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Noise, nonlinearity and seasonality: the
epidemics of whooping cough revisited

Hanh T. H. Nguyen and Pejman Rohani*

Odum School of Ecology, University of Georgia, Athens, GA 30602-2202, USA

Understanding the mechanisms that generate oscillations in the incidence of childhood
infectious diseases has preoccupied epidemiologists and population ecologists for nearly two
centuries. This body of work has generated simple yet powerful explanations for the
epidemics of measles and chickenpox, while the dynamics of other infectious diseases, such as
whooping cough, have proved more challenging to decipher. A number of authors have, in
recent years, proposed that the noisy and somewhat irregular epidemics of whooping cough
may arise due to stochasticity and its interaction with nonlinearity in transmission and
seasonal variation in contact rates. The reason underlying the susceptibility of whooping
cough dynamics to noise and the precise nature of its transient dynamics remain poorly
understood. Here we use household data on the incubation period in order to parametrize
more realistic distributions of the latent and infectious periods. We demonstrate that
previously reported phenomena result from transients following the interaction between the
stable annual attractor and unstable multiennial solutions.
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1. INTRODUCTION

In recent years, there has been an increased awareness
of the threats posed by newly emerging and high-profile
infectious diseases, such as SARS (Lipsitch et al. 2003;
Riley et al. 2003), the H5N1 strain of avian influenza
(Obenauer et al. 2006; Olsen et al. 2006), HIV (Walker
et al. 2003; Quinn & Overbaugh 2005) and Ebola
(Frankish 2003). In addition to novel pathogens,
however, public health practitioners are concerned
about a number of well-established infectious diseases
that are re-emerging, defined as pathogens that have
been around for a long time but exhibit increasing
incidence and geographical range (Morens et al. 2004).
These include whooping cough (Güris et al. 1999;
Crowcroft & Pebody 2006), multi-drug-resistant TB
(Dye & Williams 2000), dengue fever (Guzmán &
Kouri 2002) and cholera (Daszak et al. 2000). Under-
standing the mechanisms underlying disease trans-
mission and spread is clearly important and timely.
Additionally, it has been argued by some that the rare
combination of reasonably well-understood natural
history, a suite of appropriate mathematical models
and abundant data make infectious diseases an
important test bed for ecological theory (Anderson &
May 1979; Earn et al. 1998; Keeling & Rohani 2007).

A particularly successful avenue for the study of
population ecological questions has been via the
examination of case notifications for the great micro-
parasitic infections of childhood, including measles,
address for correspondence: Odum School of Ecology,
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whooping cough, polio, rubella and chickenpox.
This has led to a substantial and important body of
work addressing the role of nonlinearity and chaos
(Schwartz & Smith 1983; Sugihara & May 1990;
Grenfell 1992; Rand & Wilson 1993), stochastic
extinction dynamics (Bartlett 1957; Anderson & May
1982; Keeling & Grenfell 1997; Nasell 2005) and the
consequences of various sources of heterogeneity, be
they temporal (Soper 1929; London & York 1973;
Fine & Clarkson 1986; Edmunds et al. 2000; Keeling
et al. 2001; Grassly & Fraser 2006), spatial (May &
Anderson 1984; Rohani et al. 1999; Grenfell et al. 2001;
Bjørnstad et al. 2002; Lloyd & Jansen 2004; Xia et al.
2004; Broutin et al. 2005a) or pertaining to the pattern
of contacts (Schenzle 1984; Bolker & Grenfell 1993;
Ferguson et al. 1996; Lloyd-Smith et al. 2005).

The study of childhood disease dynamics has also
contributed to the perennial debate concerning the
relative importance of deterministic versus stochastic
forces in shaping observed patterns (see reviews by
Bjørnstad & Grenfell (2001) and Coulson et al. (2004)).
For example, using a simple deterministic model with
seasonality in the transmission rate—to mimic the
aggregation of children in schools—Earn et al. (2000)
successfully explained the dynamical transitions in
measles epidemics in different cities and eras. They
demonstrated that the observed dramatic shifts in
dynamics are driven by changes in the recruitment rate
of susceptibles, as determined by demographic trends
and widespread paediatric vaccination programmes.
However, the application of this general approach
to explaining the epidemics of whooping cough
(also commonly referred to as pertussis) has been
J. R. Soc. Interface (2008) 5, 403–413

doi:10.1098/rsif.2007.1168
Published online 18 September 2007
This journal is q 2007 The Royal Society



1950 1955 1960 1965 1970
0

5

10

15

20

25

year

sq
rt

 (
w

ee
kl

y 
ca

se
s)

← start of mass immunization

Figure 1. Weekly case notifications of whooping cough in
London, from 1946 to 1974.The dashed vertical line indicates
the onset of the National Immunisation Programme in 1957.
Note: the data have been square rooted.
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spectacularly unsuccessful. Classic deterministic
models, in realistic regions of parameter space, always
predict annual epidemics (Hethcote 1998; Rohani et al.
1998, 1999, 2002; Bauch & Earn 2003; Greenman et al.
2004), in direct contrast to the variable inter-epidemic
periods documented in case notification data (figure 1;
also see Fine & Clarkson 1982). Prior to the onset of
mass vaccination campaigns in England and Wales, for
example, pertussis dynamics in different cities
contained a significant multiennial signature, which
gave way to regular 3.5–4 year epidemics in the vaccine
era (figure 1; Rohani et al. 1999, 2000). These findings
are echoed in studies of pertussis dynamics in different
countries (Hethcote 1998; Gomes et al. 1999; Bauch &
Earn 2003; Broutin et al. 2005b).

To understand the stark contradiction between
the dynamics predicted by deterministic models
(rigidly annual epidemics) and those observed in data
(a complex mixture of annual and multiennial out-
breaks), Rohani et al. (1999) relaxed the assumption of
determinism and examined event-driven stochastic
models. These models exhibited spatio-temporal pat-
terns that were consistent with patterns in the England
and Wales data, in both the pre-vaccine and the
vaccination eras. Since then, a number of authors have
focused on this question, and the general consensus
appears to be that pertussis epidemics result from the
interaction between seasonality, nonlinearity and,
importantly, stochasticity (Hethcote 1998; Keeling
et al. 2001; Rohani et al. 2002; Bauch & Earn 2003).
This body of work has highlighted the importance of
understanding whether transient dynamics following
stochastic perturbations are sustained (if the determi-
nistic attractor is weakly stable) or are very short
lived (due to rapid contraction of trajectories onto
the attractor; Hastings & Higgins 1994; Coulson et al.
2004; Hastings 2004; Caswell & Neubert 2005;
Noonburg & Abrams 2005). Other ecological case
studies where the dynamical importance of the
interaction between stochasticity and nonlinearity has
been documented include laboratory populations of
J. R. Soc. Interface (2008)
flour beetles (Cushing et al. 1998; Reuman et al. 2006),
outbreaks of forest insects (Dwyer et al. 2004), island
populations of Soay sheep (Grenfell et al. 1998; Coulson
et al. 2001; Benton et al. 2006), insect host–pathogen
interactions (Bjørnstad & Grenfell 2001) and Dunge-
ness crab (Higgins et al. 1997).

To get a handle on the stability properties of the
deterministic whooping cough model, detailed numeri-
cal studies have been carried out, concentrating on the
fates of perturbations made to trajectories on the
pertussis attractor (Keeling et al. 2001; Bauch & Earn
2003). It has been demonstrated that, with parameters
chosen to represent the pre-vaccination era, small
perturbations generate transient dynamics that are
multiennial, with a period of approximately 3 years.
Bauch & Earn (2003) explained that these effects
can be detected in time-series data when there are
non-resonant peaks in the power spectral density (as
opposed to resonant peaks, which are annual and
seasonally driven). Further examination of these
dynamics revealed the presence of an unstable
structure (Rohani et al. 2002; Greenman et al. 2004),
which was termed the ‘invasion orbit’ by Rohani et al.
(2002), primarily because its presence was demon-
strated by examining the invasion of the disease into a
wholly susceptible population. What has remained
unclear since then is precisely what generated the
invasion orbit.

In this paper we revisit this problem and examine the
dynamical consequences of key model assumptions,
other than determinism. Specifically, the models
described earlier all assume that the instantaneous
probability of leaving the latent and infectious class is
constant, giving rise to latent and infectious periods
that are exponentially distributed. This assumption is
mathematically convenient but biologically unrealistic.
In fact, the probability of staying in a class depends on
the time already spent in that class, with waiting times
that have a strong central tendency (Sartwell 1950;
Simpson 1952; Bailey 1954, 1975; Gough 1977). The
inclusion of appropriate distributions for the latent and
infectious periods has been shown to be important in
other contexts (Keeling & Grenfell 1997, 2002; Lloyd
2001a,b; Wearing et al. 2005; Heffernan & Wahl 2006).
We examine household data for pertussis incubation
periods and find that a gamma distribution represents a
significantly better fit than the exponential distri-
bution. We then demonstrate that simple deterministic
susceptible–exposed–infectious–recovered (SEIR)
models with realistic distributions of latent and
infectious period can explain the qualitative pattern
of whooping cough epidemics. Furthermore, this frame-
work sheds light on the genesis of the invasion orbit and
its dynamical implications.
2. THE MODEL

We start with the classic SEIR framework in which
individuals are grouped into four epidemiological
classes according to their infection status: susceptible;
exposed (latent); infectious; and recovered. For a
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Figure 2. Frequency histogram showing household incubation
data for whooping cough (adapted from Heininger et al. 1998).
The dashed and solid lines represent best fits to exponential
(mZ1) and gamma (mCnZ5) distributions, respectively.
The log-likelihood score for SEIRe (K706.815) is smaller than
SEIRG (K636.420).
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population of size N, disease dynamics are given by

dS

dt
ZmNð1KpÞK bðtÞI

N
Cm

� �
S; ð2:1Þ

dE

dt
Z

bðtÞI
N

SKðsCmÞE; ð2:2Þ
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dt
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dt
ZgI CmNpKmR: ð2:4Þ

Here m gives the per capita birth and death rates, and p
is the fraction of newborns vaccinated. The average
exposed and infectious periods are given by 1/s and
1/g, respectively. The contact rate, b(t), is a function of
time representing the aggregation of children in schools.
We use term-time forcing (Schenzle 1984), which
simply means that transmission rate is high during
the school term (b(t)Zb0(1Cb1)) and low during the
holidays (b(t)Zb0(1Kb1)).

As mentioned earlier, this model explicitly assumes
exponentially distributed latent and infectious periods.
We will refer to the model given by equations (2.1)–
(2.4) as SEIRe. While, in principle, it is possible to
incorporate any distribution into the model, from a
computational perspective, the gamma distribution is
especially convenient. Specifically, we can use the
method of stages—also called the linear chain trick—
whereby the latent and infectious periods can be split
into m and n sequential stages, respectively (Cox &
Miller 1965; MacDonald 1978). The number of stagesm
and n affect the relative variation of the distribution,
with the coefficient of variation for the latent and
infectious periods given by 1=

ffiffiffiffiffi
m

p
and 1=

ffiffiffi
n

p
, respect-

ively. When these shape parameters are equal to 1, we
recover the classic exponentially distributed models,
and, as they approach infinity, waiting times in the
latent and infectious classes become fixed.

The coupled ordinary differential equations describ-
ing the SEIR model with gamma-distributed latent and
infectious periods are given by
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Henceforth, we will refer to the model given by
equations (2.5)–(2.12) as SEIRG.

To estimate the parameters m and n, we examined
household data on the whooping cough incubation
period (Heininger et al. 1998), which is essentially the
sum of the latent and infectious periods. The data are
plotted in figure 2, together with best-fit exponential
and gamma distributions, estimated using maximum
likelihood. As evidenced by the log-likelihood scores,
the gamma distribution (with mCnZ5 and a log-
likelihood value of K636.42) represents a substantially
better fit to the data than the exponential distribution
(log-likelihood value of K706.815). In §3 we examine
the dynamical consequences of different values ofm and
n, with a view to resolving the discussion concerning
pertussis epidemics.
3. RESULTS

In figure 3a, we present a bifurcation diagram describ-
ing the dynamics of the seasonally forced SEIRe model
as the amplitude of seasonality is varied. The ordinate
shows pertussis incidence on 1 January each year, hence
annual cycles are represented by a single curve in the
diagram. As noted in §1, annual epidemics are
predicted for all values of b1 in the range (0, 0.5]. In
contrast, as shown in figure 3b, the gamma-distributed
model (SEIRG) exhibits a range of dynamical
behaviours, with the different colours corresponding
to different stable solutions. When the amplitude of
seasonality is small (b1!0.2), annual epidemics are
predicted. For b1 in the range (0.2, 0.333], the annual
cycle coexists with a 3-year cycle. Further increases in
b1 result in the coexistence of three attractors, with
periods of 1, 3 and 4 years. Eventually, as b1 exceeds
approximately 0.44, the triennial cycle undergoes a
cascade of period-doubling bifurcations, leading to a
small window of chaotic epidemics. In instances where
multiple stable attractors coexist with finely structured
basins of attraction, stochasticity can result in jumps
between attractors (Earn et al. 2000). We plot the
basins of attraction for b1Z0.25 and b1Z0.4 in the
insets of figure 3b.
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Figure 3. Bifurcation diagram for the seasonally forced (a) exponentially (SEIRe) and (b) gamma-distributed (SEIRG; mZ1,
nZ4) models, showing whooping cough dynamics as a function of the amplitude of seasonality (b1). In (a), an annual attractor is
predicted over the entire interval 0!b1!0.5. In (b), predominantly attractors with period 1, 3 and 4 years are observed. Above
the bifurcation diagram, we plot the basins of attraction for b1Z0.25 and b1Z0.4. Here the initial number of susceptibles
varies from 103 to 105 and initial infectious numbers from 101 to 103.The annual attractor is depicted in blue, orange represents
the 3-year cycle and red the 4-year attractor. Seasonality was incorporated using term-time forcing (for details, see Keeling et al.
(2001)). Other model parameters are mZ0.02 yrK1, NZ5!106, 1/sZ8 d, and 1/gZ14 d, with R0Z17.
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To investigate in more detail the relationship
between the seasonal amplitude, the infectious period
and the distribution of the latent and infectious periods,
we carried out a series of bifurcation analyses (figure 4).
Within the context of pertussis dynamics and the
studies by Rohani et al. (2002) and Bauch & Earn
(2003), perhaps the key findings are presented in
figure 4a. In figure 4a, we show that the annual cycle
is stable throughout the range of b1Km parameter
space we explored. For sufficiently large amplitude of
seasonality, however, values of m, n exceeding unity
give rise to the coexistence of the annual attractor with
a triennial cycle. As the variance in the distribution of
J. R. Soc. Interface (2008)
the latent/infectious periods decreases (with increasing
m, n), the triennial cycle is observed with smaller levels
of seasonality.

Figure 4a also demonstrates that, for very high levels
of seasonality and large values of the shape parameters,
attractors with periods of 1, 2, 3 and 4 years coexist.
The findings from figure 4a raise a key point: starting
from the exponentially distributed model, the quali-
tative dynamics are highly sensitive to increases in the
shape parameters (Lloyd 2001a). Once m, n exceed
approximately 5, however, further increases yield
incremental changes in the bifurcation structure of
the model. Therefore, our results are largely insensitive
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Figure 4. Periodicity of whooping cough dynamics depending on (a) shape parameters (mZn) and the amplitude of seasonality;
shape parameters and the recovery rate (g) when seasonality is (b) b1Z0.15 and (c) b1Z0.25. Except for the annual and 2-year
regions in (b) in which there is no overlap, the coloured regions overlap, showing coexistence of different stable solutions as the
control parameters are varied. Different initial conditions (susceptible and infectious) are used to capture the coexistence of
different attractors.
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to the precise values of m and n, as long as they exceed
unity. Note that, for simplicity, we set mZn while
generating figure 4a. However, our preliminary findings
suggest very strongly that the distribution of the
infectious period is overwhelmingly the key determi-
nant of the dynamics, as might be expected intuitively
(also see Blythe & Anderson 1988).

We also examined how the periodicity of epidemics is
influenced by changes in the recovery rate (g) and the
shape parameters, when the seasonal amplitude is small
(b1Z0.15; figure 4b) or large (b1Z0.25; figure 4c). For
reference purposes, it is worthwhile noting that, for
whooping cough, the recovery rate (g) is approximately
26 yrK1 and for measles 73 yrK1. When seasonal forcing
is relatively weak (figure 4b), dynamics are always
annual as long as the mean infectious period exceeds
10 days. For mean infectious periods of between 7 and
10 days, biennial outbreaks are predicted unless the
exponential distribution is assumed, in which case
annual cycles are observed. As the average infectious
period becomes increasingly shorter (less than 7 days),
a stable triennial cycle coexists with the biennial cycle
whenm, n exceed 10.When the amplitude of seasonality
is increased (figure 4c), the region of stability for the
triennial cycle expands considerably, coexisting with
biennial (30!g!100) and annual (20!g!30) cycles.
At the extremities, these boundaries are influenced by
the shape parameters, though the most dramatic shifts
J. R. Soc. Interface (2008)
occur once m, n exceed 1. Figure 4c also demonstrates
that, whenmean infectious periods are very short (of the
order of 3–4 days), windows of longer period oscillations
are observed.

In order to understand how mass vaccination
programmes and systematic demographic trends affect
pertussis epidemics, in figure 5a we present a bifur-
cation diagram describing the dynamics of SEIRG with
the susceptible recruitment rate as the control par-
ameter (cf. Earn et al. 2000). To do so, we replaced the
m term in equation (2.5) with m0, where m0 denotes the
modified per capita birth rate. The figure bears a
striking resemblance to fig. 1 of Earn et al. (2000),
which was produced using SEIRe with parameter values
chosen to correspond to measles! Here the default
parameter values for pertussis in England and Wales in
the 1950s correspond to the coexistence of the annual
and triennial attractors (mz0.02). Increases in the
vaccination fraction or decreases in the per capita birth
rates give rise to a cascade of bifurcations, resulting in
longer inter-epidemic periods. Similarly, ‘baby booms’
result in biennial dynamics, which at first coexist with
and eventually give way to annual cycles.

We examine the interaction between the dynamical
complexity observed in figure 5a and demographic
stochasticity by formulating an exact stochastic
analogue of SEIRG using Gillespie’s direct method
(Gillespie 1977; see also Keeling & Rohani 2007).
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Figure 5. (a) Bifurcation diagram depicting pertussis dynamics as the susceptible recruitment rate (m0(1Kp)) is varied in SEIRG,
usingmZ1, nZ5 and b1Z0.25. For each value of the recruitment rate, annual samples of I/N from 151 to 200 years are plotted.
(b) Analysis of periodicity using an event-driven stochastic SEIRG model, as the recruitment rate is varied from 0.006 to 0.016.
(i) Results when simulations are started with initial conditions on the deterministic annual attractor (dark blue line in (a)).
(ii) Comparable periodicities when simulations were started with initial conditions on the multiennial deterministic attractor
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Figure 5b demonstrates observed periodicity through
time in replicated simulated time series for different
recruitment rates and 50 stochastic replicates. In each
instance, for comparison with case notifications data,
we generated 12 years of weekly case notifications, after
the first 88 years of simulations were discarded. We
chose to analyse a rather short time series in order to be
consistent with the duration of the case notifications
data (see figure 1). The dominant period through
time was then determined using wavelet analysis
(Torrence & Compo 1998). Figure 1 demonstrates
that, for a fixed recruitment rate, there is substantial
dynamical variability across realizations. Some runs
exhibit a number of switches between attractors over
the 12-year time series (as depicted by abruptly
changing dominant periods through time), while others
show a constant period. It is important to note that the
largest inter-epidemic period detected in these data is 4
years, even when the susceptible recruitment is very
J. R. Soc. Interface (2008)
small and the deterministic model predicts 5- to 8-year
cycles (figure 5a). This may be in part due to the
shortness of the time-series data or may, in fact, be due
to the instability of the longer period solutions when a
small rate of immigration is incorporated into the
stochastic simulations (cf. Alonso et al. 2007). In
figure 6, we present a sample time series generated
using SEIRG, with parameters chosen to reflect
pertussis in England and Wales. In the absence of
vaccination (46–57 yr), model dynamics typically
represent a mixture of annual and multiennial out-
breaks. The vaccination of 60% of newborns starting in
year 1957 results in an abrupt change, generating
predominantly 4-year epidemics.

Another approach to studying the intricate
dynamics of whooping cough is to examine the topology
of the system in the vicinity of the deterministic
attractors. This may be achieved by plotting invasion
orbits (sensu Rohani et al. 2002), which are generated
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by observing the trajectories of disease invasion as they
approach stable points. We plot the annual samples of
susceptibles and infectives after a single infectious
individual is introduced into the population, starting
simulations at different initial times (t02[0,1]). Figure 7
shows pertussis invasion orbits in the absence of
vaccination, using SEIRe and SEIRG with b1Z0.25.
For each subfigure, the green points represent orbits
during the transient approach towards asymptotic
dynamics. The large dots represent stable fixed points,
which are colour coded as in previous figures (blue,
annual cycle; orange, 3-year cycle). It is worth noting
that the structures observed by carrying out this kind of
invasion analysis are very similar to those obtained by
simply studying the consequences of different initial
conditions, as proposed by Rand & Wilson (1991).

The invasion orbits of SEIRe and SEIRG exhibit
broadly similar structures, once we bear in mind the
fact that changes in the infectious period distribution
affect the amplitude of oscillations and therefore the
size of the structures depicted. The key message can be
gleaned by considering figure 7b. There is an aggrega-
tion of points near the annual attractor at the centre of
the invasion orbit. Additionally, there is a pronounced
star shape with three prominent branches, correspond-
ing to trajectories near the stable triennial cycle.
Reductions in the amplitude of seasonality or increases
in the variance of the infectious period (figure 4a;
Rohani et al. 2002) result in the loss of stability of the
triennial solution. Importantly, however, the star shape
is preserved. The clear implication of this observation is
that the invasion orbit documented by Rohani et al.
(2002) using SEIRe was simply the ‘ghost of a departed
attractor’ (as coined by Earn et al. 2000). The long
transient dynamics documented in Rohani et al.’s
stochastic simulations were due to the dynamical
J. R. Soc. Interface (2008)
influence of destabilized attractors. These findings
remain qualitatively unaffected when dynamics in the
vaccine era are considered.
4. DISCUSSION

For well over a century, epidemiologists have been
working towards understanding the periodicities
observed in the case notification data for childhood
infections (Ransome 1880; Hamer 1897). It was the
work of Soper (1929) on measles epidemics in Glasgow
that, as far as we know, first demonstrated seasonal
variation in transmission rates. The first systematic
examination of seasonality in mathematical models
arrived almost half a century later in Dietz’s (1976)
seminal paper. Dietz examined conditions under which
the periodic changes in contact rates can interact with
the inherent oscillatory properties of the SEIRe system
to produce either simple or subharmonic ‘resonance’.
One of the key questions that he raised in that paper
concerned ‘whether the shape of the distribution of the
latent or infectious period affects the resonance
behaviour’ (Dietz 1976). In this paper we have returned
to this question with the specific intention of examining
whether changes to the assumed distribution of the
infectious period can account for the observed epi-
demics of whooping cough.

Previous attempts at explaining long-term pertussis
epidemics have argued for a significant role of
stochasticity (Hethcote 1998; Rohani et al. 1999,
2002; Bauch & Earn 2003). Here we have studied the
dynamics of the SEIR model, with waiting times in the
latent and infectious classes determined by a gamma
distribution, with distribution parameters estimated
from household data. Our key finding is that a
reduction in the variance in the infectious period gives
rise to stable multiennial solutions. This finding echoes
the work of Lloyd (2001a,b) and Glass et al. (2003) on
the dynamical consequences of changes to the distri-
bution of the infectious period (for ecological parallels,
see Hastings 1977 and Murdoch et al. 2003). The
implication of these results is that appropriately
formulated deterministic SEIR models are indeed
capable of providing a qualitative explanation for
observed pertussis dynamics.

This work also places into context the numerical
observations of previous authors (Keeling et al. 2001;
Rohani et al. 2002; Bauch & Earn 2003). The long and
multiennial transients documented in exponentially
distributed models of pertussis provided a compelling
explanation for the patterns in case notifications data,
but their origins remained unexplained. The results
shown in figure 7a,b show that the underlying cause of
longer period transient oscillations lies in the destabi-
lization of the triennial attractor as shape parameters
approach unity. This affects our interpretation of the
role of stochasticity in this system. Using the classi-
fication of Millonas (1995), Coulson et al. (2004)
suggested that epidemics of pertussis represent an
example of ‘active’ noise, where stochasticity interacts
with the nonlinearity in the deterministic clockwork
producing patterns that cannot result from either factor
alone. Our findings suggest that possibly whooping
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Figure 7. Invasion orbits of whooping cough in the pre-vaccine era. In (a) and (b), we depict the orbits generated by the SEIRe

and SEIRG models, both with amplitude of seasonality b1Z0.25.The invasion orbits are captured by starting simulations at 1000
different initial times (t02[0:1]), with a single infective in a population of susceptibles (i.e. S(t0)Z4 999 999 and I(t0)Z1). The
proportions of susceptibles and infectives at a fixed time are recorded every year for 15 years, ignoring the first 20 years (due to
transients). Model parameters are the same as in previous figures.
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cough dynamics may be the result of the less exciting
‘passive’ treatment of noise, where stochasticity influ-
ences the transition among different deterministic
states. Ultimately, the precise interpretation of this
question relies on the accurate estimation of model
parameters. This is especially true for the amplitude of
seasonality. Some authors have suggested that for
pertussis b1z0.15 (Rohani et al. 2002; Bauch & Earn
2003), while others have used age-structured argu-
ments to propose a value closer to 0.25 (Keeling et al.
2001; Keeling & Rohani 2007). Unbiased and confident
estimation of this parameter is clearly a significant issue
and we return to it below.

An intriguing aspect of this work is the bifurcation
diagram shown in figure 5a. We were surprised by the
remarkable similarity between the bifurcation
structure in this figure and that presented by Earn
et al. (2000) using SEIRe in the context of explaining
dynamical transitions in measles epidemics. While a
detailed analysis of SEIRG parametrized for measles is
lacking, the findings of Glass et al. (2003) and our own
preliminary results suggest that the bifurcation dia-
gram in Earn et al. (2000) is altered in significant ways
when constant infectious periods are assumed. The
subharmonic resonances resulting from the interaction
between seasonality, the nonlinearity in transmission,
and the distribution of the infectious period may be
crucially determined by the epidemiological parameters
(Greenman et al. 2004; Choisy et al. 2006). A systematic
analysis of this issue remains a priority for future
research.

The recent elegant work by Alonso et al. (2007) has
argued for an alternative perspective on the epidemiol-
ogy of childhood infectious diseases. These authors
point out that the dynamics of such host–pathogen
systems are determined by both the amplitude of
seasonality in transmission and the tendency of the
endogenous ‘clockwork’ to amplify fluctuations. Focus-
ing on the SIRe framework, they derived an analytical
expression for the power spectral density of the number
of infectious and susceptible individuals, reaching the
J. R. Soc. Interface (2008)
interesting conclusion that childhood infectious
diseases are in regions of parameter space correspond-
ing to high noise amplification. It would be interesting
to re-examine Alonso et al.’s (2007) proposed endogen-
ous stochastic resonance idea (or the similar concept of
coherence resonance put forward by Kuske et al.
(2007)), when more realistic latent and infectious
period distributions are assumed.

Finally, we have, thus far, sidestepped two poten-
tially important aspects of whooping cough epidemiol-
ogy and its modelling. The first is concerned with the
ongoing debate about the frequency and consequences
of loss of immunity acquired from natural infection and
vaccination (Grenfell & Anderson 1989; von König
et al. 1995; Broutin et al. 2004; Crowcroft & Pebody
2006). Clearly, of central importance is the question of
the duration of immunity to pertussis, both derived
naturally and as a result of vaccination. In the absence
of unambiguous empirical information, parallel work by
Wearing & Rohani (submitted) has attempted to
address this question using an extended SEIR model
with waning immunity. The aim is to arrive at the most
parsimonious estimate of the duration of immunity by
matching global measures—such as extinction
thresholds and inter-epidemic periods—with those
estimated from the England and Wales case notifica-
tions data. Model predictions were found to be most
consistent with incidence data for durations of immu-
nity between 25 and 70 years, suggesting that models
assuming long-term immunity (e.g. SEIR models) can
still be useful in explaining pertussis epidemics. The
second aspect relates to the robust estimation of
pertussis model parameters. To address both of these
topical and important questions, we are currently in the
process of applying the ‘maximum likelihood via
iterated filtering’ methodology proposed by Ionides
et al. (2006) to the waning immunity model of
Wearing & Rohani, as well as the simpler SEIRe and
SEIRG models discussed here. A better understanding
of pertussis epidemics will be greatly facilitated by
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linking mechanistic transmission models with appro-
priate inferential methodologies.
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Broutin, H., Rohani, P., Guégan, J. F., Grenfell, B. T. &
Simondon, F. 2004 Loss of immunity to pertussis in a rural
community in Senegal. Vaccine 22, 595–597. (doi:10.1016/
j.vaccine.2003.07.018)
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