disease, qH =ð2dÞ

individuals die from hunting, and qvH=ð4gdÞ individuals

die from the synergistic interaction between disease-

induced mortality and harvesting. Natural mortality is

included in the expression of the carrying capacity K.

This approximate result is consistent with the numerical

solutions of figure 2 which shows the equilibrium

population size without disease-induced mortality (full

line, which is the same as the full line in figure 1a), and

with disease-induced mortality (vZ0:1, dashed line).

The hatched area corresponds to the disease-induced

mortality increased by harvesting (fourth term in the

r.h.s. of equation (3.9)). Taking the ratio of the third

and fourth terms of the r.h.s. of equation (3.9), we come
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up with the conclusion that when X individuals are

harvested, an additional ðv=2gÞX individuals die from

harvest-induced increase in disease-induced mortality.

Not surprisingly, the longer the infectious period (i.e.

the lower g), the stronger the effect of disease-induced

mortality. Interestingly, the additional proportion of

individuals dying from the disease as a side effect of

harvesting (v=ð2gÞ) does not depend on the strength

of the density-dependence d in the host population.
4. DYNAMICAL PROPERTIES
In §3, we studied the static properties of the model of

equations (2.1)–(2.4), and investigated the potential of the

host population density-dependence d to partially com-

pensate for the harvest pressure H, both in the absence

and in the presence of disease-induced mortality v. In this

section, we focus on the dynamics of the model to explore

how the interaction between density-dependence and

seasonality can alter our conclusions. Indeed, whereas,

at equilibrium, harvest toll on the host population cannot

be more than partially compensated by density-dependent

population processes, it has been shown that the

interaction between density-dependence and seasonality

has the potential to fully compensate and even over-

compensate harvesting (Kokko & Lindström 1998; Boyce

et al. 1999; Jonzén & Lundberg 1999; Xu et al. 2005 and

references therein). We thus reintroduce here the season-

ality functions 4ðtÞ (birth seasonality) and jðtÞ (harvest

seasonality). The introduction of these time-dependent

terms renders the system analytically intractable, and we

will rely, in the following, only on numerical solutions. For

simplicity, numerical solutions are sought in the absence

of disease-induced additional mortality (vZ0). The effect

of disease-induced additional mortality on the results is

then discussed.

It has been documented for a wide variety of vertebrate

species that the density-dependence on the per-capita

natural mortality rate is much stronger in the younger age

classes than in the adults, for which it is often negligible

(Ekman 1984; Clutton-Brock et al. 1985, 1997; Skogland

1985; Hudson 1992; Gaillard et al. 2000). In conse-

quence, we will assume, in the following, a constant

mortality rate for the recovered class of individuals: dRO0

and mRZ0. Indeed, in the case where the age at maturity

(and/or the force of infection l) is low, and the immunity

lifelong, we can reasonably consider that all recovered

individuals are adults (Anderson & May 1991).

Let us focus first on the dynamics of the total host

population NðtÞ. Figure 3a shows 2 years of the total host

population stationary dynamics in the presence (full line)

and in the absence (dashed line) of harvesting. The

harvest season (noted ‘H’ above the graph) begins 5 days

after the end of the birth season (which corresponds to the

increase in the host population size), and lasts for 15 days.

In the absence of harvesting, the host population

dynamics are clearly annual, driven by the birth pulses.

In the presence of harvesting, hunting reduces quickly and

dramatically the number of individuals in the population,

and the consequences are twofold. First, the number

NðtKtÞ of individuals during the mating season is

decreased, which tends to increase the future per-capita

birth rate B (see density-dependent response in equation

(2.5)). Second, the per-capita death rate is decreased



Figure 3. Effect of harvesting on the total host population
size NðtÞ. (a) The figure shows numerical solutions of 2
years of the model’s dynamics, after stationary dynamics
has been reached. The periods of mating are represented
on the graph. The harvest periods are indicated by a ‘H’
above the graph, and the duration t of the gestation
(between matings and births) is represented by the length
of the double arrow above the graph. The dashed curve
represents the total host population size NðtÞ in the
absence of harvesting (HZ0) and the full line curve
represents the dynamics of the total host population size
NðtÞ in the presence of harvesting (HZ0:2). The harvest
season begins at h1Z205 d, and ends at h2Zh1C15 d.
(b) The figure shows the peaks and the troughs of the
dynamics as a function of the beginning time h1 of the
harvest season. As for (a), h2Zh1C15 d. The thick full
lines represent the peak and trough values in the presence
of harvesting (HZ0:2) and the horizontal dashed lines
represent the peak and trough values in absence of
harvesting (HZ0). The mating and birth seasons are
represented on the graph and the duration t of the
gestation is indicated by the length of the double arrow
above the graph. The vertical dash-dotted line arrowed by
a ‘h’ represents the value of h1 used in (a). Circles show
cases of full-compensation and hatched areas highlight
cases of over-compensation. 100 yr of the model’s
dynamics have been numerically solved to reached
stationarity, and then the peak and trough values have
been sampled on the following 35 yr of the model’s
dynamics. The value of h1 varies from 0 to 364.9 d, every
0.1 d. For (a) and (b), other parameter values are
KZ105 ind, bx0:1461 indK1 dK1, dSZdEZdIZdRZ0,
qx4:5662!10K7, mSZmEZmIZmRx9:1324!10K8, tZ
145 d, b1Z100 d, b2Z200 d, qSZqEZqIZqRZ0:5,
bZ365 yrK1, sZ1=8 dK1, gZ1=5 dK1 and vZ0.
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(see density-dependent response in equation (2.6)), which

keeps the population size N before the birth season close

to its size in the absence of harvesting. The combination of

the two effects—increased per-capita birth rate B and

unchanged population size N before the birth season—is

responsible for an increase in the number B!N of

individuals born during the birth season. This is a case of

over-compensation where the effect of hunting is,

paradoxically, to increase the host population size after

the birth season (compare the two curves on figure 3a).

Since reproduction is seasonal, the exact timing of the

harvest season is expected to be a strong determinant of

the magnitude of compensation (Kokko & Lindström

1998). Figure 3b explores the effect of harvest timing h1 on

the peak and trough values of the host population

dynamics. The thick full lines represent the peak and

trough values in the presence of hunting and should be

compared with the horizontal dashed lines, which

represent the peak and trough values in the absence of

hunting. Consider first the peak values. The intersection

between the thick full and the horizontal dashed lines

(see circles on figure 3b) are cases of full-compensation,

where harvesting has no effect on the host population size

at the end of the birth season. Whenever the thick full

line is above the horizontal dashed line, there is over-

compensation, where harvesting actually increases the

host population size at the end of the birth season (hatched

area on figure 3b). Lastly, when the thick full line is below

the horizontal dashed line, partial compensation cannot

be distinguished from pure additive effects. Thus,

figure 3b shows that over-compensation occurs whenever

the hunting season is between the birth season and the

next mating season. In this period of time, the later the

hunting season, the stronger the over-compensation.

Over-compensation decreases sharply as soon as the

hunting season occurs during the mating season. Finally,

note that the timing of the hunting season has also an effect

on the trough values of the dynamics, even if lower than its

effect on the peak values. In particular, it appears that

hunting during the mating season could potentially

increase the probability of extinction of the host

population.

We have shown in §3 that one side-effect of harvesting is

an increase in the disease prevalence. Moreover, as

harvesting can also lead to over-compensation on the

total host population size (see figure 3), we can expect

hunting to increase, in some situations, the absolute

number of infectives in the host population. Figure 4a

shows an annual epidemic in the presence (full line) and in

the absence (dashed line) of harvesting. Again, the

dynamics of the disease, both in the presence and in the

absence of hunting, are strongly annual and driven by

the birth pulses. Comparing the two curves, it appears that

hunting can alter both the amplitude and the timing of

the epidemics. The effects of harvest timing h1 on the

amplitude of the epidemics are explored systematically in

figure 4b.

Figure 4b has been drawn in a similar way as figure 3b

but considers the dynamics of the infected individuals IðtÞ

only, instead of the total host population NðtÞ. Moreover,

as the trough values in the presence and in the absence of

harvesting are very low and almost confounded, they are

not represented here. The amplitude of the epidemics is

barely affected when hunting occurs between the mating



Figure 4. Effect of harvesting on the dynamics of infectious
individuals IðtÞ. (a) The figure shows examples of annual
epidemics, after stationary dynamics has been reached. The
dashed curve represents the disease dynamics in the absence
of harvesting (HZ0) and the full line curve represents the
disease dynamics in the presence of harvesting (HZ0:2). The
harvest season (indicated by ‘H’ on the graph) begins at
h1Z270 d, and ends at h2Zh1C15 d. (b) The figure shows
the amplitude of the disease dynamics as a function of the
beginning time h1 of the harvest season. As for (a),
h2Zh1C15 d. The thick full line represents the amplitude
of the disease epidemics in the presence of harvesting
(HZ0:2), and the horizontal dashed line represents the
amplitude of the disease epidemics in absence of harvesting
(HZ0). The mating and birth seasons are represented on the
graph and the duration t of the gestation is indicated by the
length of the double arrow above the graph. The vertical
dash-dotted line arrowed by ‘h’ represents the value of h1

used in (a). Circles show cases of disease full-compensation
and hatched areas highlight cases of disease over-compen-
sation. 100 yr of the model’s dynamics have been numerically
solved to reached stationarity, and then the peak and trough
values have been sampled on the following 35 yr of the
model’s dynamics. Values of h1 varies from 0 to 364.9 d, every
0.1 d. For (a) and (b), other parameter values are the same as
for figure 3.
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and the birth seasons; it starts to decrease when hunting

occurs during the birth season. In this latter case, the later

the hunting season starts, the higher the decrease in

amplitude. The most dramatic decrease in epidemic

amplitude is observed when the hunting season starts

just before the epidemic peak is reached, somewhere

between the birth season and the next mating season.

Around the corresponding value of h1, the amplitude of
Proc. R. Soc. B (2006)
the disease epidemic becomes strongly sensitive to the

exact timing of the harvest season. Indeed, in a window of

only 20 days for h1, the effect of harvesting on the

amplitude of the epidemics can go from a strong decrease

(if the harvest season occurs just before the epidemic peak)

to a substantial increase (if the harvest season occurs just

after the epidemic peak). After this critical period of

20 days, the amplitude of the epidemic keeps being

increased by hunting, until h1 reaches the end of the

mating season. In this period of time, the later the hunting

season starts, the smaller the increase in epidemic

amplitude due to harvesting.
5. DISCUSSION
(a) Harvesting can increase disease prevalence

and mortality

It has been documented for a large number of species

that wild animal populations are regulated by density-

dependent birth and death processes (Ekman 1984;

Clutton-Brock et al. 1985, 1997; Skogland 1985; Hudson

1992; Gaillard et al. 2000). The analytical study of our

model highlights the potential of such density-dependence

to compensate for harvesting (equation (3.3), figure 1a).

This well-known phenomenon lies at the core of

sustainable management, where the essential aim consists

in maximizing the short-term yield, without threatening

the population of extinction in the long-term (Hilborn

et al. 1995). However, current harvest models have not

considered the potential effects of infectious diseases on

the hunted population. Our model shows that the density-

dependent compensation of harvesting tends—by

stimulating the birth rate—to increase the prevalence of

a disease which confers lifelong immunity to their host

(equations (3.4) and (3.6), figure 1b). If the disease

induces additional mortality to the infectious individuals,

then the density-dependent compensation of harvesting

can result in an increase of the number of disease-induced

deaths (equation (3.8), hatched area on figure 2). Such a

synergistic interaction between harvesting and disease-

induced mortality implies that more individuals actually

die than when hunting and disease-induced mortality are

supposed independent (equation (3.9), hatched area on

figure 2). This harvesting side-effect is predicted to be

particularly severe for diseases with high basic reproduc-

tion ratio R0 (f1=g), in host populations of relatively low

density-dependence (equation (3.9)). The consequence is

that optimal harvest efforts derived from population

models that do not account for disease dynamics can be

over-optimistic and lead to unexpected population

extinction.

Our conclusions are based on the classical assumption

that disease-induced mortality acts on infectious individ-

uals (Anderson & May 1991), such that in equation (2.3)

we have:

dI

dt
Z/KgIKvI :

(Note that here, to ease analytical tractability, we chose the

rate instead of the probability formulation—similar results

are obtained with either formulation.) One consequence

of this assumption is that the effective mean duration of

the infectious period is reduced by disease-induced

mortality, because some infectious individuals die before
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transmitting the disease. However, for some diseases,

disease-induced mortality mainly occurs once the infected

individual is not actively infectious (Keeling & Rohani in

press). This may happen either when mortality results

from pathogen-related complications (such as encephalitis

or hypoxia) once infected individuals are in an advanced

diseased state or following opportunistic infections (such

as secondary lung infections). In this case, the model

equations (2.3) and (2.4) would be changed to

dI

dt
Z/KgI ;

dR

dt
Z ð1KnÞgIK/;

where, here, the parameter n represents the probability of

succumbing to infection. In this representation, the mean

infectious period is not affected by disease-induced

mortality. Using this formulation, we unsurprisingly find

that the effects reported in figure 2 become even more

pronounced (results not shown).

(b) Harvesting can increase the probability of

disease cross-species transmission

In temperate regions, the reproduction of most animal

species is strongly seasonal, and the interaction between

density-dependence and seasonality has been recognized

to potentially over-compensate the harvest (see references

in Kokko & Lindström 1998). Figure 3 illustrates this

phenomenon and explores systematically the effect of the

timing of the harvest season on the magnitude of

compensation. The conclusion is that compensation is

strongly sensitive to the exact timing of the harvest season

and occurs mainly—but not solely—when the harvest

season is scheduled between the birth season and the next

mating season. This finding agrees with the results derived

by Boyce et al. (1999) and Jonzén & Lundberg (1999) with

discrete-time population models, by Kokko & Lindström

(1998) with the continuous Beverton–Holt and Ricker

models, and recently by Xu et al. (2005) with a continuous

logistic model. When considering disease dynamics, our

model shows that the combination of the harvest-induced

increase in disease prevalence and the harvest over-

compensation can increase the absolute number of

infectious individuals. Although the mean annual number

of infectious individuals is only slightly increased (less than

5% of increase in our numerical calculations), the peak

values of the epidemics can be significantly increased

(figure 4a). If the disease induces additional mortality, this

could lead to a harvest-induced increase in disease-

induced mortality of higher magnitude than derived at

equilibrium (equation (3.9), figure 2), thus stressing

further the risk of population extinction. If the disease

does not induce additional mortality, then the increase in

the epidemic amplitudecan result in an increase, over a short

period of time, of the probability of disease transmission to

other species (Antia et al. 2003; Woolhouse et al. 2005).Such

cross-species disease transmissions constitute real threats to

wildlife biodiversity and conservation (McCallum &

Dobson 1995; Cleaveland et al. 2002; Altizer et al. 2003),

as well as to livestock economy or human populations

(Morse 1995; Schrag & Wiener 1995; Daszak et al. 2000).

Figure 4b explores the effect of the timing of the harvest

season on the epidemic amplitude. In particular, it shows

that when the harvest season occurs during the epidemics,
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then the epidemic amplitude becomes very sensitive to the

exact timing of the harvest season. Specifically, hunting

just before the epidemic peak dramatically decreases the

epidemic amplitude, whereas hunting just after the

epidemic peak can substantially increase the epidemic

amplitude. From a practical point of view, this result

stresses the importance of carefully taking into account the

dynamics of infectious diseases when managing wildlife

populations. Indeed, in our numerical example, not

accounting for the disease dynamics would have led to

the conclusion that hunting between the birth season and

the next mating season is safe for the population (figure 3b),

whereas accounting for the disease dynamics shows that,

between the birth season and the next mating season, the

sooner the hunting season, the safer in terms of disease-

associated risks (figure 4b).

(c) Model hypotheses and applications

Our conclusions result from three major ingredients in our

model: (i) seasonal density-dependent regulation of the

host population, (ii) seasonal constant-rate harvesting,

and (iii) direct transmission of a disease that confers

permanent immunity after recovery.

Density-dependence in the birth and death processes

has been documented to be of strong magnitude for a

variety of animal species, resulting in large seasonal

variations in population densities (see, e.g. Ekman

1984; Clutton-Brock et al. 1985, 1997; Skogland

1985; Hudson 1992; Gaillard et al. 2000). Moreover,

the strength of the density-dependence in the mortality

rate is known to vary with both age and sex. Whereas

our model does not include any structure other than

the clinical status, we did try to account for the age

effect by removing the density-dependence on the death

rate in the recovered class—which, in the case of a

disease conferring permanent immunity after recovery,

consists essentially of adults (Anderson & May 1991).

Relaxing this last assumption in our model would

mitigate the observed effects of harvesting on the epidemic

amplitude. Indeed, density-dependence is the mechanism

that compensates for hunted individuals. Thus, the lower

the strength of density-dependence on the death rate, the

lower the compensation, and the stronger the population

decrease due to harvesting. As, after an epidemic, the host

population is essentially made up of susceptible and

recovered individuals, a reduced density-dependence on

the death rate of the recovered class means that

compensation occurs mainly in the susceptible class,

thus increasing the number of susceptibles in the host

population. For particular host-disease associations, it is

also possible that sex-specific density-dependence on the

death rate would lead to slightly different results, unless

the density-dependence on the birth rate is strong enough

to compensate for the difference of density-dependence

between the male and the female death rates. Lastly, our

model is based on a simple linear form of density-

dependence. Other types of density-dependence would

probably change the results quantitatively, but likely not

qualitatively. Moreover, it appears from precise measures

of birth and death rates that, for most animal species,

density-dependence would actually be close to linear

(Gaillard et al. 2000).

A constant-rate harvest effort was used in our model.

This corresponds to most hunting practices and
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contrasts with natural predation where the specific

functional responses usually include one form of

density-dependence (Kot 2001). Moreover, for natural

predation, there is no pre-defined ‘predation season’,

and the seasonality in predation is generally a

consequence of the predator functional response

(Turchin 2003). The predation pressure would thus

most likely occur just after the birth season, where,

from our model predictions, the risks associated with

disease-induced mortality are minimized. Another

difference between predation and harvesting concerns

the prey catchabilities qi and harvest pressures Hi. In

the case of predation, prey catchability tends to be

higher for younger and inexperienced individuals than

for adults. In contrast, human hunting efforts tend to

concentrate on the older age classes. In our model,

neither catchability nor harvest pressure are age-

structured. However, we can predict that, in

figure 4b, including higher catchability for the younger

age classes than for the older ones would shift the curve

downwards, thereby increasing the beneficial effect of

harvesting in diminishing the risk associated with

disease mortality or cross-species transmission. On the

contrary, including higher harvest pressure for the older

age classes than for the younger ones would shift the

curve upwards, thereby increasing the harmful effect of

harvesting in increasing the risk associated with disease

mortality or cross-species transmission.

Finally, the model presented here makes the assumptions

that the disease is directly transmitted and confers

permanent immunity after recovery. Whereas it is unlikely

that our conclusions would have been altered if indirect

transmission was considered, it is important to recognize

that permanent immunity is the key trait for our model

outcomes. Some degree of partial immunity would certainly

mitigate the observed effects of hunting on the disease

dynamics. Permanent and/or partial immunity characterizes

a large variety of highly contagious and potentially fatal

microparasitic wildlife diseases. Lastly, the model assumes a

frequency-dependent transmission of the disease, which

appears the most appropriate for gregarious host popu-

lations (McCallum et al. 2001). However, since hunting

increases not only the disease prevalence (figure 1b) but also

the host population size (figure 3b), a density-dependent

transmission of the disease would have produced even more

pronounced results.

Since a major concern today in Europe and North

America is the veterinary control of wildlife diseases, we

hope that the simple and general framework presented

here will serve as a basis for more complex and specific

models in decision making in wildlife management.

Examples that would fulfil our general model’s assump-

tions include the classical swine fever and Aujeszky disease

that infect wild boars in Europe, rabies that infects various

species of wild canids worldwide, bovine tuberculosis that

infects badger populations in the UK, myxomatosis that

infects rabbits. Our model could also potentially be

applied to emerging infectious disease like the avian flu

that currently threatens waterfowls.
6. CONCLUSION
The aim of wildlife sustainable management is to design a

harvesting policy that optimizes the short-term yield
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without driving the population to extinction in the long-

term. This challenge has been the inspiration of a huge

variety of models in the ecological literature of the last

several decades. However, none of these models account

for the dynamics of diseases that may thrive on these

harvested populations. This is regrettable given the recent

accumulation of evidences that diseases can substantially

affect the population dynamics of their hosts. The model

presented here shows that the complex dynamical

interactions between seasonal density-dependence and

harvesting can produce unexpected and unwanted effects

such as an increase in epidemic amplitude. This result

helps to understand the failure of widespread culling

policies to eradicate tuberculosis in badger populations

in the UK (Donnelly et al. 2003) and rabies in fox

populations in Europe (Woodroffe et al. 2004): as

suggested by Woodroffe et al. (2004), the demographic

plasticity of such animal populations confers them with a

remarkable capacity to recover from control, and such a

response to culling can actually increase the supply of

susceptibles to the disease. Moreover, from a conservation

biology point of view, our result warns that harvesting

policies which do not account for wildlife diseases are

likely to underestimate the extinction probability of

hunted populations. Besides purely dynamical properties,

there are other aspects that appear worth taking into

account for an efficient wildlife and wildlife disease

management. One of them is behavioural ecology, the

effects of which have been barely addressed theoretically,

despite its evidenced key role in the dynamics of diseases

in wild vertebrate populations (Donnelly et al. 2003;

Hosseini et al. 2004; Woodroffe et al. 2004). Theoretical

investigations further in this direction are promising in

yielding results of valuable application in wildlife disease

management.
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APPENDIX A: LINEAR APPROXIMATION OF THE
DISEASE PREVALENCE AT EQUILIBRIUM
Here, we detail the calculations done to reach the

analytical approximation of equation (3.4). Replacing

NðtÞ by N� (equation (3.3)) in equations (2.1)–(2.4),

equating them to zero, solving the system to get I�, and

dividing this number by N� (equation (3.3)) gives:

I�

N�
Z

ð2dK CHqÞfdð2dK CHqÞð2dK CHqC2gÞ

C2s½2d2K CHqbCdðHqK2KbC2gÞ�g

bðHqK2dK Þð2dK CHqC2gÞð2dK CHqC2sÞ
;

ðA 1Þ

where the asterisks refer to equilibrium values. This is a

polynomial fraction of H where the degrees of the

numerator and the denominator are equal to 3. In the

following, we will consider a linear approximation of this

expression, for small values of H, by approximating it with

http://www.radford.edu/~thompson/ffddes/
http://www.radford.edu/~thompson/ffddes/
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a polynomial of degree 1:

I�

N�
ZACBH CoðHÞ: ðA 2Þ

Equating H with 0 in equation (A 1) gives the expression

of A in equation (A 2):

A Z
8d2K ½dK ðdK CgÞCsððdKbÞK CgÞ�

2bdK ð2dK C2gÞð2dK C2sÞ
: ðA 3Þ

In the denominator, note that dK/s and dK/g.

Thus, the denominator can be approximated by 8bdKsg.

Developing the numerator, we get

8ðbsd2K2Kgsd2KKgd3K2Ksd3K2Kd4K3Þ

Z 8bsd2K2 Coðd2K2Þ; ðA 4Þ

the dominant term of which being the one in d2K2. In

consequence,

Ax
dK

g
CoðdK Þ: ðA 5Þ

Now, let find the coefficient B of equation (A 2). When

HO0, the parameter d becomes negligible before any

other parameter. Thus, the dominant term of the

numerator of equation (A 1) becomes K2q2bsH2, and

the dominant terms of the denominator of equation (A 1)

become

K4qbsgHK2q2bðsCgÞH2Kq3bH3 ZK4qbsgH CoðHÞ;

ðA 6Þ

the dominant term of which being the one in H. In

consequence, neglecting the parameter d in equation (A 1)

approximates it to

I�

N�
x

qH

2g
CoðHÞ; ðA 7Þ

which gives BZqH =ð2gÞ. Using the expressions of

parameters A (equation (A 5)) and B (equation (A 7)) in

equation (A 2) yields the linear approximation of I�=N� of

equation (3.4):

I�

N�
xK

d

g
C

q

2g
H CoðHÞ: ðA 8Þ
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