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Abstract

Avian influenza viruses (AIVs) are considered a threat for their potential to seed human influenza pandemics. Despite their
acknowledged importance, there are significant unknowns regarding AIV transmission dynamics in their natural hosts, wild
birds. Of particular interest is the difference in subtype dynamics between human and bird populations–in human
populations, typically only two or three subtypes cocirculate, while avian populations are capable of simultaneously hosting
a multitude of subtypes. One species in particular–ruddy turnstones (Arenaria interpres)–has been found to harbour a very
wide range of AIV subtypes, which could make them a key player in the spread of new subtypes in wild bird populations.
Very little is known about the mechanisms that drive subtype dynamics in this species, and here we address this gap in our
knowledge. Taking advantage of two independent sources of data collected from ruddy turnstones in Delaware Bay, USA,
we examine patterns of subtype diversity and dominance at this site. We compare these patterns to those produced by a
stochastic, multi-strain transmission model to investigate possible mechanisms that are parsimonious with the observed
subtype dynamics. We find, in agreement with earlier experimental work, that subtype differences are unnecessary to
replicate the observed dynamics, and that neutrality alone is sufficient. We also evaluate the role of subtype cross-immunity
and find that it is not necessary to generate patterns consistent with observations. This work offers new insights into the
mechanisms behind subtype diversity and dominance in a species that has the potential to be a key player in AIV dynamics
in wild bird populations.
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Introduction

Avian influenza viruses (AIVs) have long been a source of

concern because of their potential to cause a human influenza

pandemic. Indeed, every influenza virus implicated in human

pandemics in history has contained gene segments of avian origin

[1–4]. The current threats from avian influenza are thought to

come from H5N1, which has devastated poultry across Asia [5]

and H7N9, the human emergence of which, surprisingly, was not

preceded by mass die-offs in poultry or wild birds [6]. Given that

wild birds represent the natural reservoir for influenza A viruses,

responsible for the generation and maintenance of genetic

diversity, understanding the population biology of avian influenza

viruses is important.

While subtype diversity in human seasonal influenza viruses is

limited to H3N2 and H1N1 [7], field sampling of wild bird

populations has identified numerous coexisting viral subtypes [8–

10]. Surprisingly, the mechanisms underpinning the community

ecology of AIV subtypes remain poorly understood. Identifying

the factors that determine coexistence in multi-pathogen systems is

an interesting scientific question in its own right [11–15], but in

the case of influenza viruses it also has applied significance given

their potential for cross-species transmission and ultimately

infection in humans [1].

Numerous studies of avian influenza viruses have focused on

prevalence and transmission dynamics in ducks and gulls, leading

to the observation that each supports a wide range of somewhat

distinct virus subtypes [10]. In comparison, less is known about the

role of other species in the maintenance of AIV subtype diversity

in the wild. In particular, shorebirds are known to harbour a wide

range of subtypes, including viruses that are typically found in

either duck or gull reservoirs [10], though the mechanisms that

allow for this are not known. One location where AIV dynamics in

shorebirds and in ruddy turnstones - Arenaria interpres - in particular

has been extensively studied is Delaware Bay, where these birds

routinely exhibit high prevalence levels during their spring
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migration [9,16,17]. This species may be critical in the mainte-

nance and geographic spread of AIVs through North American

wild bird populations, as they are both competent hosts for several

AIV subtypes and long-distance migrants.

Previous research has attempted to identify the key elements

that make Delaware Bay an AIV ‘hotspot’ [16], especially the

impact of multiple interacting bird species and, crucially,

seasonality in migration, breeding, mortality and transmission

[17,18]. However, this work did not address subtype diversity,

coexistence and frequency. In this paper, we attempted to explore

the possible explanations for the coexistence of multiple subtypes

in ruddy turnstones by first presenting and analysing two sources

of subtype-specific AIV data from ruddy turnstones in Delaware

Bay. Using these data, we questioned examined patterns of

subtype dominance and diversity, as these signatures can provide

insight into the subtype interactions taking place within the

species. We identified both random and non-random patterns, so

we adopted a mechanistic multi-subtype transmission model that is

neutral (i.e. does not assume subtype differences) and asked

whether such a model is capable of capturing the dominance and

diversity patterns observed in the data. Our model is an extension

of that presented in [17]; it comprises a stochastic, multi-host,

multi-subtype system that incorporates the key seasonal elements

mentioned above.

To establish whether cross-immunity or transmission route

played a role in the simulated dominance or diversity patterns, we

systematically varied these parameters, while always maintaining

identical subtype dynamics. We calculated Simpson’s diversity

index, change in rank vs. rank (of subtype) and rank-abundance

for both the model and field data and compared the results,

finding that, for certain parameter sets, a neutral model

incorporating demographic stochasticity was capable of creating

patterns similar to those observed in the data. We followed this by

asking whether there was any predictability in the data (and

Figure 1. Prevalence plots of datasets 1 and 2. (a) A stacked bar chart of the approximate prevalence of HA subtypes. (b) The prevalence time
series from both datasets for the four selected hemagglutinin (HA) subtypes. In both cases, the two datasets are separated by a gap on the x-axis. For
dataset 1, a total of 4266 fecal or cloacal samples were collected over the time period 1985–2000 [9]; for dataset 2 the average annual sample size was
400.
doi:10.1371/journal.pone.0088817.g001
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model) using autocorrelation calculations. Our results suggest that

no such predictability exists, which from a practical perspective

raises questions regarding our potential to identify ‘problem’

subtypes likely to arise.

Materials and Methods

Data
We examined data collected from ruddy turnstones in Delaware

Bay during May/June over multiple consecutive years. The data

are from two independent sources and so we compared, not

combined, them. The longer time series (1985–2000) consists of

environmental fecal swabs and is estimated from data published in

[9] (hereafter we refer to these data as ‘‘Dataset 1’’); the more

recent data (2000–2008) are partially published in [19] (these are

henceforth referred to as ‘‘Dataset 2’’) and consist of cloacal swabs

taken from captured birds. We focused our attention on the four

most frequently occurring subtypes from Dataset 1 (i.e. that are

non-zero for the most number of years). The data from both

sources are shown in figure 1; panel (a) is a stacked bar graph

showing the (approximate) prevalence of all subtypes and panel (b)

shows the (approximate) prevalence time series for the four

subtypes of interest.

We conducted a series of analyses on both datasets to establish

whether any patterns are apparent pertaining to either subtype

dominance or diversity, and hence whether we could identify

mechanisms (using a mathematical model) capable of reproducing

those patterns. We used several metrics to measure subtype

dominance and diversity – Simpson’s diversity index [20], change

in rank vs rank (Barton et al., unpub.; see } Analysis of empirical

patterns) and rank-abundance [21]. We observed three distinct

patterns in the data and, through the use of a mechanistic

transmission model, demonstrated that two of them are consistent

with a neutral model.

Mechanistic Model
To investigate the mechanisms consistent with the diversity and

dominance measures quantified in our data, we developed a

stochastic transmission model, solved using Gillespie’s t-leap
algorithm [22,23]. The model incorporated those key features

previously identified as important in Delaware Bay [17] and was

comprised of four subtypes, multiple geographical sites and three

host species: i) a duck species resident in Delaware Bay (assumed to

be American black ducks - Anas rubripes), ii) a migratory duck

species that breeds in Canada and winters in Delaware Bay

(assumed to be mallards - Anas platyrhynchos) and iii) ruddy

turnstones, a shorebird species that winters in Brazil and breeds

in the Canadian Arctic, briefly resting in Delaware Bay during

their spring migration. A full description of the model is provided

in File S1. Note that our model permitted co-infection, but for

tractability, any host may be simultaneously infected with a

maximum of two subtypes [24]. Host species are assumed equally

competent for all subtypes. We assumed subtype-specific immunity

to wane, the rate of which was quantified in previous work [17].

We examined the sensitivity of our conclusions to this (and other)

parameter choices.

We considered two possible routes of AIV transmission - direct

and environmental [25,26]. The direct route assumed a short time

scale for transmission from an infected to a susceptible host and

required both to concurrently inhabit the same spatial location.

The environmental transmission route, however, did not assume

co-location as transmission occurs indirectly, via an environmental

reservoir. It has long been known that AIVs can persist for

extended periods of time in water [27,28], thus virus deposition in

the environment by an infected bird may lead to consumption by a

susceptible and subsequent infection without either bird interact-

ing directly. The model, therefore, allowed for the subtype

patterns to be driven by either viral persistence in the environment

or through direct transmission between individuals, or a combi-

nation of both. We modelled the rate of decay of the virus in the

Figure 2. Schematic of the model with two-subtypes depicted for illustration. Hosts are born susceptible to both subtypes (SS) and their
subsequent status with respect to both subtypes is tracked. Infection events are represented by solid arrows while loss of immunity is depicted by
dotted arrows.
doi:10.1371/journal.pone.0088817.g002
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environment as a seasonal parameter based on local temperature.

We assumed the decay rate takes either a summer or winter value

in each location (as in [26]) - the details are presented in File S1 }
S.2.2. In modelling the environmental transmission rate, we

followed [14] and ensured the neutrality of viral subtypes in our

system [29]. Cross-immunity was assumed to act on the

transmission probability.

Consistent with avian life history, the model was comprised of

multiple components that veary seasonally. As mentioned above,

seasonal migration is modelled in two of the host species with only

American black ducks assumed not to migrate. All three host

species exhibit seasonal hatching [30–32], and the duck species

show patterns of seasonal mortality due to hunting [33,34]. The

final form of seasonality included in the model acts on the direct

transmission terms, which we assumed to vary through the year -

either due to increased territoriality (leading to reduced contact

rates), as in the duck species [30,32] - or, for ruddy turnstones, due

to increased density (increasing contact rates) while in Delaware

Bay [16]. Further details concerning these seasonal drivers are

provided in File S1 } S.2.3–S.2.5.
For ruddy turnstones, we calculated the time series of

prevalence for each subtype and, in order to mimic the process

of field isolation, we then randomly sampled from simulated data.

We assumed sampling over a 2 week time period, with the

prevalence being the sum of all infected birds over that time frame

divided by the total number of birds tested. We then sampled from

our ‘true’ prevalence using a binomial distribution and assuming

400 birds sampled a year (to match the average annual sample size

from Dataset 2).

For clarity, a schematic of a two-subtype version of the model is

shown in figure 2 - this scales up to four-subtypes as would be

expected from this schematic, with the exception that we

constrained co-infections to be with no more than 2 subtypes

simultaneously. The full set of mean field equations underlying our

stochastic model are given in } S.2.1; for clarity we present a two-

pathogen system corresponding to figure 2. This scales directly to

four subtypes and three hosts.

As part of our analysis, we computed Barycentric coordinates

for both the model and empirical data sets. The Barycentric

coordinate system is a useful tool when considering multi-subtype

data. The coordinate space consists of a simplex that may be of

any dimension, with each vertex corresponding (in our case) to

each subtype (see figure S1). The coordinates are then calculated

as the relative prevalence of each subtype, with each coordinate in

Barycentric space calculated by dividing the prevalence of a given

subtype by the sum of subtype prevalences (see File S1 for more

details). By employing this coordinate system it is possible to

consider changing dominance in subtype space through time.

Results

Analysis of Empirical Patterns
Our first empirical result concerned Simpson’s diversity index,

which gives a time-dependent measure of both diversity and

dominance. As shown in figure 3(a), in both sets of data, there was

notable temporal variation in diversity through time. Its accom-

panying histogram shows however that although there may be

considerable year-to-year variability in this metric, overall the

majority of values fall into a subset of the full range. Our second

Figure 3. Plots showing analyses of dominance and diversity patterns from datasets 1 and 2. The Simpson’s diversity index for the four
subtypes of interest from both datasets is presented in (a). Absolute change in rank against rank ((b) and (c)), change in rank against rank ((d) and (e))
and rank-abundance curves ((f) and (g)) are presented for each dataset - panel letters given refer to datasets 1 and 2 respectively. Panels (h)-(k) show
correlations in the data, with (h)-(i) showing any significant correlations between subtype presence/absence for the complete datasets, and (j)-(k)
showing any correlations between prevalence levels for the 4 subtypes of interest.
doi:10.1371/journal.pone.0088817.g003
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empirical result concerned the rank-specific change in rank from

year to year. To measure change in rank vs rank, each of the four

subtypes was annually assigned a rank between 1 and 4, with 1 the

most dominant and 4 the least dominant. We repeated this for

each ranking and averaged over the duration of the time series to

generate a change in rank vs. rank curve. These curves are then

contrasted with randomly generated test data (see File S1 } S.1 for

a detailed description). As shown in figures 3(b)–(e), in both

empirical data sets, the change in rank vs rank and the absolute

change in rank vs rank fall within the 95% confidence intervals for

the simulated random data. Our third empirical result for

dominance concerns rank-abundance, which is well-known in

ecology and quantifies the average relative dominance of each

subtype over the time series. The rank-abundance curves for each

dataset (figure 3(f),(g)) deviate from random, with the top ranked

subtype, on average, more abundant in the data than would be

predicted from a random sample.

As a further study, we looked for correlations both between the

presence/absence of subtypes and between the prevalence levels of

subtypes to identify possible inter-subtype relationships.

Figures 3(h) & (i) demonstrate very few significant correlations.

When we focused on the four subtypes of particular interest and

plotted the correlation between prevalence levels, we found that

while many were negatively correlated, none were statistically

significant. This is to some extent supported by the rank-

abundance curve, which suggests that subtypes of high rank have

high prevalence relative to the other subtypes. This lack of

correlation between subtype presence/absence also suggests that,

in ruddy turnstones, there may not be a significant role for

heterotypic immunity - a suggestion we further investigated using

the stochastic transmission model.

This mix of apparently random and non-random patterns raises

an obvious question - what (if any) is the role of cross-immunity in

this system? To address this, we used the transmission model to

tease apart the relative impacts of hetero-subtypic immunity from

other epizootiological factors that may contribute to the observed

dynamics.

Modelling Findings
Using the model described in ‘‘Material and Methods -

Mechanistic Model’’, we examined the role of direct transmission

in ruddy turnstones, consumption rate (varied uniformly across all

three host species) and cross-immunity (also varied across all host

species). In all cases, we maintained identical subtype parameters

(i.e. neutrality) to establish the role of stochasticity in the system.

Some sample prevalence curves are depicted in figure 4 and

demonstrate changes in model behaviour under different param-

eterization. In particular, modifying the consumption rate can

drive radically different behaviour, with non-zero prevalence

Figure 4. Model predicted prevalence curves for all three hosts for a variety of different parameter sets. Panel (a) shows the prevalence
curves for migratory ducks, resident ducks and ruddy turnstones for no cross-immunity and low transmission and consumption rates. Panel (b) shows
the prevalence curves for all species for a cross-immunity rate of 0.5, with a higher transmission rate than in (a) and with a low consumption rate.
Panel (c) shows the case with no cross-immunity, low transmission rate and an increased consumption rate (over (a) and (b)). Finally, panel (d) shows
the prevalence curves when the cross-immunity rate is 0.5, transmission rate is low and consumption rate is greatly increased. In each panel, the
histogram next to the ruddy turnstone (RUTU) prevalence curve is the histogram of the Simpson’s diversity index (SDI), as averaged over all
simulations with the given parameter set. Simpson’s diversity index is calculated from a sample of the true prevalence, as calculated while the birds
are present in Delaware Bay. See model description for more details on sampling. Note that ‘‘Mig’’ here stands for migrating ducks and ‘‘Res’’ denotes
resident ducks.
doi:10.1371/journal.pone.0088817.g004
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observed year-round in the duck species (figure 4(c)). Furthermore,

it is apparent from these snapshots that stochasticity alone can

promote changes in rank from year to year between the subtypes.

Next, we measured how well our model captured the changing

subtype diversity observed in the data. We compared a histogram

of Simpson’s diversity index from the data with one generated by

our model, using a two-sample Kolmogorov-Smirnov test [35] to

assess whether the two histograms belonged to the same

distribution. In particular, we systematically varied the strength

of cross immunity (y), the direct transmission rate bu and

enviromental consumption rate r with the aim of exploring

parameter regions that generated dynamics consistent with data.

As shown in figure 5, the null hypothesis that histograms from our

model and data arose from the same distribution could be rejected

either when subtype cross-immunity was very strong or when

environmental transmission was very low. On this first measure, at

least, we identified that parameter combinations exist under which

a neutral model with demographic stochasticity and the absence of

immune-mediated dynamics could produce results with the same

statistical signatures as the data.

To evaluate further model parsimony with data, we estimated a

synthetic likelihood [36], which quantifies model fit using statistical

descriptors, or probes. Specifically, focusing on the change in rank

vs rank and rank-abundance associations, we calculated sum of

squared errors (SSEs) for model ouput against dataset 1 for both

metrics, with values normalised and summed to provide a

combined measure of model fit. For each set of parameter values,

we averaged the results over 10 model simulations. The heat maps

presented in Figures 6(a) and (b) depict 2-D synthetic likelihood

profiles, with panels above and to the left summarizing profiles

over cross-immunity and transmision rate (in Fig. 6a) and

consumption rate (in Fig. 6b), respectively. Overall, these

calculations indicate that best-fit parameters assume no cross-

immunity, low direct transmission and a moderate consumption

rate. Figures 6(c) and 6(d) present the results of both measured

metrics (absolute change in rank against rank and rank-

abundance) for the best-fit parameters. Crucially, these results

indicate that stochasticity alone is capable of generating both the

dominance and diversity patterns observed in these data. For

comparison, we include figures equivalent to figure 6 for each

metric individually in File S1 (figures S3– S5).

Finally, we examined the correlation structure in subtype

fluctuations as quantified using Barycentric ordination. In

particular, for each data set we calculated the distance between

successive Barycentric coordinates, which provides information

regarding the shifting subtype dominance through time (see

‘Materials and Methods - Mechanistic Model’ and File S1 } S.4,
figures S6 & S7 for additional details). Small estimated distances

would indicate a temporally stable relative subtype composition,

while large values would suggest dramatic changes in relative

prevalences from year to year. In Figures 7(a) and 7(c) we present

Barycentric distances for both datasets together with estimated

autocorrelation functions (ACFs). Figures 7(b) and (d) depict

parallel plots for model output using best-fit parameters. For both

model and data, the peak autocorrelation functions occur at lag 0

and rapidly fall well below the 95% significance level. These ACF

Figure 5. Plots showing the Kolmogorov-Smirnov test results from comparing histograms of Simpson’s diversity index from the
datasets and the model. The histograms consist of 10 equal sized bins between 0 and 4 for both the datasets and the model. Panels (a) and (b)
show whether or not the null hypothesis (that the histograms come from the same distribution) can be rejected -the result is one if it can be rejected,
0 otherwise. Panel (a) shows the results for varying cross-immunity and direct transmission rate in ruddy turnstones; (b) shows the results for varying
cross-immunity and consumption rate. For each parameter set, the model histogram was constructed from the mean Simpson’s diversity index, as
calculated from 10 model simulations.
doi:10.1371/journal.pone.0088817.g005
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patterns indicate little predictability in changing subtype domi-

nance through time - consistent with patterns that are random.

Discussion

Our work here offers new insights into the epizootiology of AIVs

in wild bird populations. We have addressed some of the open

questions surrounding the maintenance of multiple subtypes in

wild birds, focusing on ruddy turnstones in Delaware Bay as a

species that has the potential to be a key player in AIV dynamics in

North America [17]. Concentrating on diversity and dominance

measures meant that we could address particular questions relating

to the relative importance of the environmental reservoir versus

the direct transmission route, the role of cross-immunity in the

system and how subtype differences contributed to the observable

dynamics.

Data analyses from two independent datasets indicate that

randomness plays a role in the observed subtype dynamics. In both

data sets, the change in rank from one year to the next is not

different from randomly generated data with little or no

correlation structure. When considering the rank-abundance

curves, however, the data are clearly at odds with the random

prediction. Together, these results suggest that, while there may be

little inter-annual information concerning subtype ranking, it may

be possible to infer information on the relative prevalence of

subtypes at different ranks.

Applying these ranking metrics to the transmission model

highlights the role played by demographic stochasticity. Assuming

identical subtype parameters, we have shown that stochasticity

alone can lead to variance in rank from year to year that is

consistent with data. More surprising, our results indicate that our

stochastic model is capable of generating the empirical non-

random rank-abundance curve. Furthermore, a neutral model is

sufficient to create a plausible diversity pattern in the model

results, as quantified by Simpson’s diversity index. Together, these

results imply that it may not be necessary to invoke differences

between subtypes in order to explain empirical patterns. This

Figure 6. Synthetic likelihoods comprising of change in rank vs. rank and rank-abundance curves between the model and data. The
heat maps in panels (a) and (b) depict 2-D likelihood profiles, with single pararmeter profiles shown in upper and left panels. The plots show the
normalised SSEs for varying cross-immunity and either the ruddy turnstone transmission rate (a) or the consumption rate (b) against the metrics
absolute change in rank vs. rank and rank-abundance. White space in both plots is the result of subtype extinctions leading to much reduced fits to
the data (for more information on average number of subtypes coexisting for different parameter sets, see File S1). Panels (c) and (d) give the
absolute change in rank vs rank (c) and rank-abundance curves (d) for the best fit estimate (as judged from the SSEs). Lighter lines (grey in (c), blue in
(d)) show the results from individual realisations and darker lines (black in (c), red in (d)) show averages.
doi:10.1371/journal.pone.0088817.g006
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theoretical result supports recent experimental work suggesting

that subtype differences (in ducks) do not play a significant role in

either viral shedding or persistence in the environment [37].

Moreover, the compatibility between our theoretical and empirical

results demonstrates that it is possible to use information at

multiple scales to make inferences about the system as a whole.

Here, we have taken population-level data and, using a

population-level model, have proposed putative mechanisms that

may contribute to the coexistence of multiple subtypes within a

wild bird population. We find that these mechanisms (in

particular, that subtype differences are not necessary to reproduce

the statistical signatures observed in the data) are supportive of

similar, empirical, results found in individual level challenge

experiments [37].

Using a probe-matching approach, we found that heterosubty-

pic immunity is not necessary for explaining the patterns we

observe in AIV dominance dynamics in ruddy turnstones. Indeed,

our model predicts that strong cross-immunity will inevitably lead

to subtype extinctions (figure S2). It is worth noting that homotypic

immunity is included in the model - for ruddy turnstones, the

duration of this immunity is, on average, 1 year [19]. Homotypic

immunity may well be influencing the observed subtype dynamics,

but further challenge experiments need to be conducted in ruddy

turnstones to fully understand the nature and scope of that

immunity. Similarly, while we find no evidence for cross-immunity

in our model results, immunity lasting less than a year may well

exist. The resolution of the data are too coarse to identify if this is

the case - again, challenge experiments are needed to quantify the

strength and duration of any short-term cross-immunity.

We find that consumption rate from the environmental

reservoir can substantially impact the dynamics, with direct

transmission playing a lesser role than cross-immunity. That the

environmental reservoir should have such an impact is logical

when we consider the relative time scales - acting over long periods

of time, the environmental reservoir can maintain transmission

during periods of lower numbers of susceptibles or lower contact

rates. This is multifaceted, as the environmental reservoir serves as

a transmission route for multiple species. Thus, the subtype

composition of the environmental reservoir will be influenced, not

just by ruddy turnstones, but also by other bird species (in the case

of our model, this is the two duck species). Biologically, the

diversity of species likely to be seeding the environmental reservoir

with AIV subtypes may influence the random nature of some of

the patterns observed in ruddy turnstone AIV subtype dynamics.

Overall, this work illustrates that a neutral model incorporating

demographic stochasticity is capable of capturing the diversity and

dominance patterns observed in the field. Equally, without

sufficient uptake of virus from an environmental reservoir, the

model predicted changes in rank are not consistent with the data.

Finally, our attempts to estimate key parameters using statistical

descriptors of the data did not identify a role for cross-immunity.

The failure to detect any year-to-year autocorrelation in Bary-

centric coordinates provided additional evidence that there is little

or no inertia in subtype composition (Fig. 5). This conclusion is

reenforced in our model, assuming best-fit parameters. Crucially,

Figure 7. The Cartesian distance between Barycentric coordinates for both the model and data, and their respective
autocorrelations. Figures showing the Cartesian distance between Barycentric coordinates for both the data (a) and a model simulation using
the best-fit parameter set (c). The autocorrelations for both of these are shown in figures (b) and (d) respectively. The 95% significance levels are not
shown as their threshold is much larger than the calculated values.
doi:10.1371/journal.pone.0088817.g007
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from a practical perspective, unpredictability in subtype domi-

nance dynamics may clearly impede efforts to anticipate which

subtype has the potential to be the greatest risk (due to high

prevalence levels) from year to year.

Supporting Information

Figure S1 Barycentric coordinate system in 2-D. The

Barycentre is marked with a red star.

(EPS)

Figure S2 Average number of subtypes present (over 10
realisations) for each set of parameter values.
(EPS)

Figure S3 Sample prevalence curves from the model for
the best fit parameter set. The panels (from top to bottom)

show prevalence curves for all four subtypes in migrating ducks,

resident ducks and ruddy turnstones (RUTUs).

(EPS)

Figure S4 Panels (a) and (b) show the normalised SSEs for

varying cross-immunity and either the ruddy turnstone transmis-

sion rate (a) or the consumption rate (b) against the metric absolute

change in rank vs. rank. Panels (c) and (d) give the absolute change

in rank vs rank curves for the best fit SSE parameters for either (c)

ruddy turnstone direct transmission rate bu or (d) consumption

rate r. These occur at either a medium level of cross-immunity

(w=0.5) and consumption rate (r~1:380410{8), or with low

values for cross-immunity (w=0) and direct transmission rate

(bu =0.005).

(EPS)

Figure S5 Panels (a) and (b) show the normalised SSEs for

varying cross-immunity and either the ruddy turnstone transmis-

sion rate (a) or the consumption rate (b) against the metric rank-

abundance. Panels (c) and (d) give the rank-abundance curves for

the best fit SSE parameters for either (c) ruddy turnstone direct

transmission rate bu or (d) consumption rate r. These occur at a

low level of cross-immunity (w=0.2), with a low value for

consumption rate (panels (b),(d); r~1:380410{16) or a high value

for direct transmission rate (panels (a), (c); bu =0.0365).

(EPS)

Figure S6 Lagged scatterplots showing for datasets 1 (a)
and 2 (b), with linear fits also shown. Correlation

coefficients are given above each plot and show none of the

correlations are significant.

(EPS)

Figure S7 Change in rank ((a) and (b)) and rank
abundance ((c) and (d)) plots for both high transmission
potential ((a) and (c)) and low transmission potential ((b)
and (d)).

(EPS)
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