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Estimating 1/f α scaling exponents from short time-series
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Abstract

In recent years, there has been a concerted effort to develop methods for estimating the scaling exponents of time-series
data, thus permitting a characterisation of their underlying dynamical behaviour. This task becomes rather inaccurate with
data of limited length (less than 100 points), as is the case in many real studies where observation time is constrained. In this
paper, we explore a novel method for accurately calculating the scaling exponents of short-term data, using what we term
the multiple segmenting method (MSM). This approach relies on maximising the available information within a time-series
by generating pseudo-replicates. We believe this method is potentially useful, especially when applied to biological data.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Any given time-series may exhibit a variety of auto-
correlation structures. For example, successive terms
may show strong (‘brown noise’), moderate (‘pink
noise’) or no (‘white noise’) positive correlation with
previous terms. The strength of these correlations pro-
vides useful information about the inherent “memory”
of the system. One approach for estimating this effect
is to estimate the value of the scaling exponent (α) in
the power spectrum of the time-series (P(f ) = f α).
The exponent is determined by carrying out a linear
regression on the log–log transformed Fourier Trans-
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form and estimating the slope of this straight line. This
is clearly a frequency domain method.

Other temporal domain methods have also been de-
veloped in order to characterise the “colour” of time-
series data. These include (i) estimating the Hurst
Exponent [1], which quantifies the persistence of sta-
tistical behaviour in the time-series; (ii) establishing
power–law relationships in the frequency and size
of fluctuations in the data [2], which describe the
probability distribution of fluctuations following per-
turbations; and (iii) the method of Iterated Function
Systems [3], which provides a visual test for identi-
fying possible scaling properties in data. Despite the
increasing sophistication of available approaches, it
is still unclear which method is optimal. In a recent
study, Pilgrim and Kaplan [4] argued, after reviewing
a number of these techniques for estimatingα, that
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FFT regression remains one of the most accurate.
This particular approach has the added advantage of
being very straightforward to implement.

As with other methods for estimating nonlinear
measures from data [5], the performance of the FFT
regression approach is sensitive to the length of the
time-series. In many applications, this may repre-
sent a significant problem. Pilgrim and Kaplan [4],
showed that for most methods, typically 1000 data
points were required to correctly identify the scal-
ing exponent with equivalent accuracy. In this paper,
however, we are interested in highlighting a novel
method which works for much shorter time-series.
Our method is not only reliable for series consisting
of 400 data points, but is also shown to be extremely
accurate for time-series with as few as 47 data points.
As we outline below, our approach relies on segment-
ing a given time-series to obtain pseudo-replicates,
the analysis of which would yield the true underlying
scaling exponent.

2. Generating test data

To study this issue, first we generated a number
of short, independent time-series of different colours
(‘white’, ‘pink’ and ‘brown’). These were generated
using two different procedures. The first set of data are
generated according to a relaxation process and hence
are termed relaxation process data (RPD). The algo-
rithm for this procedure uses a return map to estimate
the value of the variableX at timet + 1:

Xt+1 = βXt + (1 − β)εt , (1)

whereεt ∼ N(0, 1) is a Gaussian process andβ de-
fines the strength of correlation or the colour of the
data. More specifically,β = 0.99, 0.69 and 0.0 corre-
spond to brown (α ≈ −2), pink (α ≈ −1) and white
(α ≈ 0) noise, respectively.

The second method of data generation is perhaps
the most intuitively obvious. It involves setting the am-
plitude (A(f )) at any given frequency (f ) according
to the following formula:

A(f ) =
√

1

f α
, (2)

with α chosen according to the desired noise colour.
This generates a spectrum with a “perfect” scaling ex-
ponent. The method, discussed by Pilgram and Kaplan
[4], generates a time-series that is perfect in the sense
that it scales as 1/f α, but does not fluctuate as a real
time-series usually would. There are at least two ways
of dealing with this and both are discussed in [4].
The first approach consist of taking subsamples of the
original long “perfect” series, while the second con-
sists of perturbing the resulting time series by multi-
plying the spectral amplitude at each frequency by a
random number. It is this last approach that we have
chosen, we refer to it as the perfectly synthesised data
(PSD).

In addition to these artificially generated data, we
also explore the scaling characteristics of selected
ecological, financial and meteorological time-series
data. For all datasets, we detrend each time-series and
subtract the mean. We then estimated scaling expo-
nents with the multiple segmenting method (MSM).
The rationale behind our method is that for any given
process, there will be a precise underlying scaling ex-
ponent,α. When an estimate of this exponent has to
be made from relatively short data, however, there will
be a significant reduction in the accuracy of the esti-
mate. To overcome this limitation, we use segments of
a time-series to produce a number of estimates for the
scaling exponent. We conjecture that these estimates
will have a Gaussian distribution with a mean value
corresponding to the inherentα. The standard devia-
tion of these estimates will decline at a rate determined
by the inverse square root of the length of the seg-
ments. This result is obvious for white noise processes
and we provide a detailed analysis for pink and brown
noises.

3. The multiple segmenting method (MSM)

Consider a time-series of lengthN , {Xi; i = 1,

2, . . . , N}. To estimate a scaling exponent,α, we carry
out an FFT on different segments of these data each
of lengthn, wheren is a power of 2 (n = 2ρ , ρ ∈ N,
ρ > 3). Hence, in general, it is possible to es-
timate an α for different sub-series of the data:
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{X1, X2, . . ., Xn}, {X2, X3, . . . , Xn+1}· · ·{XN−n+1,

XN−n+2, . . . , XN }. This way, we effectively have
N − n + 1 pseudo-replicates of the exponent. The
important quantities, therefore, are the means and
standard deviations of these estimates.

Clearly, there is a cost to using this segmentation
scheme: we lose information by discarding long-term
correlations in the time-series as the segment size is
shortened. However, we gain a statistical advantage
since it is possible to estimate the scaling exponent a
number of times for any given time-series (though
these estimates are not independent). It is demonstra-
ted that theaverageof the scaling exponents for the
segments will accurately represent the true colour of
the data.

To illustrate MSM in more detail, we present in
Fig. 1 the results of our analysis for data generated by
the relaxation process (Eq. (1)), withN = 400 and
β = 0.69. The estimate ofα calculated by Fourier
Transforming the entire time-series is−0.96. For the

Fig. 1. Estimated scaling exponents versus log10(segment size)
using the MSM. The data were generated using the relaxation
process method and contained 44 points. Segments of sizes 256,
128, 64, 32 and 16 were considered. There are 145 (N − n + 1)
segments of length 256 points and 385 segments of length 16
points. The variance in the calculated scaling exponent increased as
the size of the segments decreased. Nevertheless the average value
of the exponent remained almost constant, fluctuating closely to
the value ofα = −1.0, corresponding to a 1/f process. The inset
demonstrates the frequency distribution of exponents estimated for
n = 256.

MSM, we used segments varying in powers of two
from 16 (24) to 256 (28) points and the number of
‘replicates’ for each lengthn of the segment wasN −
n+1, as explained above. The mean scaling exponent
for all segment sizes was� −1.0, as expected from a

Fig. 2. The figure depicts the results of estimating the scaling
exponents from 100 independent time-series of each colour using
(a) the relaxation process and (b) the perfect synthesis methods.
In both figures, the three classes of correlated data are clearly
separated even for very short time-series (e.g.n = 16 or 32). For
each plot, 300 complete time-series were generated, each of length
400. The error bars represent sample standard deviations.



150 O. Miramontes, P. Rohani / Physica D 166 (2002) 147–154

1/f process. As shown in the inset, the estimated ex-
ponents (forn = 256) are normally distributed around
the true exponent. In Fig. 2a and b, we plot for each
method of data generation, the mean estimated scal-
ing exponent for 100 replicated time-series of each
colour versus the size of segments (n) used to esti-
mate the scaling exponent. The figure demonstrates a
number of interesting findings. Most importantly, it is
clearly possible to estimate accurately the underlying
scaling exponent for very short time-series using this
approach. This is especially true for a white noise pro-
cess, where there is little significant variation in the
estimates ofα as segment size varies. However, an-
other important finding is that estimates ofα for pink
and brown noises scale with segment size according
to the following ansatz:

g(n) = a + b√
n
, (3)

where a and b are constants. Consider this scaling
property for the original time-series data used to gen-
erate Fig. 1. The entire time-series (n = 400) has
an estimatedα ≈ −0.96. When a functiong(n) =
a + b/

√
n is fitted to the data generated using the

MSM, the values of the constants area ≈ −1.01 and
b ≈ −0.22. In this case,g(400) gives an estimated
value of≈−1.01, which is almost identical to thetrue
value calculated for the entire time-series (the absolute
difference is 0.05 or 5%). Another example can be
performed with a brown noise time-series (n = 400)
with α ≈ −1.86. Again, fitting a functiong(n), the
values ofa andb were≈−2.01 and≈1.66, respec-
tively. With these valuesg(400) yields ≈−1.93—
again almost identical to thetrue estimated value (the
absolute difference is 0.07 or 7%). Note that in each
case, limn→∞g(n) approaches the inherent scaling
exponent (i.e. limn→∞g(n) → α). Hence, in the limit,
a = α.

A striking observation to emerge from Fig. 2a and
b is that for a pink noise process, the average value
of α has a tendency to decrease as the segment size
decreases, albeit the decline is typically very small. For
Brownian noise, however, it is difficult to estimate the
true exponent from very short time-series (N < 40)—
the departure from the expected value is considerable.

There is a simple and intuitive explanation for this
finding. For Brownian processes, there is a pronounced
role of low frequency fluctuations in the power spec-
tra. Hence, to estimate the correct exponent, the
time-series must be sufficiently long to contain much
of the long-period fluctuations. Otherwise, the low
frequency fluctuations will be under-estimated, effec-
tively flattening the power spectrum and increasing
the value of the estimated exponent.

4. Real world examples

How does the MSM perform when applied to real
data? In Fig. 3a, we show El Niño data from the east-
ern Pacific on the equator [3]. Our analyses of these
data (Fig. 3b) revealed very strong auto-correlation in
the data withα ≈ −2.13, estimated after fittingg(n)

(Eq. (3)) and settingn → ∞. On the other hand, the
scaling exponent estimated after carrying out a direct
Fourier Transform on the entire time-series is−2.1.
This quantitativelygood match between the different
estimation methods is reassuring.

Our next application of the MSM is to financial
data. In particular, we explored the ratio of the mean
daily exchange rate of the US Dollar against the
British Sterling over a 5-year period (Fig. 4a). These
data appear to exhibit very clear brown noise be-
haviour withα ≈ −1.93 whenn → ∞ in Eq. (3). Our
estimate ofα is once again extremely well matched
with the exponent calculated from the Fourier Trans-
form of the entire time-series (which gives a value
of −1.8).

The final real-world application of this method we
present is very illustrative. It is the case of a very
short ecological time-series (consisting of only 47 data
points) exhibiting an interesting interaction between
biotic and abiotic variables. In Fig. 5a, we plot the
population density of a bacterium in an English pond
in the 1950s, together with the associated precipita-
tion over the same period (source: Ref. [8]). In this
system, bacterial growth rate is limited by rainfall and
its mortality is largely determined by the population
of a predatory epizoic protozoan (Urceolaria mitra).
This analysis would therefore shed some light on the
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Fig. 3. (a) The mean ocean temperature data consisting of 2000 points, representing daily readings at a depth of 1 m between December
1988 and July 1994 taken from a buoy moored on the equator at 110◦W. (b) The application of the MSM estimates an exponent of−2.13,
with little variation as segment size increases. The inset shows the scaling behaviour of the power spectrum forn = 1024.

consequences of trophic interactions for the scaling
behaviour of populations. As shown in Fig. 5c, the es-
timated scaling exponent using the MSM method for
the bacterium population is−1.08, while the rainfall

data appears undoubtedly to have a white spectrum,
with α ≈ 0.21 (Fig. 5b). For the bacterium popula-
tion, the MSM and the direct method provide starkly
contrasting estimates. The exponent estimated directly
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Fig. 4. (a) The mean daily US$-GB Sterling exchange rate. The data span the period 22/8/1995–22/8/2000 and were obtained from
www.oanda.com. (b) The application of the MSM estimates an asymptotic exponent of−1.93. In these data, there is some variation asn

increases, with the larger segment sizes providing a smallerα, as might be expected. The inset shows the scaling behaviour of the power
spectrum forn = 1024.

from the Fourier Transform of the full time-series is
−0.16. Hence, with the direct method, one would be
tempted to conclude that the bacterium population
fluctuations mimic those of the rainfall being essen-
tially white noise.

These analyses of the ecological data with the MSM
are especially interesting in light of recent debates
in this field. Numerous real populations, including
aquatic microorganisms, have been shown to have a
“reddened” spectrum, however, most simple (and uni-

versally used) models of population processes seem
incapable of reproducing this trait, often exhibiting
white or blue noise spectra [9]. This has led some
to argue that the redness must be due to environ-
mental forcing (e.g. Ref. [10]). Yet our brief analysis
here suggests that such broad generalisations may
well be dangerous. The combination of environmen-
tal variability, inherent nonlinearities in population
growth and trophic interactions can have subtle results
[7].
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Fig. 5. (a) The bacterium population density (measured as number of bacteria per millilitre) and corresponding rainfall (ml) for the
Reynoldson data. Despite the fact that the time-series contain only 47 points, the application of the MSM estimates asymptotic exponents
of (b) 0.21 for the rainfall data and (c)−1.08 for the bacterium population. In this example, the MSM consist of segmenting the original
47 points series to produce 40, 32 and 15 subseries of 8, 16 and 32 points. When the scaling exponent of the subseries are plotted, it is
possible to estimate the asymptotic exponent value of the original time-series after using Eq. (3).

5. Concluding remarks

Different degrees of correlation exist in time-series
coming from many and diverse areas in physics, biol-
ogy, economics, etc. It is becoming very important to
find methods that may identify and measure accurately
these correlations in the form of a scaling exponent
in the frequency domain. This especially important
when the time-series are short [4], a situation that is
commonly present in some areas of the biological sci-
ences [6,7]. We have in this article, described a novel
method to estimate scaling exponents that may prove
relevant to address the problem of accurately distingui-

shing the colour of noise in very short time-series. The
method involves the use of replicas from segmentating
the original time-series and their statistical analysis
based on the behaviour of an scaling ansatz between
the exponent values and the segment size. We think
this method is potentially useful in the sense that it is
an excellent tool to estimate a value for the scaling ex-
ponentα in short time-series and that, under these cir-
cumstances, it is superior to the most common method,
namely the direct FFT method. Estimating the correct
exponent is useful, in turn, to gain insight into what
kind of dynamic processes may be involved in the gen-
eration of the time-series—this is specially important



154 O. Miramontes, P. Rohani / Physica D 166 (2002) 147–154

nowadays when there is a lack of adequate knowledge
about the nature of the mechanisms generating 1/f

like noise, particularly in biological phenomena.
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