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The impact of past vaccination coverage and immunity
on pertussis resurgence
Matthieu Domenech de Cellès,1,2* Felicia M. G. Magpantay,1,3

Aaron A. King,1,4,5† Pejman Rohani6,7,8†

The resurgence of pertussis over the past decades has resulted in incidence levels not witnessed in the United States
since the 1950s. The underlying causes have been the subject of much speculation, with particular attention paid to
the shortcomings of the latest generation of vaccines. We formulated transmission models comprising competing
hypotheses regarding vaccine failure and challenged them to explain 16 years of highly resolved incidence data
fromMassachusetts, United States. Our results suggest that the resurgenceof pertussis is a predictable consequence
of incomplete historical coverage with an imperfect vaccine that confers slowly waning immunity. We found evi-
dence that the vaccine itself is effective at reducing overall transmission, yet that routine vaccination alonewould be
insufficient for elimination of the disease. Our results indicated that the core transmission group is schoolchildren.
Therefore, efforts aimed at curtailing transmission in the population at large, and especially in vulnerable infants, are
more likely to succeed if targeted at schoolchildren, rather than adults.
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INTRODUCTION
Pertussis, the highly transmissible respiratory infection caused primarily
by the bacteriumBordetella pertussis (1), has unexpectedly reemerged in
several countries with histories of sustained high vaccine coverage (2, 3).
Responsible for roughly 195,000 infant mortalities annually, mostly in
the developing world (4, 5), the recent spate of infant deaths in indus-
trialized countries, such as the United States and the United Kingdom
(6, 7), has emphasized the growing threat. In the United States, routine
vaccination beginning in the 1940s led to a 100-fold reduction in per-
tussis incidence, and the disease appeared to be on the road to elim-
ination (8). However, since the mid-1970s, the disease has made a
surprising comeback (9), steadily increasing in incidence to 15.1 cases
per 100,000 in 2012 (10). The latest U.S. Centers for Disease Control
and Prevention estimates indicate that 20,762 individuals contracted
the disease in 2015, including 2709 cases and three deaths in infants
under 1 year of age (11), the populationmost at risk of severe complica-
tions (12). A variety of hypothetical explanations for the resurgence
have been advanced, but its causes remain the source of much conten-
tion (2, 13, 14), reflecting long-acknowledged but poorly understood
complexities of pertussis transmission and immunity (15). Increasingly,
attention has focused on vaccine immunity as a driver of disease sever-
ity, transmission, and pathogen evolution (16–22).

We sought to elucidate the nature of vaccine failure and quantify
vaccine protection by harnessing the information present in epidemio-
logical time series. Specifically, we formulated mechanistic models
expressing the full range of hypothetical vaccine failure modes and
fitted these to 16 years’worth of age-stratified incidence data provided
by the Massachusetts Department of Public Health (MDPH) (Fig. 1A
and table S1). We examined three, not mutually exclusive, potential
modes of failure (23–25): (i) Primary vaccine failure is the failure of
the vaccine to “take” in some recipients; that is, some fraction of those
vaccinated receive full protection, whereas the remainder receive
none. (ii) Failure in duration is the waning of vaccine-induced protec-
tion with time (26). (iii) Failure in degree of protection, also known as
vaccine “leakiness,” occurs when vaccine-induced protection is im-
perfect (22, 27), potentially due to antigenic evolution in the pathogen.
We adopted the epidemiological structure proposed in (28) (fig. S1),
which explicitly allows infections in naïve and vaccinated hosts to dif-
fer both in transmissibility and in disease severity (and hence observ-
ability). We additionally incorporated age-specific immunization
and demographic data (figs. S2 and S3), age-specific contact network
information [fig. S4, (29)], and age-specific reporting efficiencies [table
S2, (30)] into the model.
RESULTS
Incidence data recapitulate reemergence of pertussis
in Massachusetts
A timeline of pertussis surveillance in Massachusetts is presented in
table S1. Notably, serological testing became available in 1987 for in-
dividuals ≥11 years of age, leading to an immediate and substantial
increase in the number of reported cases in individuals 11 to 19 and
≥20 years of age (31). By contrast, the introduction of polymerase
chain reaction (PCR) testing in January 2005 did not appear to have
an immediate impact, with no noticeable increase in the number of
reports in 2005 (fig. S5). In 2006, a reduced-dose booster of acellular
pertussis vaccine combined with tetanus and diphtheria toxoids (Tdap)
was recommended for adolescents 11 to 18 years old (32). We there-
fore restricted our analysis to data during 1990–2005 (2005 included,
ny = 16 years of monthly data), a period of stable surveillance before
the introduction of Tdap.

The age-specific incidence records from the active surveillance
program inMassachusetts during that period display the pattern typical
of pertussis resurgence (Fig. 1 and figs. S5 to S7) (31, 33). In particular,
epidemics have increased in both size and frequency between 1990 and
2005, with a fourfold rise in overall incidence (a relative increase of 9.7%
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per year; table S3). Adolescents 10 to 20 years old accounted for more
than 50% of these cases (Fig. 1, B and C, and table S3). The trends in
adults were even more pronounced: Cases in those 20 years of age and
older increasedmore than 16%per year andmore than 10-fold over the
15-year interval. By contrast, trends were less obvious in children under
the age of 10, and no increase was observed in infants under 1 year of
age, despite the persistently high incidence rate in that age group (aver-
age, 57 cases per 100,000 per year). These trends continue the pattern of
resurgence that began in the mid-1970s (9), and no effects of the switch
from whole-cell to acellular vaccines in 1996 are immediately evident.
The resulting age-specific incidence profile presents two peaks of com-
parable magnitude in infants and in adolescents (Fig. 1B). Conclusions
regarding age-specific disease burden, however, must take into account
the differential sensitivities of ascertainment methods used in different
age groups. Specifically, the serological enzyme-linked immunosorbent
assay used to identify infections in adolescents and adults is considera-
bly more sensitive, and less specific, than the culture-based ascertain-
ment methods used in children under the age of 11 (31).

Resurgence of pertussis is linked to incomplete historical
coverage and slowly waning vaccine immunity
Using these data and likelihood-based inference methods [(34–37),
Model formulation in Materials and Methods, and tables S4 and S5],
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
we weighed the evidence for four alternative hypotheses of vaccine im-
munity after initial vaccine take: (i) Vaccine protection is perfect in both
duration and degree (“no lossmodel”), (ii) vaccine-derived immunity is
perfect in degree but transient (“waning model”), (iii) protection is per-
manent but imperfect in degree (“leaky model”), and (iv) vaccine im-
munity is imperfect in both degree and duration (“waning + leaky
model”). In each of these, we allowed some primary vaccine failure (that
is, failure in take) to be estimated along with the other parameters. We
assumed that infection-derived immunity is perfect. The waningmodel
received substantially higher support [as quantified by the Akaike
Information Criterion (AIC)] than other models (DAIC > 140; Table 1,
see also tables S6 and S7 and fig. S8). The best-fitting model predicts a
primary vaccine failure probability of 4% [95% confidence interval
(CI), 1 to 8%]. Under this model, vaccine protection wanes slowly on
average; however, there is substantial variability among individuals.
Specifically, there is a 10% risk (CI, 3 to 19%) of protection waning to
zero within 10 years of completing routine vaccination and a 55%
chance that protection remains lifelong. The results further suggest that
post-vaccine infections (defined as infections in individuals in whom
the vaccine took butwhose immunity subsequentlywaned) are as trans-
missible as, but less visible than, naïve infections [relative transmissibil-
ity, 0.99 (CI, 0.40 to 1.00); relative observability, 0.39 (CI, 0.19 to 1.00)].
This finding is consistent with evidence from animal challenge studies
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Fig. 1. Pertussis incidence data in Massachusetts, United States, 1990–2005. The figure displays temporal trends of age-specific pertussis incidence data. (A) Monthly
case reports by age group. (B) Annual case reports (per 100,000) by age group. The black line represents the overall incidence. (C) Case fraction among age groups.
(D) Cumulative case fraction among age groups. For each age group on the x axis, the corresponding value on the y axis represents the fraction of cases of lower or
equal age. Each line represents a distinct calendar year.
2 of 11

http://stm.sciencemag.org/


SC I ENCE TRANS LAT IONAL MED I C I N E | R E S EARCH ART I C L E

 by guest on M
arch 28, 2018

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

(21, 22), although wide confidence intervals preclude definitive
conclusions on this question. Also consistent with previous evidence
(31), we estimated high detection rates of pertussis in adolescents and
in adults, with 24% (CI, 10 to 66%) of post-vaccination infections re-
ported. Although the waning + leaky model allows for a mixture of
all three vaccine failure modes, its leakiness parameter is estimated at
0 (CI, 0 to 3%), and its waning rate is identical to that of the waning
model. Thus, the additional complexity of this model is not supported
by the data (DAIC = −2; Table 1).

To quantify vaccine effectiveness in reducing transmission, we com-
puted φ, the vaccine impact (28, 38), a population-wide summary mea-
sure accounting for all modes of vaccine failure. The estimated vaccine
impact was 0.85 (CI, 0.75 to 0.93) for the waning model and similarly
high for the leakymodel [0.90 (CI, 0.81 to 0.95); leakiness, 0.06 (CI, 0.02
to 0.14); primary vaccine failure rate, 0.06 (CI, 0.02 to 0.14)] and the no-
loss model [0.85 (CI, 0.70 to 0.95)]. The vaccine impact modifies the
theoretical vaccination effort required for eradication according to
1
φ ð1� 1

R0
Þ, where R0 is the basic reproductive ratio (39). One of our key

results, therefore, is that despite the effectiveness of the vaccine, erad-
ication via routine immunization alone is not possible given the relatively
large estimated value ofR0 [10.1 (CI, 6.5 to 17.2)]. The best-fittingmodel
and parameter estimates are similar in both deterministic and stochastic
formulations of the model (tables S6 and S7). The robustness of esti-
mates to variation in model structure strengthens the evidence for the
effectiveness of vaccination in reducing pertussis transmission.

Protection against pertussis wanes slowly irrespective of
vaccine type
To further assess the robustness of the model conclusions, we fitted ad-
ditional models incorporating different assumptions (sensitivity analy-
ses in Materials and Methods). First, we investigated the consequences
of alternative assumptions regarding the contact network. Specifically,
we replaced the matrix derived from the POLYMOD study (29) with
the one obtained from detailed household census data from Massa-
chusetts, following the method in (40) (fig. S9). The waning model
remained the best explanation of the data, with similar parameter es-
timates (table S8). Second, we considered the potential for differences
in the immunity elicited by the whole-cell (wP) and acellular (DTaP)
vaccines, which some have suggested as the primary explanation for
pertussis’ resurgence (16–18, 21, 22). We implemented and fitted a
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
model with identical infection-derived immunity and wP-derived
immunity, but distinct DTaP-derived immunity. Our main results
hold: The waning model was preferred to the leaky model (DAIC =
24), with estimates comparable—though more uncertain—to those of
the base model (table S9). Hence, we found little evidence for a marked
epidemiological effect of the switch to DTaP in Massachusetts in these
data, although our results do indicate a moderately reduced efficacy of
the DTaP vaccine compared to the wP vaccine (tables S9 and S10).

Model simulations replicate key aspects of pertussis
epidemiology in Massachusetts
To assess the adequacy of the best-fitting model’s explanation of the
data, we compared the data tomodel simulations (Fig. 2A).Despite high
variability in simulated dynamics, the model successfully captured key
features of the data. In particular, incidence trends in adolescents and in
adults were reproduced in simulations; in the younger age groups,
where the trends aremore obscure, the data were consistent withmodel
simulations. To quantify model-data agreement, we computed a
generalized R2 for 1-month-ahead forecasts [see Model assessment in
Supplementary Materials and Methods, (41)]. The value of 0.35 indi-
cated amodest degree of forecasting skill, with evident underestimation
of epidemic peaks in adolescents and adults in years 2000, 2003, and
2004 (Fig. 2B). To set this in context, we carried out a simulation study
to assess the intrinsic predictability of pertussis. This revealed that in-
fections like pertussis with generation times exceeding 3 weeks are in-
herently relatively unpredictable: R2 is typically less than 0.45, even in
the ideal circumstance that the true model is known (Fig. 2C and figs.
S10 and S11). Our fitted model can exhibit similar prediction skill for
longer forecast horizons (figs. S12 and S13). For example, 6-month-
ahead forecasts initiated annually in August generate an R2 of 0.4
(Fig. 2D). Finally, we examined the model retrodictions for the seven
decades preceding the data interval (1990–2005), a period spanning
the late pre-vaccine and early vaccine eras. These hindcasts were
consistent with historical incidence data (9, 42), showing an average
incidence of 1500 cases per 100,000 with 2- to 4-year cycles in the pre-
vaccine era (43), followed by a 100-fold reduction in cases upon introduc-
tion of routine vaccination, followed in turn by a resurgence beginning
in the 1970s (Fig. 3E). In sum, despite its simplicity, the model both
replicates key historical aspects of pertussis epidemiology and displays
nontrivial prediction skill.
Table 1. Model comparison. The maximum likelihood estimates (95% CI) are presented for the stochastic variant of the models, estimated using the MIF
algorithm. The best AIC value is indicated in boldface. SE, standard error.
Quantity
 No-loss model
 Leaky model
 Waning model
 Waning+Leaky model
log L
 −3726.9 (SE: 0.4)
 −3664.9 (SE: 0.9)
 −3594.5 (SE: 0.6)
 −3598.5* (SE: 1.8)
AIC
 7474
 7356
 7215
 7217*
DAIC
 259
 141
 0
 2
Rp
 2.4 (1.8, 2.7)
 1.6 (1.3, 2.2)
 1.8 (1.5, 2.0)
 1.8 (1.6, 2.0)
R0
 13.6 (7.5, 23.0)
 12.6 (9.0, 19.4)
 10.1 (6.5, 17.2)
 9.1 (5.3, 16.2)
Vaccine impact
 0.85 (0.70, 0.95)
 0.90 (0.81, 0.95)
 0.85 (0.75, 0.93)
 0.83 (0.70, 0.92)
*Because the two models are nested, the likelihood of the full model should be higher or equal to that of the waning model. The small difference indicates that
the MLE of the leakiness for the full model is 0. Consequently, the AIC was calculated with the likelihood of the waning model.
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The increase in adolescent and adult pertussis cases is due
to incomplete historical vaccination with slowly waning
vaccine-conferred immunity
In epidemiological systems, generally, one cannot directly observe im-
portant variables such as population immunity profile or the age dis-
tribution of real infections (as opposed to reported cases). However,
we can interrogate the fitted model, inquiring as to the likely history of
these hidden variables by examining their expected values conditioned on
the data (Fig. 3, A to D). These reveal a marked shift in the age-specific
immunological profile over this period (Fig. 3, C and D). In particular,
as time goes on, we see older individuals become increasingly unlikely to
have been infected and, consequently, more likely to be susceptible to
infection.According to themodel, the introduction of vaccination in the
1940s led to an overall reduction in transmission, reducing the risk of
natural infection during childhood not only to those vaccinated but also
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
to the population generally. Those who escaped vaccination as children
(or for whom the vaccine did not take) increasingly achieved adulthood
having avoided natural infection as well. Concurrently, older cohorts,
with their long-lived immunity derived from natural infections
experienced during the pre-vaccine period, were gradually dying out.
The resulting rise in the number of susceptible adults sets the stage
for the pertussis resurgence, especially among adults (44). Thus, the
fitted model explains the current pertussis resurgence as a legacy of
incomplete vaccination with effective, but imperfect, vaccines against
a background of slow demographic turnover, that is, as an end-of-
honeymoon effect (20, 45).

To identify the core transmission groups, we performed numerical
experiments in which a single pulse of age-targeted vaccination was ap-
plied, and we measured the subsequent total incidence of infections in
infants 0 to 4 months of age—the population most vulnerable to severe
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disease and death (26). We show that booster vaccination of 25% of the
adult population (20 to 40 or >40 years of age) leads to a modest de-
crease in the incidence of pertussis in infants (Fig. 4). By contrast, a sim-
ilar effort focused on children ages 5 to 10 or 10 to 20 years is predicted
to have much higher impact, leading to a drop in infant cases on the
order of 25% (Fig. 4, see also fig. S14).
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
DISCUSSION
To place our results within the context of recent pertussis epidemiology,
we note that Klein et al. (46) reported a 42% annual increase in the odds
of acquiring pertussis after the fifth booster dose, which has been inter-
preted as evidence for rapid loss of DTaP immunity, in apparent contra-
diction of our results. To investigate this, we simulated our best-fitting
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model from 2006 to 2015 and estimated the annual change in the odds
of acquiring pertussis. As shown in Fig. 3F (see also model predictions
in theDTaP era inMaterials andMethods), ourmodel, with its assump-
tion of a slow-waning, high-impact DTaP vaccine, predicts an odds in-
crease of 32% per year, comparable to the Klein et al. study and others
(46–49). Thus, not only are our results, perhaps surprisingly, quite
consistentwith these case-control and cohort studies, but they also show
that time series data aggregated at the population scale can be more in-
formative about the quantities of interest than the data from these
smaller-scale studies. Our finding calls into question the standard but
naïve interpretation of odds ratio/age slopes as quantification of the
speed of loss of vaccine-derived immunity: It demonstrates that the
slopes observed in case-control and cohort studies are consistent with
immunity as long-lived as we estimated from the time series. Further,
our fitted model represents an alternative explanation for empirical ob-
servations: Increased infection risk in schoolchildren need not be due to
rapid decreases in vaccine protection and can arise from increased con-
tact rates following school entry.

Our model makes other testable predictions with consequences for
policy. Despite low reported incidence in children aged 5 to 10, the
model predicts that true incidence of post-vaccine infections in that
age group is comparable to that in adolescents (Fig. 3B). By contrast,
themodel suggests amuch lower rate of infection in adults. Our numer-
ical experiments also indicate that the bulk of transmission occurs in
schoolchildren, instead of adults (Fig. 4). Although these results are
tempered by the absence of household structure in our model, they
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
are concordant with results from a
2015 U.S. household transmission
study, suggesting that the most impor-
tant immediate source of infection in
infants is siblings (50). These findings
may help explain the documented fail-
ure of postpartum vaccination of im-
mediate family contacts at reducing
infant pertussis (51, 52). The lack of a
strong transmission link between in-
fants and older age groups is also evi-
dent in the asynchrony of pertussis
seasonality among these groups (age-
specific seasonality in Supplementary
Materials and Methods and figs. S6
and S7). Specifically, patterns of sea-
sonality are suggestive of core trans-
mission groups among infants and
their young siblings (1 to 5 years old)
and among teenagers; incidence in
adults does not show a seasonal peak,
instead displaying amodest increase in
incidence throughout late-summer/
early-fall months, perhaps as a result
of transmission from the younger age
groups. More generally, our results in-
dicate a key role for children and ado-
lescents and at most a minor role for
adults in pertussis transmission, per-
haps due to the differences in the fre-
quency of contacts at different ages and
the assortative structure of the contact
network.Although it is beyond the scope
of this study, we suggest that the design of optimal vaccine schedule should
take these results into account.

There are three caveats of our analysis that are worth noting. First,
more precise estimates of vaccine traitsmay be possiblewith longer time
series. We chose to restrict our attention to the period ending in 2005
to bypass the need to accommodate (i) the introduction of an acellular
vaccine booster (Tdap) for teenagers in 2006 and (ii) the switch to
PCR as the method of infection ascertainment among adolescents
and adults, with concomitant increased sensitivity and diminished
specificity (53). Better characterization of differential vaccine traits
would need to account for the additional uncertainties associated with
these complications. Second, in contrast to some recent modeling
studies (16–18), we found little evidence for differences between whole-
cell and acellular vaccines. Resolution of this incongruence, however, is
thwarted by differences in pertussis vaccination history among study
populations, as well as important differences inmodel structure and sta-
tistical estimation choices. Third, we used two quantifications of the
age-specific patterns of contact, neither of which is ideal. A better fit
was obtained by using self-reported contact data from the POLYMOD
study inGreat Britain (29), rather than estimates fromhousehold survey
data from Massachusetts (40). Ideally, the contact matrix would be
derived frommore direct measures of behavior in the focal population.

With serological correlates of protection as yet unidentified (54),
the nature and frequency of pertussis vaccine failure and its role in the
resurgence have remained uncertain (14). Here, we have characterized
these traits via a rigorousandcomputationally ambitioushigh-dimensional
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Fig. 4. Predicted impact of single-booster vaccination. Simulations of the waning model were run until the end of
2005, at which point a 25% fraction of susceptible individuals in a target age group (5 to 10, 10 to 20, 20 to 40, or ≥40 years
old) was moved to the vaccinated class. The model was run for the subsequent 10 years (2006–2015), and the age-specific
total annual infections (that is, naïve and post-vaccine infections, calculated before applying the observation model)
were compared to a control scenario without booster vaccination. Each boxplot is based on 104 stochastic simulations,
accounting for parametric uncertainty of the waning model by sampling parameters from the bootstrap distribution.
For each intervention, the number indicates the relative difference between the median simulated incidence and that
of the control scenario. The figure shows the predicted impact in unvaccinated infants aged 0 to 4 months, the age
group most at risk of severe disease (see fig. S14 for the corresponding figure in every age group). For visual clarity, the
y axis does not start at 0.
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statistical inference approach exploiting age-stratified incidence data.
We found that both vaccines induce immunity that, on average, wanes
slowly over time, with no evidence for the switch to acellular vaccines as
the driver of pertussis resurgence in Massachusetts irrespective of our
assumptions regarding the differential efficacy of the DTaP vaccine.
Our results suggest that the train of events leading to the resurgence
of pertussis was set in motion well before the shift to the DTaP vaccine.
However, we note that there is substantial heterogeneity among vaccine
recipients in terms of the durability of the protection they receive. Cru-
cially, we find that the vaccine is effective at reducing pathogen cir-
culation but not so effective that eradication of this highly contagious
bacterium should be possible without targeted booster campaigns (55).
In the design of such campaigns, we anticipate that models, such as
those presented here, when rigorously confronted with data, will prove
to be valuable tools.
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MATERIALS AND METHODS
Study design
This study aimed to test a number of hypotheses on the nature and the
degree of protection conferred by the whole-cell and acellular pertussis
vaccines.We considered whether pertussis vaccines failed to confer im-
munity in some recipients; whether vaccine-induced immunity waned
with time; andwhether vaccinesmay have induced some, but imperfect,
protection against the disease. These different hypotheses were tested
with dynamic transmission models based on immunization and
demographic data fromMassachusetts and age-specific daily contact
rates from a study in Great Britain.We confronted thesemodels with
age-stratified data on pertussis incidence fromMassachusetts during
1990–2005.

Immunization data
Immunization levels of children entering kindergarten were avail-
able from the MDPH, from school year 1975/1976 for children hav-
ing received ≥4 doses and from school year 1995/1996 for children
having received 5 doses [based on 60,000 to 90,000 annual records,
(56)]. As shown in fig. S2, the vaccine coverage was approximately
constant during this period. Therefore, we assumed constant vaccine
coverages v1 = 0.97 and v2 = 0.93, where v1 represents the vaccine
coverage for the primary course and v2 represents the conditional
probability of having received a fifth dose given that four doses have
been received.

In the absence of vaccination data before 1970, we made pragmatic
assumptions based on available evidence. Althoughmass production of
the wP vaccine began in 1950 in Massachusetts (31), it was already dis-
tributed across the United States from 1940 (57). This is consistent with
historical incidence data fromMassachusetts, which show that pertussis
began decreasing in the 1940s and steeply declined after 1950 (42). We
therefore assumed that vaccination had started in 1940 and that the vac-
cine coverage ramped up from 0 in 1940 to v1 in 1955.We also assumed
that the preschool booster dose began to be administered in 1967, based
on the earliest record we could find in the literature (58).

Demographic data
Age-stratified mid-year population estimates in Massachusetts were
available from the U.S. Census Bureau for 1990–2005 (59). Data on an-
nual number of births during 1990–2005 were available from (60).
These demographic data, plotted in fig. S3, were interpolated using
smoothing splines (with 10 degrees of freedom) to calculate the time-
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
varying annual number of births, B(t); the age-stratified population
sizes,Ni(t); and the first derivative of the age-stratified population sizes,
dNi
dt ðtÞ. These quantities were used to calculate age-specific migration
rates, so that the simulated population sizes approximately equaled
the actual values (see model equations in Supplementary Materials
and Methods).

Contact network data
The model incorporated empirical age-specific contact rates from the
POLYMOD study in Great Britain (29), corrected for reciprocity as
detailed in the supplementary materials of (20). Let Cij be the average
number of daily contacts (both physical and conversational) reported
by a participant of age group i with members of age group j [here, in-
dividuals are categorized by 5-year age groups from age 0 to age 75, so
that 1 ≤ (i, j) ≤ 15). ]. Denoting Ni the number of individuals in age
group i in Massachusetts, the average total number of contacts between
age groups i and j isEij=NiCij. Because of the necessary symmetry in the
total number of contacts between age groups, the matrix E = (Eij) was
made symmetric: E ← 1

2 ðE þ ETÞ. The individual average number of
daily contacts between age groups i and j, corrected for reciprocity,
was then given by∀ði; jÞ;Cij ¼ Eij

Ni
. The corrected matrix C = (Cij) was

used in all simulations and is plotted in fig. S4.

Incidence data
Monthly pertussis incidence data were available from the MDPH. The
data were stratified by age (1-year breakdown for individuals under 20,
5-year breakdown for individuals over 20). For simplicity, we
aggregated the data into seven epidemiologically relevant age groups:
infants 0 to 1 {that is, [0, 1)} year old; preschool children 1 to 5 years
old; school-aged children 5 to 10, 10 to 15, and 15 to 20 years old; and
adults 20 to 40 and ≥40 years old. According to the MDPH (http://
tinyurl.com/p9mmhwv), the case definition for pertussis in non-outbreak
settings is as follows: laboratory confirmation by culture in a patient
with any cough illness; a cough illness lasting≥2 weeks, with laboratory
confirmation by serology in a person not vaccinated with a pertussis-
containing vaccine in the three previous years; a cough illness lasting
≥2 weeks with one or more of the following: paroxysms of coughing,
inspiratory whoop, or post-tussive vomiting, without other apparent
cause, in an individual who has a positive PCR test; a cough illness
lasting ≥2 weeks with one or more of the following: paroxysms of
coughing, inspiratory whoop, or post-tussive vomiting, without other
apparent cause, without appropriately timed negative laboratory
test, in an individual who is epidemiologically linked to a laboratory-
confirmed case.

Model formulation
We implemented an age-stratified, compartmental model of pertussis
transmission, building on previously described models (41, 61, 62). The
model is an extension of the classic Susceptible Exposed Infected Recov-
ered (SEIR) model that allows for post-vaccination infections in previ-
ously vaccinated or infected individuals. The population of susceptibles
is divided into those naïve to exposure, S(1), and those whose immune
systemhas been previously primedby vaccination or natural infection,
S(2). Exposed and infected individuals are similarly divided into those
who experience a naïve infection [E(1) and I(1)] or a post-vaccination
infection [E(2) and I(2)]. Upon recovery from either type of infection,
individuals move to the recovered class, R. To account for possible
differences between infection- and vaccine-derived immunity, vacci-
nated individuals are explicitly modeled (V). As previously proposed
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(23, 24, 27, 28, 38), we considered two possible modes of failure of in-
fection- or vaccine-derived immunity:

(1) Waning (failure in duration): Immunized individuals lose their
immunity andbecome susceptible [S(2)] at a rateaI for infection-derived
immunity and aV for vaccine-derived immunity.

(2) Leakiness (failure in degree): Immunized individuals (R or V)
remain susceptible to a post-vaccination infection [E(2)], but at a lower
degree than susceptible individuals. The degree of susceptibility is DI for
infection-derived immunity and DV for vaccine-derived immunity.

For vaccine-derived immunity, we additionally considered a third
mode of failure, for which, with probability DA, vaccinated individuals
immediately fail to mount an immune response and move to the S(1)

class [failure in take or primary vaccine failure (23, 24, 38)]. A schematic
of themodel structure is presented in fig. S1. Individuals are categorized
by 5-year age groups from age 5 to age 75; the 0- to 5-year age group is
further divided into 1 to 5 years and infants aged 0 to 4months and 4 to
12 months. The 0- to 4-month age group is included to represent the
fact that infants are fully vulnerable to infection before receiving the sec-
ond dose of DTP at 4months (41). Overall, themodel consists of 17 age
groups, labeled i = 1,…, 17. Aging occurs continuously, at rates di ¼
1
Dai
, where Dai is the age span in age group i. Tomodel the effect of the

primary vaccination course, a fraction v1 of susceptible individuals
[S(1) and S(2)] ismoved to the vaccinated class on aging from0 to4months
to 4 to 12 months. Similarly, the effect of the preschool booster dose is
modeled by moving a fraction v2 of susceptible individuals aging from
1 to 5 to 5 to 10 to the vaccinated class. Because the pediatric booster
dose (at age 15 to 18 months) is administered shortly after the primary
course, we ignored the effect of this dose.

Estimated parameters and estimation procedure
Todetermine themode of vaccine-derived immunity, we used likelihood-
based inference to evaluate the support of three models:

(1) No loss of vaccine-derived immunity (no-loss model). After an
initial failure in take, vaccine-derived immunity is hypothesized to be
perfect, so that no post-vaccine infections are possible. For this model,
the estimated parameters were DA (fraction of primary vaccine failures),
q1,

q2
q1
, q3q2 (susceptibility factors),w

C
1;2 (seasonality coefficients in children

aged 5 to 10),wT
1;2 (seasonality coefficients in adolescents aged 10 to 20),

r1(10+) (reporting probability of naïve infections in≥10 years old), and
t (reporting overdispersion).

(2) Waning vaccine-derived immunity (waning model). After an
initial failure in take, vaccine-derived immunity is hypothesized towane
at rateaV. The estimated parameters are those of the no-lossmodel, plus
aV, q (transmissibility of post-vaccine infections relative to that of naïve
infections), and h (reporting probability of post-vaccine infections rela-
tive to that of naïve infections).

(3) Leaky vaccine-derived immunity (leaky model). After an initial
failure in take, vaccine-derived immunity is hypothesized to be leaky,
with degree of leakiness DV. The estimated parameters are those of
the no-loss model, plus DV, q, and h.

For each model, the parameters were estimated in two steps:
(1) Trajectorymatching. The deterministic variant of the model was

fitted to the data using maximum likelihood estimation via trajectory
matching. In this case, the observation model is the only source of var-
iability in simulated observations, and the likelihood can be calculated
exactly. The likelihoodwasmaximized using the subplex algorithm, im-
plemented in the R package nloptr (63). The search was initiated over
104 starting points generated using Latin hypercube sampling over
broad parameter ranges (table S5). To ensure convergence to the max-
Domenech de Cellès et al., Sci. Transl. Med. 10, eaaj1748 (2018) 28 March 2018
imum likelihood estimate (MLE), the optimization was repeated on the
500 best parameter sets. A parametric bootstrap was then used to assess
uncertainty in parameter estimates. For each model, 500 synthetic time
series of simulated data were generated at the MLE. For each of these
500 synthetic data sets, parameters were reestimated as described above,
resulting in a bootstrap distribution of parameter estimates. We then
calculated 95% confidence intervals for the estimated parameters and
for the derived parametersR0 (basic reproduction number),Rp (vaccine
reproduction number), φ (vaccine impact), and r2(10+) = hr1(10+)
(reporting probability of post-vaccine infections in≥10 years old) from
the bootstrap distribution.

(2) Maximum iterated filtering (MIF). The stochastic variant of the
model was fitted using the MIF algorithm (35), implemented in the R
pomp package (36). The following algorithmic parameters were used:
2000 particles, 50 MIF iterations, and a random walk intensity of 10−6

during the first MIF iteration and 10−2 for the next 49 iterations. Be-
cause the model was simulated for a long period before the first data
point (January 1990), a time-varying random walk was used for the
parameters, with no perturbation until the first data point. For each
MIF run, the log-likelihoodwas computed as the log of the average like-
lihood of 20 replicate particle filters, eachwith 5 × 104 particles; the SE of
the log-likelihood estimate was computed from these replicates using a
jackknife implemented in the function logmeanexp in the pomp
package. Because each MIF run required about 24 hours of
computation, we sought to find good starting parameter values to ini-
tiate the algorithm. To do this, we calculated for each model the 95%
multivariate confidence interval around the MLEs from trajectory
matching. The search was then initiated over 100 starting points gener-
ated using Latin hypercube sampling over these ranges. As for trajectory
matching, the estimations were repeated from the best parameter sets to
ensure convergence to theMLE and a parametric bootstrap was used to
generate a bootstrap distribution of size 100.

Sensitivity analyses
We conducted three sensitivity analyses. First, we fitted an alternative
model inwhich infection- andwP-derived immunities were assumed to
be identical (with protected individuals in theR compartment) but pos-
sibly different from DTaP-derived immunity (with protected individ-
uals in the V compartment). For this analysis, we assumed that
infection/wP-derived immunity was waning with an average duration
of protection of 75 years (61). During the vaccine transition period, we
also assumed, for simplicity, that the first dose of vaccine received deter-
mined the nature of subsequent immunity (3). Thus, all infants vaccinated
before October 1996 were assumed to be protected by wP, whereas those
vaccinated afterwere assumed to be protected byDTaP.We then repeated
the estimations to determine whichmechanism of loss of immunity (here
specific to DTaP) was best supported by the data (table S9).

Second, we extended the base model (with identical wP- and DTaP-
derived immunity) to make the primary vaccine failure time-dependent.
Hence, we estimated two parameters for wP and DTaP. The results are
presented in table S10 and indicated a higher primary vaccine failure of
DTaP, although the absolute difference was modest (0.06 versus 0.03)
and the improvement inmodel fit (compared with the base model) was
small (D log L = 2.8).

Third, in the absence of empirical contact data in the United States,
the results presented in themain textwere obtained using the POLYMOD
contact matrix in Great Britain. To assess the robustness of our results to
this critical assumption, we calculated a contact matrix in Massachusetts
using the method described in (40). Briefly, the method uses highly
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detailed census and demographic data to build a matrix of “effective”
contacts M = (Mij). This matrix defines contacts among age groups up
to a scaling constant Ntot, usually absorbed in the transmission rate (40).
In our simulations, we fixed this constant to the total contact rate in the
POLYMOD matrix. As shown in fig. S9, the matrix presented fewer in-
tergenerational contacts between children and adults but more contacts
between adults than the POLYMOD matrix. Repeating the estimations
using that matrix, we found our main results to be robust (table S8).
The waning model was preferred to the leaky model (DAIC = 153), with
estimates comparable to those obtained with the POLYMOD contact
matrix [waning rate, 0.007 (0.001, 0.020) per year; primary vaccine failure,
0.03 (0.01, 0.05); vaccine impact, 0.90 (0.80, 0.96)]. We note, however,
that the waning model was less consistent with the data using that
matrix (D log L = − 43.3, cf. tables S6 and S7).

Model predictions in the DTaP era
We sought to compare our model predictions with recent empirical
studies in the United States that quantified DTaP vaccinal failure by
estimating relative changes (over age) in the odds of acquiring pertussis
(46–48). To this end, we extended our base model (with identical wP-
and DTaP-derived immunity) to have a higher age resolution (76 age
groups overall, 0 to 0.33, 0.33 to 1, 1 to 2, 2 to 3,…, 74 to 75 years old).
For simplicity, we here assumed no demographic changes over time, so
that the population sizes remained approximately constant (total pop-
ulation size, N = 5 × 106; birth rate, b ¼ 1

75 per year). To incorporate
parametric uncertainty, we ran stochastic simulations at each parameter
set from the waningmodel parametric bootstrap distribution (table S7).
For each simulation, we then calculated the overall incidence of post-
vaccine infections (including primary vaccine failures) during 2006–2015
(that is, a 10-year period after the last time point used for the fits):

Ha ¼
∑2015

y¼2006ðDaHð1Þ
a;y þ Hð2Þ

a;yÞ
∑2015

y¼2006Na;y

where DA is the proportion of primary vaccine failures,Hð1Þ
a;y [orH

ð2Þ
a;y] is

the yearly number of naïve (or post-vaccine) infections at age a during
year y, andNa,y is the population size of age a during year y. In keeping
with previous studies (46–48), we considered children aged 5 to 10 (five
age groups: 5 to 6, 6 to 7, 7 to 8, 8 to 9, and 9 to 10 years old), that is, 0 to
4 years after receipt of the fifth vaccine dose. This choice is also conve-
nient because these age groups experience the same force of infection in
our model, so that, all else being equal, differences of incidence reflect
differences of susceptibility caused bywaning of vaccinal immunity.We
calculated the odds of acquiring pertussis at age a,Oa ¼ Ha

1�Ha
, and fitted

a log-linear regression model:

logOa ¼ aþ bða�minaÞ

Therefore, the quantity eb represents the average relative change in
the odds of acquiring pertussis after every year of age, which can be
compared directly to estimates from empirical studies. The results of
these simulations are presented in Fig. 3F.
SUPPLEMENTARY MATERIALS
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Fig. S1. Pertussis transmission model schematic.
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Fig. S2. Pertussis vaccine coverage in Massachusetts.

Fig. S3. Demographic data in Massachusetts.

Fig. S4. Age-specific contact matrix.

Fig. S5. Monthly reported cases by age group.

Fig. S6. Age-specific seasonality in reported cases.

Fig. S7. Cross-correlations between age groups, with age group 0 to 1 year old taken as the
reference age group.

Fig. S8. Estimated seasonal forcing in children aged 5 to 10 and adolescents aged 10 to 20.

Fig. S9. Contact matrix in Massachusetts.

Fig. S10. One hundred data sets of monthly reports generated for the simulation study.

Fig. S11. Quantitative comparison of model-data agreement for different generation times.

Fig. S12. Model predictive ability at different forecast horizons and base months, with R2

calculated on log-transformed data and model predictions.

Fig. S13. Model predictive ability at different forecast horizons and base months, with R2

calculated on raw data and model predictions.

Fig. S14. Impact of single-booster vaccination in different age groups.

Table S1. Timeline of pertussis surveillance effort and of pertussis vaccination in
Massachusetts.

Table S2. Estimates of age-specific reporting probabilities.

Table S3. Age-specific trends (SEs) estimated by Poisson regression.

Table S4. Fixed model parameters.

Table S5. Parameter ranges used to generate starting parameter sets for trajectory matching.
Table S6. Parameter estimates of the deterministic variant of the base model (similar DTaP-
and wP-derived immunity, perfect infection-derived immunity).

Table S7. Parameter estimates of the stochastic variant of the base model (similar DTaP- and
wP-derived immunity, perfect infection-derived immunity).

Table S8. Parameter estimates with a contact matrix in Massachusetts.
Table S9. Parameter estimates of models with identical infection- and wP-derived immunity
but separate DTaP-derived immunity.
Table S10. Parameter estimates of an extension of the base model, with separate primary
vaccine failure for wP and DTaP.
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pertussis transmission.
Simulations suggested that administering existing boosters to children may be an effective strategy to halt
response, best explained the local rise in pertussis cases along with a historical gap in vaccination coverage. 
waning vaccine-conferred immunity, as opposed to vaccine failure to mount a full or even partial immune
found little evidence that the switch to the acellular vaccine contributed to the Massachusetts outbreaks. Instead, 

. modeled pertussis transmission using incidence data from Massachusetts, United States. Theyet alde Cellès 
The recent rise of pertussis in developed countries has generated controversy as to its cause. Domenech
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