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Abstract
Sustained and coordinated vaccination efforts have brought polio eradication within reach.

Anticipating the eradication of wild poliovirus (WPV) and the subsequent challenges in pre-

venting its re-emergence, we look to the past to identify why polio rose to epidemic levels in

the mid-20th century, and howWPV persisted over large geographic scales. We analyzed

an extensive epidemiological dataset, spanning the 1930s to the 1950s and spatially repli-

cated across each state in the United States, to glean insight into the drivers of polio’s his-

torical expansion and the ecological mode of its persistence prior to vaccine introduction.

We document a latitudinal gradient in polio’s seasonality. Additionally, we fitted and validat-

ed mechanistic transmission models to data from each US state independently. The fitted

models revealed that: (1) polio persistence was the product of a dynamic mosaic of source

and sink populations; (2) geographic heterogeneity of seasonal transmission conditions ac-

count for the latitudinal structure of polio epidemics; (3) contrary to the prevailing “disease of

development” hypothesis, our analyses demonstrate that polio’s historical expansion was

straightforwardly explained by demographic trends rather than improvements in sanitation

and hygiene; and (4) the absence of clinical disease is not a reliable indicator of polio trans-

mission, because widespread polio transmission was likely in the multiyear absence of

clinical disease. As the world edges closer to global polio eradication and continues the

strategic withdrawal of the Oral Polio Vaccine (OPV), the regular identification of, and rapid

response to, these silent chains of transmission is of the utmost importance.

Author Summary

Thanks to global vaccination efforts, poliovirus is on the brink of worldwide eradication.
However, achieving eradication and preventing re-emergence requires intimate knowledge
of how the virus persists. In order to understand a system that is complicated by heavy
human intervention, such as vaccination, it is important to establish a baseline by studying
that system in the absence of intervention. Historical epidemics that predate the use of
vaccines can be used to disentangle the epidemiology of disease from vaccine effects. Using
historical polio data from large-scale epidemics in the US, we fitted and simulated
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mathematical models to track poliovirus and to reconstruct the millions of unobserved sub-
clinical infections that propagated the disease. We identified why polio epidemics are explo-
sive and seasonal, and why they vary geographically. Our analyses show that the historical
expansion of polio is straightforwardly explained by the demographic “baby boom” during
the postwar period rather than improvements in hygiene. We were also able to demonstrate
that poliovirus persisted primarily through symptomless individuals, and that in the event
of local virus extinction, infection was reintroduced from other geographic locations.

Introduction
Poliovirus, like other members of Picornaviridae, usually generates mildly symptomatic infec-
tion. However, the clinical manifestation of polio, Acute Flaccid Paralysis (AFP), can result
when the virus invades the central nervous system [1]. Wild poliovirus (WPV) is transmitted
fecal–orally and in the Northern Hemisphere exhibits seasonal epidemics in late summer and
autumn [1–3]. Polio outbreaks continue today within this narrow seasonal window in Pakistan
and Afghanistan [4,5], but the seasonal transmission structure of polio remains unexplored.

Propelled by public support, the race for the polio vaccine during the post-World War II era
led to the development of the Inactivated Polio Vaccine (IPV) and the Oral Polio Vaccine
(OPV), which reduced the global incidence to less than 0.1% of prevaccine levels [6]. Missing
the 2014 goal of globally stopping WPV transmission has left eradication elusive, primarily be-
cause of political and social obstacles for effective vaccine distribution, including vaccine hesi-
tancy and mistrust. In light of this—and the call for innovative solutions [7]—an
understanding of polio’s ecology can help guide alternative strategies. Looking toward eradica-
tion and beyond, a polio-free world requires an understanding of the mode by which polio
originally emerged and historically persisted. We contend that a retrospective study of the ecol-
ogy of WPV in the absence of vaccine interventions can inform future planning and may pin-
point vulnerabilities in WPV’s epidemiology that could be leveraged for eradication.

Ironically, because of the success of polio vaccination, critical features of WPV transmission
remain obscure. The low global incidence of polio (due to high vaccine coverage), in combina-
tion with the relative rarity of symptomatic infections, limits the amount of epidemiological
data with which to study transmission. Furthermore, data limitations regarding vaccine cover-
age in developing countries confound transmission studies, making it difficult to disentangle
the effects of the vaccines, demography, and transmission. Therefore, we took advantage of a
dataset of unprecedented size and resolution in both space and time to gain insights into the
drivers of polio’s historical expansion and the ecological mode of its persistence in the prevac-
cine period.

We present analyses of spatially-replicated incidence reports from the prevaccine era in the
United States and built mechanistic transmission models that incorporate these data to recon-
struct the unobservable infection dynamics. Our analyses allow us to dissect three axes of polio
epidemiology: (i) geographical and seasonal variation in transmission, (ii) the role of demogra-
phy in determining incidence, and (iii) the mode by which polio persists.

Methods

Data
We examined monthly polio case reports (January 1931–December 1954) from the US Public
Health Service Morbidity and Mortality Weekly Reports as compiled by [8] and the CDC for
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each of the 48 contiguous US states and the District of Columbia (Fig 1A and 1B); data provid-
ed in the Supporting Information. Prior to 1945, the cases in these data were predominantly
paralytic [1,3]; however, during the later period of this study, nonparalytic cases comprised
more than 40% of reported cases in populous cities such as New York, Detroit, Kansas City,
and Sacramento [9]. In addition to polio case data, we obtained numbers of births by state
from 1931 onward from the US Vital Statistics and state population sizes from the Population
Distribution Branch of the US Census Bureau. Data from Vital Statistics are housed in the
CDC online repository: National Center for Health Statistics, Products, Vital Statistics. The
Census Bureau data were obtained from their Population Estimates Repository, historical data
pre-1980; data also provided in the Supporting Information. The polio dataset—with cases de-
tailed weekly—has now been independently digitized and is freely available and maintained
online through the University of Pittsburgh Project TYCHO. Birth data were not available for
Texas and South Dakota beginning in 1931 but began in 1932 and 1933, respectively. For ex-
ploratory analyses, we quantified the relationship between disease fadeouts and population
size. A threshold of 3 mo without a reported infection was chosen to define a fadeout [10]. The
portion of fadeout months was taken as the ratio of fadeout months to total months in Fig 1C.
To estimate spatial synchrony, we used the nonparametric spatial correlation function [11,12].
To measure the relative timing of polio epidemic peaks for each state and each year, the 1 yr
wavelet band phase angle was computed [13] and used to rank states earliest to latest based on
their epidemic peak timing.

Models
We constructed a dynamic stochastic model with components incorporating polio transmis-
sion, immunity, seasonality, and symptomatology along with empirical population sizes and
birth rates. Birth rates displayed prominent seasonal, secular, and geographical trends (Fig S4
in S1 Text) [14]. We utilized Partially Observed Markov Process (POMP) models, which are
suited for dealing with epidemiological data where the state variables (susceptible, infected,
and recovered individuals) were not observed in the data; rather, the infected individuals were
partially observed through clinical case reports. For our process models, we used seasonally-
forced stochastic monthly discrete-time SIR models, where transitions followed a Poisson pro-
cess. The infectious period was fixed at 1 mo, because multiple studies have found the duration
of shedding to be 3–4 wk [15]. Infection-derived immunity was assumed to be lifelong [16,17].
The models contained six classes of infants susceptible (SBi ) to infection. These infant classes
contained 0–1-month-olds, 1–2-month-olds, etc., up to 6-month-olds. Models had a single in-
fected class for infants (IB). The older age class, which contained individuals more than 6
months of age, had its own susceptible (S0) and infected class (I0). The onset of polio symptoms
ranges from 5–35 d postexposure, with a mean of 12 d [18]; therefore, we assumed reporting of
symptomatic infections occurred within the 1 mo infectious period. We modeled polio report-
ing explicitly and, consistent with clinical evidence, assumed that maternal antibodies pro-
tected from severe disease and resulted in unreported infant infections [19–23]. Thus, we
assumed that infections in individuals under 6 months of age were asymptomatic, and only in-
dividuals over 6 months of age could be symptomatic and reported as a clinical case. See model
schematic in Fig 2A. The force of infection was modeled as,

lt ¼ bt

IOt þ IBt
Nt

þ c
� �

εt: ð1Þ
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Fig 1. Spatiotemporal patterns in polio incidence. (A) Total monthly case reports, 1931–1954, color-coded by per capita incidence. (B) Log-transformed
per capita incidence by state, ranked top-to-bottom by population size. (C) Disease fadeout frequency as a function of state population size, during the pre-
baby boom and baby boom eras. The lines represent fitted negative exponential curves, which tended toward zero. (D) Pairwise epidemic synchrony
between states during the pre-baby boom and the baby boom. Mean and 95% bootstrap confidence envelope shown. (E, F) Relative timing of polio epidemic
peaks during the (E) pre-baby boom and (F) baby boom eras. Color indicates mean rank of each state across years; lower rank indicates earlier epidemic
peak. Below each map, relative timing is regressed on latitude. Lower latitude states had significantly earlier epidemic peaks. The data used to make this
figure can be found in S1 Data, S2 Data, and S3 Data.

doi:10.1371/journal.pbio.1002172.g001
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Fig 2. Model schematic and example likelihood profile. (A) Births enter the first susceptible infant class, SB
1 . Susceptible infants of age 0–6 mo, SB

1�6, are
susceptible to infection but are protected from symptomatic disease by maternal antibodies. Susceptible individuals over 6 months of age are in the SO class.
Infected infants and noninfant infections are in IB and IO, respectively. Infected individuals over 6 months of age, IO, can have symptomatic illness and
subsequently be reported as a clinical case with mean probability ρt. ρt is a composite parameter that represents the probability of symptoms and reporting.
(B) Likelihood profile for the report rate, ρt, of noninfant infections and the immigration rate, ψ, for the state of Wisconsin. Maximum likelihood estimate (MLE)
indicated by green asterisk. The report rate for Wisconsin was constant through time. The data used to make this figure can be found in S10 Data.

doi:10.1371/journal.pbio.1002172.g002
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The first term of the force of infection, bt
IOt þIBt
Nt

, represents transmission that occurred locally

by individuals infected in the state at time t. The second term, ψ, encompasses WPV infection
from external sources that were divorced from the local infection dynamics. ψ placed a lower
bound on the force of infection, allowing WPV to rebound in the face of local extinction. We
interpret ψ as indicating WPV imported from other geographic regions; however, it could also
be interpreted as representing a small number of individuals in the population that shed WPV
for an extended period or environmental sources helping WPV persist over the winter. The
transmission parameter, βt, was parameterized using a B-spline, providing it the flexibility to
have a constant or seasonal transmission rate. There was seasonality, but no interannual varia-
tion, in the transmission rate,

bt ¼ exp
X6

i¼1

qixit : ð2Þ

Here, each xit is a periodic B-spline basis with a 1 y period. The process noise, εt, was gamma

distributed with mean 1 and variance that scaled to account for both environmental and demo-
graphic stochasticity; refer to S1 Text, Equation S6 for further details. We assumed cases were
drawn from a rounded, left-censored normal distribution with a mean report rate of ρt and dis-
persion parameter τ,

casest ¼ roundðxtÞ; xtenormalðrtI
O
t ;tI

O
t Þ: ð3Þ

For calculating the likelihood, we used a binned-normal probability density. Full model details
are found in S1 Text, Section S1.3.

We fitted SIR models (one for each state in the US) to data independently using Maximiza-
tion by Iterated particle Filtering (MIF) in the R package pomp [24–26]. For each state, we esti-
mated 14–15 parameters. The parameters estimated were: 6 seasonal transmission parameters
(βi), 3 parameters accounting for process and measurement noise, 3 initial conditions for the
older age class, the external contribution to the force of infection (ψ), and 1–2 report rates (ρt).
MIF is a simulation-based likelihood method for parameter estimation. The basis of MIF is
particle filtering, which integrates state variables of a stochastic system and estimates the likeli-
hood for fixed parameters. Instead of fixing parameters, MIF varies them throughout the filter-
ing process and selectively propagates particles (i.e., parameter sets) that have the highest
likelihoods. By initializing MIF at a variety of points distributed across parameter space, we es-
timated the shape of the likelihood surface for each US state and identified the Maximum Like-
lihood parameter Estimates (MLEs). MIF was initialized from 1 million parameter sets for a
global search, followed by additional phases of increasingly localized searches, which included
profiling. In total, for each US state, MIF was initialized from more than 10,000 locations in pa-
rameter space to estimate the shape of the likelihood surface and identify the MLEs.

Prior to 1945, nonparalytic polio cases were rarely included in our data, but the reporting of
nonparalytic polio became increasingly common [1,3]. Thus, we tested an optional parameter
to account for increased representation of nonparalytic polio in clinical cases data. We estimat-
ed two report rates, one for the pre-baby boom era and another for the baby boom era, and
discriminated between models with and without time-varying reporting using Akaike Informa-
tion Criterion (AIC). Profiles were constructed for the two versions of the model, one in which
the report rate was constant through the entire time period and one in which the report rate
increased during the baby boom era. For each state, AIC was used to discriminate between con-
stant and time-varying reporting, and the MLEs were drawn from the appropriate two-dimen-
sional profile. Inference was performed using the data fromMay 1932 to January 1953, with
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the exception of South Dakota and Texas, for which the first data used were from May 1934,
and May 1935, respectively, i.e., May of the year following the first full year of available data,
the lag being needed to estimate initial conditions for the infant classes directly from birth
data. For model validation, the last two epidemic years were set aside for forecasting. Full de-
tails are provided in S1 Text, Section S1.4. Likelihood profiles were constructed for each US
state (example in Fig 2B, all others in Fig S9–S17 in S1 Text).

To quantify model–data agreement, we evaluated the accuracy of one-step-ahead predictions
for all 49 states, both for data used in model parameterization (Fig 3B) and for out-of-fit data
(Fig 3C). Because of correlations between states (which vary significantly in size and mean inci-
dence), simple linear regression is not appropriate for assessing model–data agreement; therefore,
generalized R2 was calculated to quantify the proportion of the variance explained by the model
relative to that explained by state alone. We calculated the generalized R2 for the one-step-ahead
predictions and out-of-fit predictions (See S1 Text, Section S2.2 for details). For Fig 4A and 4B,
infections were reconstructed using particle filtering means, and the reconstruction was limited
to data beginning in Jan 1935, because 1935 is the first full year for which we have the models pa-
rameterized for all states. Following model validation and infection reconstruction, the fitted
models were used as simulation tools to explore polio infection dynamics. In Fig 4D and 4E, we
used 500 simulations for each state from 1935 through 1954. In Fig 4D, we present the state-spe-
cific probability of extinction by examining 500 realizations of the fitted models. Specifically, we
calculated the annual probability of polio extirpation during the off-season (December–May)
and averaged across years. Similarly, in Fig 4E the minimum number of infections during each
off-season was based on 500 simulations. For each simulation, the annual minimum number of
infections was identified, and the median was taken across the 500 simulations and averaged
across years. In order to identify the covariates and epidemiological parameters that influenced
the number of trough infections—a measure of WPV persistence—we regressed trough infec-
tions with various covariates and parameters; results shown in Fig 5. In Fig 6B–6D, distributions
were generated by characterizing observations across 500 simulations per state. All simulations
and data used for producing the figures in this manuscript are available in S1 Data–S14 Data.

Results

Polio’s Seasonality and Latitudinal Gradient
In the mid-20th century, polio outbreaks in the US were strongly seasonal. Epidemic peaks typ-
ically occurred between August–October (Fig S1 in S1 Text); but the magnitude was highly var-
iable among states. In the transition from the pre-baby boom era (1931–1945) to the baby
boom (1946–1954), epidemics increased in size and became more regular (Fig 1A and 1B).
Winter troughs were frequently marked by consecutive months without reported cases. During
the baby boom, the frequency of these local fadeouts diminished (Fig 1C), while epidemics be-
came more tightly synchronized (Fig 1D). There was a striking latitudinal gradient in the tim-
ing of epidemics across the entire country (Fig 1E and 1F, Fig S1 in S1 Text). Two broad classes
of mechanisms can give rise to such a pattern. Seasonal movement of the pathogen from south-
ern populations can generate a traveling wave, which has previously been observed in measles
[27], dengue [28], influenza [29,30], and pertussis [31]. Alternatively, the pattern may indicate
latitudinal gradients in demographics (e.g., birth rates [14,32]) and/or environmental factors
associated with transmission.

Model Fit
Our extensive search of parameter space resulted in the MLEs for each parameter. To quantify
the shape of likelihood surface along two parameter dimensions we identified as important
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Fig 3. Fittedmodel and seasonality. (A) Observed data (black, shown for Wisconsin) and three stochastic simulations from the MLE (blue and green)
highlight that both observed and simulated polio epidemics have a large amount of interannual variation in size but a narrow seasonal window. Fitted and out-
of-fit data regions are indicated by blue and green, respectively. (B) Model validation showing observed log10(cases) versus expected log10(cases) for fitted
data and (C) out-of-fit predictions for all 49 states. Expected cases are one-step-ahead predictions from the fitted models. Insets show observed cases
(black) and expected cases (blue and green) for Wisconsin. Fitted data include May 1932–January 1953 for all states except South Dakota and Texas,
whose covariate data limited our inference to begin in May 1933 and 1934, respectively; out-of-fit data spanned January 1953–December 1954. The
generalized R2 = 0.76 for the fitted data and R2 = 0.61 for out-of-fit data, calculated on the natural scale, while data are plotted on a log scale for visualization.

Unraveling the Transmission Ecology of Polio

PLOS Biology | DOI:10.1371/journal.pbio.1002172 June 19, 2015 8 / 21



(D) Observed versus simulated mean rank of epidemic timing based on ten realizations of the fitted models. Inset shows the latitudinal gradient from one
simulation; colors match Fig 1E and 1F. (E) Monthly polio cases in Texas andWisconsin and (F) the MLE transmission rates. Epidemics occured earlier in
southern states than northern states because the seasonal peak in transmission occured earlier at lower latitudes. (G) MLEs of the seasonal transmission
rate for each state organized by geographic region; in our models, this represents the reproductive ratio. The reproductive ratio varies both seasonally and
geographically, with some states having a reproductive ratio less than 1 during the wintertime off-season. The data used to make this figure can be found in
S1 Data, S4 Data, S8 Data, S11 Data, and S12 Data.

doi:10.1371/journal.pbio.1002172.g003

Fig 4. Epidemic emergence and source-sink dynamics. (A) Annual number of infected individuals in contrast to the small number of reported cases.
Annual infections were reconstructed for the US using particle filtering means. The particle filtering mean is the expected value at time t, given the data up to
time t. (B) Annual infections in the US represented as the percent of the population. Reconstructed infections show an increase in infection incidence that
accompanies (C) the increase in the birth rate. (D) SimulatedWPV extinction probability. The probability of extinction measured as the mean annual
probability of observing an extinction during the off-season (December–May). “Sink" populations are those states with a high extinction probability. (E)
Simulated trough infections. Trough infections indicate the minimum number of infections during off-seasons. For each US state, the median was taken
across simulations and averaged across years. “Source" populations are those that maintain a high number of infections. Panels D–E were constructed
using the 500 stochastic simulations for each state. The data used to make this figure can be found in S1 Data, S4 Data, S5 Data, S6 Data, S7 Data, and S9
Data.

doi:10.1371/journal.pbio.1002172.g004
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Fig 5. Source-sink population predictors. (A) Linear regression of state population size versus simulated trough infections, both on a log10 scale. Trough
infections are those shown in Fig 4E. (B) Residuals from the regression of population size versus trough infections were used as the dependent variable in
the multiple regression model, where the predictors were: the state’s seasonal minimum reproductive ratio, the immigration rate, and the seasonal amplitude
of the reproductive ratio, measured as half the peak–trough difference in the reproductive ratio. Plot shows on the y-axis, the residuals, ri, from panel A, along

with the prediction of the residuals based on the multiple regression ri ¼ b0 þ b1minðRi
tÞ þ b2

maxðRi
t Þ�minðRi

t Þ
2

þ b3ci, where Ri
t is the reproductive ratio, ψi is the

immigration rate, and i indicates the state. Taken together, panels A and B demonstrate that the predictors of a source versus sink are: the population size,
the minimum reproductive ratio, the amplitude of the reproductive ratio, and the immigration rate. (C) Map of the seasonal minimum reproductive ratio
showing geographic clustering. (D) The residuals, ri, versus the seasonal amplitude of the reproductive ratio (i.e., the transmission amplitude), point size and
color indicate the immigration rate, ψi. (E) The residuals, ri, versus the seasonal minimum reproductive ratio, point size and color indicate the immigration
rate, ψi. The data used to make this figure can be found in S3 Data, S4 Data, S5 Data, S6 Data, S7 Data, and S8 Data.

doi:10.1371/journal.pbio.1002172.g005
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(i.e., the report rate, ρt, and the external contribution to the force of infection, ψ), we con-
structed two-dimensional likelihood profiles for each US state. Two-dimensional profiles, by
definition, have fixed parameter values along two dimensions of parameter space, while the
likelihood is maximized along all other parameter dimensions. There were 12 states that had
constant reporting (i.e., the same report rate during the pre-baby boom and baby boom era).
Fig 3A illustrates that the fitted models generate epidemic trajectories that display: (1) the

Fig 6. Persistencemechanisms. (A) Example of simulated infections and cases for Wisconsin. Months absent of reported cases are indicated in green.
During periods when the disease is absent, WPV infections are often silently transmitted in the population. In this simulation, there were two instances
(indicated by arrows) when the local chain of transmission was broken andWPV went locally extinct but quickly rebounded due to reintroduction. This
example illustrates the two polio persistence mechanisms observed throughout the US, which are (i) local WPV persistence via unbroken chains of
transmission and (ii) WPV extinction and reintroduction. (B) Distributions of mean monthly silent infections during periods absent of reported disease. (C)
Distributions of cumulative silent infections during periods absent of disease. Distributions in B and C are 10%–90% quantiles and the median, based on 500
simulations per state. Silent infections are those that occur in the absence of reported cases and highlight the unobservable dynamics of polio. (D) Simulated
cases surroundingWPV extinction events. Distributions show 10%–90% quantiles and the median number of cases observed up to 6 mo preceding and 6
mo following an extinction event. Generally, fewer than 5 cases/mo are reported 2 mo to either side of an extinction event. However, it is unclear whether 5
mo, each with less than 5 cases, is a reliable signal of extinction. The data used to make this figure can be found in S4 Data, S5 Data, S6 Data, S7 Data, S13
Data, and S14 Data.

doi:10.1371/journal.pbio.1002172.g006
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seasonal characteristics of polio and (2) the large amount of interannual variation in epidemic
size. Importantly, the fitted models faithfully reproduce observed dynamics. In particular, the
seasonality, epidemic shape, interannual variability in epidemic magnitude, and the increase in
incidence during the baby boom are captured by the models. Model fit was formally validated
using one-step-ahead predictions for all 49 states (Fig 3B) and out-of-fit predictions (Fig 3C),
which indicate good agreement between models and data. Furthermore, geographical structure
in the timing of observed epidemics is captured by the fitted models (Fig 3D). State-specific ex-
amples of one-step-ahead predictions and out-of-fit predictions are shown in Fig S2 and S3 in
S1 Text.

Explaining the Latitudinal Gradient
We hypothesized that the latitudinal gradient in epidemic timing was driven by either: (1) geo-
graphic variation in transmission because of environmental factors that modulated transmis-
sion, (2) the geographic trend in birth seasonality in the US (detailed in [14]), or (3) the
movement of pathogen from south to north.

In support of hypothesis 1 (i.e., environmental factors), we identified a spatial pattern in the
phase of seasonal transmission (Fig 3E–3G, Fig S7 in S1 Text). States with earlier epidemics
had an earlier peak in the seasonal transmission rate in the fitted models. Interestingly, because
of polio’s long infectious period, peaks in transmission preceded incidence peaks by 1–2 mo.
States varied geographically not only in the timing of the transmission peak but also in the win-
tertime transmission trough depth and trough duration (Fig 3G).

Epidemiological theory indicates that birth seasonality can have important dynamical con-
sequences for childhood diseases [14,33,34]. To test hypothesis 2 (i.e., birth seasonality), we
carried out a comparison of the fitted models with and without birth seasonality. Simulations
of both models expressed the latitudinal gradient (Fig S5 in S1 Text). Therefore, birth seasonal-
ity is not necessary to explain the polio gradient because geographic variation in transmission
is sufficient. We attribute the negligible effect of birth seasonality on polio incidence to the low
amplitude of birth seasonality, which was approximately 10% in the US at this time.

We suggest that hypothesis 3 (i.e., pathogen movement) is an unlikely explanation of the lat-
itudinal gradient. If the latitudinal gradient were a wave of pathogen movement, it would re-
quire a high wave speed, which we see as incompatible with transport of the pathogen across
the landscape. The pattern in Fig 1E and 1F corresponds to a wave traveling approximately
1,200 km/mo. For comparison, waves in pertussis have been estimated to travel 110–320 km/
mo [31]; waves in dengue appear to move 150 km/mo [28]; and the measles wave speed in the
United Kingdom was estimated at 20 km/mo [27]. A polio wave that is 10-fold faster than per-
tussis in the US is difficult to justify and unnecessary, because our fitted models support hy-
pothesis 1. Thus, we have determined that polio’s latitudinal gradient is driven by geographic
variation in transmission; we are left with an unidentified seasonal driver that modulates
transmission.

While geographical variation in birth seasonality was insufficient to explain the latitudinal
gradient seen in epidemic timing, birth seasonality had a small but observable effect on the sim-
ulated incidence of infant infections. To quantify the influence of birth seasonality on infant in-
fections, we compared simulations of the fitted models to simulations for which seasonal
fluctuations in births were removed. In the presence of birth seasonality, infant infection inci-
dence was often higher (Fig S6 in S1 Text); however, this did not affect the incidence of disease
directly, and no indirect effect was observed.
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Symptomatology
It is well known that AFP incidence represents a small fraction of true WPV prevalence
[35,36]. Reassuringly, our independent estimates from the incidence data agree: our MLEs in-
dicate that typically less than 1% of polio infections were reported. We assumed that infected
infants under 6 months of age were asymptomatic, due to protection by polio-specific maternal
antibodies. The report rate for individuals not maternally-protected was 0.75% (averaged
across states) in the pre-baby boom era and rose to 1.4% in the baby boom era, with consider-
able variation across states (Fig S8 in S1 Text). Overall, we estimate that there were often over 1
million annual infections in the US; though only 2,000–57,000 cases were reported every year
(Fig 4A). Our results are in line with a 1948 serology-based study in North Carolina, which es-
timated 62–175 subclinical polio infections per paralytic case [37].

Spatiotemporal Heterogeneity in the Reproductive Ratio
The fitted models revealed vast seasonal and spatial heterogeneity in WPV’s reproductive ratio.
Fig 3G shows large seasonal fluctuations in the reproductive ratio within each state. Several
states maintained a reproductive ratio above 1 throughout the year. In contrast, 28 states had
reproductive ratios that fell below 1 for 4–5 mo from December–April.

States in the Northeast and Midwest had extreme seasonal variation in their reproductive
ratio. Deep winter troughs in transmission in the Northeast and Midwest often had several
consecutive months with a reproductive ratio below 1. In contrast, at the peak of transmission
in June and July, these same states had a reproductive ratio above 20. Interestingly, each geo-
graphic region other than the Midwest had at least one state that maintained a reproductive
number above 1 throughout the year. Southern states typically maintained an intermediate
transmission rate throughout the year.

Epidemic Emergence
Our analyses provide a new perspective on polio’s historical emergence. Commonly described
as a “disease of development,” polio’s emergence has been ascribed to improved hygiene that re-
duced transmission and pushed the burden of infection onto children more susceptible to para-
lytic polio. This explanation requires that reduced transmission raised the mean age of infection
and therefore the risk of AFP [1]. Our results suggest the marked increase in polio incidence
from the 1930s to the 1950s was a straightforward consequence of increased birth rates (Fig 4B
and 4C), and that hygiene effects on transmission are not required to explain polio’s rise to epi-
demic levels. Since polio’s epidemic emergence was captured in the models as a consequence of
the changing birth rate, we did not explicitly test reductions in the transmission rate as an addi-
tional contributor to epidemic size, and we cannot completely rule out trends in transmission
as a contributing factor. While the “disease of development” explanation has also been ques-
tioned on other grounds [22], changes in hygiene and sanitation could have contributed to the
initial emergence of polio, which occurred from the late 1800s to the early 20th century.

WPV Persistence
Polio cases were consistently observed throughout the US during the period of this study. We
hypothesized: (a) WPV persisted locally in each state, or alternatively, (b) WPV regularly went
locally extinct and reinvaded from elsewhere. Due to polio’s high asymptomatic infection ratio,
distinguishing between these two mechanisms of persistence cannot be done using reported
cases alone, since WPV may be present during the off-season even in the absence of clinical
cases. In order to determine which of these two persistence mechanisms was the likely
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explanation of continued infection, we simulated the fitted models and characterized the dy-
namics of the process models (i.e., the unobserved infection dynamics rather than the observ-
able disease dynamics). We focused on determining whether infections persisted during the
wintertime off-season or if extinction and reinvasion occurred. In particular, we assessed (i)
the average annual probability of an extinction event in each state, which results from dimin-
ished local transmission and (ii) the annual minimum number of infections. Fig 4D and 4E de-
pict the geographic variation in these quantities. Some states experienced frequent local
extinction during the off-season, followed by recolonization; we consider these “sink” popula-
tions. In contrast to sink states, a few states maintained infections year-round; these we define
as “source” populations. The majority of states, however, were neither consistently sources nor
sinks, because even sink states had frequent overwintering of WPV. The fitted models suggest
that WPV underwent extinction and recolonization in the classic metapopulation sense.

Source-Sink Population Predictors
We explored characteristics that contributed to states having been WPV sources versus sinks.
We used simulated trough infections, shown in Fig 4E, as the indicator of a source versus a
sink. States that maintained a high number of trough infections enabled WPV to persist
through the off-season; whereas states with a low number of trough infections were likely to
have experienced regular WPV extinction. State population size accounted for 65% of the vari-
ation in the number of trough infections (Fig 5A). We used multiple regression models to de-
termine whether the (i) mean birth rate, (ii) amplitude of birth seasonality, (iii) immigration
rate, (iv) seasonal minimum reproductive ratio, and/or (v) seasonal amplitude of the reproduc-
tive ratio explained the residual variation in trough infections, after controlling for population
size. The mean birth rate and amplitude of birth seasonality had a negligible impact on the re-
sidual variation in trough infections; therefore, they were removed from the multiple regression
model. A multiple regression model with the immigration rate, seasonal minimum reproduc-
tive ratio, and the seasonal amplitude of the reproductive ratio explained 56% of the residual
variation in trough infections (Fig 5B). Interestingly, even though there were no clear geo-
graphic patterns of source-versus-sink localization (Fig 4D and 4E), there was strong geograph-
ic clustering in the minimum reproductive ratio (Fig 5C), demonstrating that even though
source-sink predictors display geographic clustering, the combination of predictors can gener-
ate a source-sink mosaic. We found that after accounting for population size, states with a
higher immigration rate had more trough infections (Fig 5D and 5E). States with a higher
transmission amplitude, however, had fewer trough infections; we interpret this as being due to
susceptible depletion followed by deep infection troughs in states with a high transmission am-
plitude (Fig 5D). The minimum reproductive ratio had a positive relationship with trough in-
fections; states that maintained a reproductive ratio above 1 during the off-season tended to
have more trough infections during the off-season (Fig 5E).

Silent Infections
Disease eradication programs face the significant challenge of verifying success in the presence
of asymptomatic infections. Typically, a criterion for success is the absence of disease for an ex-
tended period; however, the utility of this criterion is questioned when the symptomatic cases
reported are only the tip of the iceberg in terms of infection. Using our fitted models, we ex-
plored the reliability of absence-of-disease as an indicator of WPV extinction. Because of wide-
spread subclinical infections, there was a stark contrast between the simulated number of polio
infections and clinical cases (Fig 4A). This contrast (i.e., the disconnect between infections and
clinical cases), can lead to epidemiological scenarios where absence-of-disease is uninformative.
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In our models, WPV persistence was achieved by one of two mechanisms: (1) local unbroken
chains of transmission, or (2) local extinction followed by rapid reintroduction. For each of
these two mechanisms, we found that clinical case data can be misleading, as outlined in
Table 1. For instance, if WPV circulated at low levels of infection, extended absence of clinical
cases could lead to the conclusion that WPV was locally eradicated. Similarly, if local extinction
ofWPV occurred, and was quickly followed by reintroduction and clinical cases, local extinction
could go unrecognized, potentially misdirecting targets for control (e.g., to focus on sink popula-
tions rather than source populations).

By simulating our fitted models, we identified extended periods absent of disease and used
these periods to quantify the number of silent infections (Fig 6B and 6C). We observed that if
infections were maintained at relatively low numbers (i.e., under 100 infections per month),
then WPV could circulate silently for over 30 months (Fig 6B). The silent circulation of WPV
can result in thousands of infections before a single reported case is observed (Fig 6C). Our
models assumed homogeneous mixing within each US state, and it is important to recognize
that different mixing patterns could increase or decrease the lengths of chains of silent trans-
mission. Because of the silent circulation of polio, it is difficult—and perhaps indefensible—to
use clinical case data (i.e., without fitted models) to evaluate WPV persistence. We simulated
the fitted models to quantify the distribution of cases observed during periods with WPV ex-
tinction (Fig 6D). The distribution of cases surrounding WPV extinctions is fairly symmetric
because of the reintroduction of WPV following extinction. Therefore, we conclude that, in the
face of rapid reintroduction following WPV extinction, case data cannot be used to identify ex-
tinction events. Though it is desirable to use fitted models to identify signals of extinction, and
apply this knowledge to case data, it would require extensive evaluation of silent circulation.

Discussion
This work sheds light on the fundamental ecology of WPV. Latitudinal gradients have been
identified in several acute viral infections, including influenza, Respiratory Syncytial Virus
(RSV), rotavirus, and now polio [38,39]. Our results indicate that the observed latitudinal gra-
dient in the timing of polio epidemics is driven by a latitudinal gradient in demographic and/or
environmental factors associated with transmission. Determining which mechanism is respon-
sible has implications for control and surveillance efforts. Specifically, knowledge of the season-
al driver could allow for regionally-timed national immunization campaigns or the ability to
forecast changes in epidemic seasonality.

Our identification of birth rate as a driver of polio’s epidemic emergence during the baby
boom of the 1940s and 1950s is yet another demonstration [40,41] of the need for full integra-
tion of demography into the study of childhood infectious disease epidemiology. The rate of

Table 1. Four scenarios for the relationship betweenWPV infections and clinical disease.

Local Persistence of WPV Local Extinction and Reintroduction

Extended absence
of disease

Disease data are uninformative, and potentially misleading, because
WPV is circulating silently via subclinical infections

Disease data reflect that WPV goes extinct and is
reintroduced

Disease observed
regularly

Disease data reflect that WPV persists and transmission is ongoing Disease data are uninformative because they mask that
WPV goes extinct and is reintroduced

Local persistence of polio—within a state, region, or country—occurs when WPV overwinters during the off-season and the transmission chain is

unbroken year-round. In contrast, local extinction and reintroduction occurs when WPV goes extinct during the off-season, breaking the chain of

transmission; a new transmission chain begins when WPV is reintroduced from elsewhere. Discriminating among these scenarios is necessary for

planning eradication strategies in endemic regions.

doi:10.1371/journal.pbio.1002172.t001
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susceptible recruitment has long been known to control the magnitude and frequency of epi-
demics of fully immunizing childhood diseases [40,42]. Today, in an era of human population
expansion and emerging infectious diseases, we are reminded of the importance of characteriz-
ing changes in host population ecology. As a result of limits of our demographic data, we were
unable to address the early emergence phase of polio from the late 1800s through the 1920s.
Rather, we focused on the later phase of emergence in the US, as the disease transitioned from
small epidemics in the 1930s and early 1940s to large epidemics during the baby boom era.
Though there were increases in the report rate, which contributed to the trend in observed
cases, we also discovered an increase in the incidence of infection. Importantly, the increase in
infection incidence closely tracked birth rates in the mid-1900s.

To the extent that our results bear on contemporary polio ecology, the identification of
source-sink dynamics in the US suggests that successful local elimination of polio in a sink
population is inconsequential in the presence of a source population. This prediction has un-
fortunately been repeatedly borne out in current epidemics. Regional elimination of polio has
been followed by reintroduction from endemic countries, such as the 2013 outbreak in Somalia,
Ethiopia, and Kenya, with WPV introduced from Nigeria and repeat reinfection of Afghanistan
from Pakistan [43]. Moreover, the metapopulation structure of WPV demonstrates that pre-
venting emigration of WPV from source populations—which may be highly localized—is a re-
quirement for efficient control.

We estimate that over 99% of infections were subclinical, with the reporting of total infec-
tions regularly below 1%. Importantly, subclinical infections are likely more common today
than in the period we studied. This is because, first, both nonparalytic and AFP cases were re-
ported in the US, whilst only AFP cases are currently reported. Second, our models were fit to
data during the vaccine-free period of polio endemicity; therefore, infection incidence was ele-
vated each summer, allowing the number of infections to grow sufficiently large to result in a
high probability of clinical infections. In contrast, today, as polio’s reproductive number ap-
proaches Rt = 1 in highly vaccinated endemic countries, WPV can circulate at levels below the
level needed for likely clinical observation. The recovery of environmental WPV isolates in Is-
rael in the complete absence of AFP cases supports this expectation [43]. Furthermore, Fig 6B
demonstrates that polio may circulate silently for extended periods (i.e., longer than 3 y) if the
number of infections remains below the threshold for likely detection. Two years of silent
WPV circulation has been confirmed: The outbreak in Central Africa detected in October 2013
was traced back to WPV circulation in Chad during 2011 [44]. Populations expected to have a
small number of monthly infections in the presence of WPV—because of their demography or
because they are highly vaccinated—would therefore be desirable targets for intense environ-
mental surveillance. In terms of information gained, environmental surveillance is a powerful
tool for identifying silent transmission in locations where polio would otherwise go undetected.
In Pakistan, the level of environmental surveillance has increased since 2011, and WPV has
consistently been detected, even in the absence of AFP cases [45].

In the absence of validated transmission models, case data are relied upon to determine
whether a pathogen has gone locally extinct and estimate the critical community size required
for pathogen persistence. In light of polio’s propensity for silent circulation, we conclude that
AFP data can be misleading; this conclusion extends to any communicable disease in which
clinical cases represent a small fraction of infections. Extended periods absent of reported cases
can mask infections circulating at levels below the threshold for likely reporting. We therefore
advocate fitting transmission models to contemporary data to draw inferences regarding ex-
tinction. Since infection can persist even in the extended absence of reported cases, knowledge
of the local infection dynamics could reveal invaluable epidemiological information. Transmis-
sion models fit to endemic countries (i.e., Pakistan, Afghanistan, and Nigeria) could be used to
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identify how demographic and environmental factors interact with vaccine coverage to deter-
mine regional WPV persistence. In addition to coupling case data with transmission models
for endemic countries, another useful extension would be to combine genetic data fromWPV
isolates with transmission models to further distinguish between sustained local transmission
and imported infection. Genetic studies have found reductions in WPV genetic diversity in Af-
ghanistan, suggesting local extinction of someWPV strains [6].

Vaccination campaigns might take further advantage of the seasonality and geographic clus-
tering of WPV’s reproductive ratio. Low-transmission-season vaccination campaigns have been
utilized by the Global Polio Eradication Initiative (GPEI) [6]. We found that the “low season” re-
productive ratio can have geographic clusters where the reproductive ratio is greater than 1,
which, if identified in the contemporary setting, might be useful targets for intense low season
vaccination campaigns. Additionally, if the: (1) seasonal reproductive ratio, (2) birth seasonality,
and (3) vaccine coverage are quantified for endemic countries, vaccination campaigns could use
this information to determine the regionally optimal timing for national vaccination days. These
three quantities could be used to estimate the seasonal effective reproductive number and evaluate
alternative vaccination strategies. For instance, one strategy might be to extend the duration of
the wintertime trough (i.e., by generating or extending the window during which the effective re-
productive number is below 1), which may pushWPV to extinction. Alternative strategies might
be to vaccinate in the months prior to the seasonal peak in transmission or six months following
the peak in births. In the past, mass OPV campaigns held during the low transmission season
were deemed “most effective" [46], but it is unclear to what extent this strategy is used today.

Historical data, particularly in pre-vaccine periods, offer a unique glimpse into the ecology
of infection, without a high degree of human intervention. Historical data offer several advan-
tages. First, reporting rates from historical eras are informative because they are reflective of (a)
the symptomatology of infection and (b) clinical diagnosis of symptomatic infection. Second, it
can be difficult to infer unobserved infection dynamics using data for diseases that are near
their eradication or elimination threshold. This is because the parameterization of transmission
models with data containing few cases—and lacking recurrent epidemics—can result in ambig-
uous parameter estimates. The recurrent nature of historical epidemics gives us the unique op-
portunity to unravel disease-specific transmission ecology. Once the baseline transmission
ecology is known, it can be coupled with data from contemporary periods to test hypotheses re-
garding modern day epidemics and their geographic coupling.

Our analyses demonstrate the power of an approach focused on coupling mechanistic trans-
mission models with long-term, spatially replicated longitudinal incidence data. Specifically,
we document intriguing continental-scale gradients in polio seasonality, which we suggest are
explained by latitudinal gradients in local transmission rates. We also show that the historical
emergence of epidemic polio was largely a consequence of demographic trends rather than im-
provements in hygiene. Importantly, we demonstrate that historical polio persistence in the US
was driven by an ever-changing mosaic of source-sink populations. Finally, we found that even
protracted AFP-free periods do not reliably indicate WPV extinction. Because of the difficulty
in establishing fundamental aspects of WPV transmission in heavily vaccinated populations, it
is our hope that these insights will act as a baseline for understanding modern polio transmis-
sion and disentangling vaccine effects from the natural ecology of the disease.

Supporting Information
S1 Text. Supporting information. File containing model details, extended inference methods,
and results. S1 Text includes multiple figures referenced in the main text.
(PDF)
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S1 Data. Polio data. File containing monthly polio cases per state in the US from January
1931–December 1954, digitized from the US Morbidity and Mortality Weekly Reports. Provid-
ed by the CDC.
(CSV)

S2 Data. Coordinates. File containing latitude and longitude for the state population centers
based off of the year 2000 US census.
(CSV)

S3 Data. Population data. File containing annual estimates of the population size for each
state in the US from 1910–2008; these are the intercensal estimates by state from the US Census
Bureau.
(CSV)

S4 Data. Simulated infections. File containing 125 stochastic realizations of monthly infec-
tions (including both infant and noninfant infections) per state. Combined, S4–S7 Data con-
tain 500 unique stochastic simulations per state.
(CSV)

S5 Data. Simulated infections. File containing 125 stochastic realizations of monthly infec-
tions (including both infant and noninfant infections) per state. Combined, S4–S7 Data con-
tain 500 unique stochastic simulations per state.
(CSV)

S6 Data. Simulated infections. File containing 125 stochastic realizations of monthly infec-
tions (including both infant and noninfant infections) per state. Combined, S4–S7 Data con-
tain 500 unique stochastic simulations per state.
(CSV)

S7 Data. Simulated infections. File containing 125 stochastic realizations of monthly infec-
tions (including both infant and noninfant infections) per state. Combined, S4–S7 Data con-
tain 500 unique stochastic simulations per state.
(CSV)

S8 Data. Expected infections and seasonal transmission. File containing the monthly ex-
pected number of infections per state (i.e., particle filtering mean), along with the MLEs of the
seasonal transmission rate, which in our model is also the reproductive ratio.
(CSV)

S9 Data. Reconstructed infections. File containing reconstructed annual infections based on
particle filtering means, along with data on the number of reported cases, births, and the popu-
lation size. Infections and associated data are for the contiguous states and the District of Co-
lumbia.
(CSV)

S10 Data. Profile data. File containing parameter sets from the Wisconsin likelihood profile.
The profiled parameters are the report rate (ρ) and immigration rate (ψ). Time units are
monthly and the parameters are on the natural scale, with the exception of the B-spline coeffi-
cients.
(CSV)

S11 Data. Model validation data. File containing one-step-ahead predictions of the number of
monthly cases (i.e., predicted cases) for the fitted region of the data.
(CSV)
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S12 Data. Out-of-fit predictions data. File containing one-step-ahead predictions of the num-
ber of monthly cases (i.e., predicted cases) for the out-of-fit region of the data.
(CSV)

S13 Data. Simulated cases. File containing 250 stochastic realizations of monthly reported
cases per state. The simulated cases in S13 Data are from the same simulations as infections in
S4–S5 Data. Note, only noninfant infections are assumed to be symptomatic and reportable,
and S4–S5 Data contain both infant and noninfant infections.
(CSV)

S14 Data. Simulated cases. File containing 250 stochastic realizations of monthly reported
cases per state. The simulated cases in S14 Data are from the same simulations as infections in
S6–S7 Data. Note, only noninfant infections are assumed to be symptomatic and reportable,
and S6–S7 Data contain both infant and noninfant infections.
(CSV)
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