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W. Park1,2,3, John M. Drake1,2, Pejman Rohani1,2,3

1 Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America, 2 Center for the

Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America,

3 Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America

☯ These authors contributed equally to this work.

* tsbrett@uga.edu

Abstract

Epidemic transitions are an important feature of infectious disease systems. As the trans-

missibility of a pathogen increases, the dynamics of disease spread shifts from limited

stuttering chains of transmission to potentially large scale outbreaks. One proposed

method to anticipate this transition are early-warning signals (EWS), summary statistics

which undergo characteristic changes as the transition is approached. Although theoreti-

cally predicted, their mathematical basis does not take into account the nature of epidemi-

ological data, which are typically aggregated into periodic case reports and subject to

reporting error. The viability of EWS for epidemic transitions therefore remains uncertain.

Here we demonstrate that most EWS can predict emergence even when calculated from

imperfect data. We quantify performance using the area under the curve (AUC) statistic, a

measure of how well an EWS distinguishes between numerical simulations of an emerging

disease and one which is stationary. Values of the AUC statistic are compared across a

range of different reporting scenarios. We find that different EWS respond to imperfect

data differently. The mean, variance and first differenced variance all perform well unless

reporting error is highly overdispersed. The autocorrelation, autocovariance and decay

time perform well provided that the aggregation period of the data is larger than the serial

interval and reporting error is not highly overdispersed. The coefficient of variation, skew-

ness and kurtosis are found to be unreliable indicators of emergence. Overall, we find that

seven of ten EWS considered perform well for most realistic reporting scenarios. We con-

clude that imperfect epidemiological data is not a barrier to using EWS for many potentially

emerging diseases.

Author summary

Anticipating disease emergence is a challenging problem, however the public health rami-

fications are clear. A proposed tool to help meet this challenge are early-warning signals

(EWS), summary statistics which undergo characteristic changes before dynamical transi-

tions. While previous theoretical studies are promising, and find that epidemic transitions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006204 June 8, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Brett TS, O’Dea EB, Marty É, Miller PB,
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are preceded by detectable trends in EWS, they do not consider the effects of imperfect

data. To address this, we developed a simulation study which assesses how case aggrega-

tion and reporting error impact on 10 different EWS’s performance. Case report data

were simulated by combining a stochastic SIR transmission model with a model of report-

ing error. Temporal trends in an EWS were used as a method of distinguishing between

an emerging disease (R0 approaching 1) and a stationary disease (constant R0). We investi-

gated the robustness of EWS to reporting process parameters, namely the aggregation

period, reporting probability and overdispersion of reporting error. Seven of ten EWS

perform well for realistic reporting scenarios, and are strong candidates for incorporation

in disease emergence monitoring systems.

Introduction

There are numerous causative factors linked with disease emergence, including pathogen evo-

lution, ecological change and variation in host demography and behavior [1–5]. Combined,

they can make each pathogen’s emergence seem idiosyncratic. In spite of this apparent particu-

larity, there is a recent literature on the possibility of anticipating epidemic transitions using

model-independent metrics [6–14]. Referred to as early-warning signals (EWS), these metrics

are summary statistics (e.g. the variance and autocorrelation) which undergo characteristic

changes as the transition is approached. In addition to infectious disease transmission, EWS

have been investigated for transitions in a broad range of dynamical systems, including ecosys-

tem collapse and climate change [15–21]. The motivation for EWS comes from the theories of

dynamical systems and stochastic processes, in particular the slowing down that universally

occurs in the vicinity of dynamical critical points [22–24]. Theoretical results for disease emer-

gence are promising, and suggest that the transition from limited stuttering chains of transmis-

sion (R0 < 1) to sustained transmission and outbreaks (R0 > 1) is preceded by detectable EWS

[8, 13, 14].

A major obstacle to deploying early-warning systems is the type of data available to calcu-

late the EWS. Theoretical predictions assume the data will be sequential recordings (or “snap-

shots”) of the true number of infected in the population through time [8–13]. In this paper we

refer to this as snapshots data. However, epidemiological data originate instead from notifica-

tions by public health practitioners whenever a new case is identified. Public health bodies

aggregate individual cases into regular case reports (e.g. the US Centers for Disease Control

and Prevention’s Morbidity and Mortality Weekly Report), as shown in Fig 1. Different com-

binations of serial interval (difference in time of symptom onset between primary and second-

ary cases) and aggregation period lead to time series which have very different appearances.

Even assuming perfect reporting, variability in both the incubation period and onset of clinical

symptoms mean that snapshots data cannot be reconstructed from case report data. In addi-

tion to aggregation, case reports are subject to reporting error (see Fig 2). Underreporting may

occur due to asymptomatic infection, poorly implemented notification protocols, or socio-

political factors [25–29]. Misdiagnoses and clerical errors in the compilation of reports can

result in both under- and over-reporting [30–32]. Due to self reporting and contact tracing,

once an index case has been positively identified secondary cases are more likely to be diag-

nosed, which may lead to clustering in case reports. The combination of case aggregation and

reporting error results in a mismatch between snapshots and imperfect epidemiological data.

EWS, such as the variance (Fig 3, top panel), are affected by imperfect data (Fig 3, bottom
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panel) and may not display the characteristic trends that form the basis for detecting disease

emergence. This provides reason to question the direct application of EWS to observed data.

In this paper we report on a simulation study aimed at investigating the robustness of a

range of EWS to case report data. We simulated a stochastic SIR model of a pathogen emerging

Fig 1. Demonstration of aggregation effects in epidemiological data. The bottom panel shows the progression of a

simulated outbreak in a population, with cases ranked by their time of infection. Solid black lines indicate the duration of

infectiousness, dots indicate time of recovery. The top panel shows three time series calculated from the simulated data:

daily snapshots of the number of infected present in the population (black), weekly case reports (blue) and monthly case

reports (red). For the purposes of this paper, the number of recovery events falling within an aggregation period serves as

a proxy for the true number of cases in a case report. Aggregation periods are delimited by blue dots for weekly reports

and red dashes for monthly reports. No reporting error is applied to the case reports shown in this figure. Transmission

dynamics are modeled using the SIR model with birth and death with average population size N0 = 106, importation rate

z = 1 case per week, mean life expectancy of 70 years, and mean infectious period of 1 week. R0 increases linearly from 0

to 1 over 20 years. Simulations performed using the Gillespie algorithm [33].

https://doi.org/10.1371/journal.pcbi.1006204.g001
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via increasing R0, and corrupted the simulated case reports by applying a negative binomial

reporting error. The area under the curve (AUC) statistic was computed to quantify how well

trends in an EWS identify emergence. We find that performance depends on both the EWS

and the reporting model. Broadly, the mean, variance, index of dispersion and first differenced

variance perform well. The autocorrelation, autocovariance and decay time perform well

unless either i) the data are highly overdispersed or ii) the aggregation period is less than the

infectious period. The coefficient of variation, kurtosis, and skewness have a more subtle

dependence on the reporting model, and are not reliable. We conclude that seven of ten EWS

perform well for most realistic reporting scenarios.

Methods

Simulating infectious disease transmission with imperfect data

The dynamics of disease spread in a host population are modeled as a stochastic process using

an SIR model with birth and death [37]. The model compartments and parameters are listed

in Table 1. Transition rates and effects are listed in Table 2. The basic reproductive number for

the SIR model is R0(t) = β(t)/(γ+ α), where β(t) varies due to nondescript secular trends in the

transmissibility. Simulated data are generated using the Gillespie algorithm [33], which simu-

lates a sequence of transition events (infection, recovery, birth and death), and returns the

number of individuals in each model compartment through time. The SIR simulations are of a

population with average size N0 = 106. The parameter z gives the rate at which new cases arise

due to external sources, and is set to z = 1 per week. The death rate, α, is the reciprocal of the

life expectancy, set to 70 years. Case counts, Ct, are given by the number of recovery events (at

rate γIt) within each aggregation period, and are included in the model as an additional vari-

able (see Table 1).

Fig 2. Example of aggregated data with reporting error. Three time series for the same simulated outbreak are shown:

daily snapshots of the number of infected (black line), weekly aggregated case reports with no reporting error (perfect

reporting, blue line) and weekly aggregated case reports with reporting error (imperfect reporting, red line). Reporting

error is modeled using a negative binomial distribution with ρ = 0.25 and ϕ = 0.1. The high overdispersion (small ϕ)

means that there is little visual correspondence between the number of case reports with and without reporting error.

Additionally, the number of case reports can exceed the true number of cases (overreporting), in spite of the low

reporting rate. SIR simulations performed using the same parameters as Fig 1.

https://doi.org/10.1371/journal.pcbi.1006204.g002
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Fig 3. Lead up to an outbreak of measles in California. Weekly case report data from the US CDC’s MMWR compiled and released by Project

Tycho [34]. Estimates for measles reporting efficacy in the USA are around 45% [27, 35, 36] In addition to the raw weekly case reports, the

bottom row shows the data aggregated into bi-weekly and four-weekly reports. Changing the aggregation period changes not only the values of

the variance (top row), but also the trend, quantified using Kendall’s τ. Only data to the left of the shaded area are included in calculating the

variance. The moving average is calculated using a two year window, i.e bandwidth b = 52 for weekly reports; b = 26 for bi-weekly; b = 13 for

four-weekly. For details see the Methods section.

https://doi.org/10.1371/journal.pcbi.1006204.g003

Table 1. Model symbols.

Symbol Definition

S number of susceptible individuals

I number of infected individuals

R number of removed individuals

C number of cases

z importation rate

β(t) transmission rate

γ recovery rate

α per capita birth and death rate

N0 average population size

https://doi.org/10.1371/journal.pcbi.1006204.t001
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Reporting error is applied to the case count at the end of each aggregation period by sam-

pling a negative binomial distribution,

PðKt ¼ kjCtÞ ¼
Gð�þ kÞ
k!Gð�Þ

rCt

rCt þ �

� �k
�

rCt þ �

� ��

; ð1Þ

with reporting probability ρ and dispersion parameter ϕ [38]. Given Ct cases, the mean num-

ber reported is μt = ρCt. The variance is specified by the dispersion parameter via the relation

s2
t ¼ mt þ m2

t =�. Increasing ϕ reduces the overdispersion of the data, so that for large ϕ the dis-

tribution of reports is approximately Poisson.

Theoretically predicted EWS

Previous work has proposed a range of different EWS to anticipate dynamical transitions [8,

12–15, 17, 18]. The ten candidate EWS considered in this paper are listed in Table 3. We con-

sider additional indicators to those most frequently studied in the EWS literature (the variance,

autocorrelation and coefficient of variation). As R0 approaches 1, the mean number of cases

caused by introductions rises, making it a potential EWS. The index of dispersion is a similar

measure to the coefficient of variation, and is defined as the variance to mean ratio. The decay

time (or correlation time) is a log-transform of the autocorrelation, which diverges as R0

approaches 1 (the definition of critical slowing down). In addition to the autocorrelation,

which is normalized by the variance, we consider the unnormalized autocovariance. As both

the autocorrelation and variance increase, the autocovariance may outperform these two mea-

sures. Theoretical results show the increase in variance accelerates as R0 approaches 1, suggest-

ing the first differenced variance as a complementary EWS. Additionally we investigate the

performance of two higher-order moments, the skewness and kurtosis.

Functional expressions for the dependence of each EWS on R0 can be found using the

Birth-Death-Immigration (BDI) process, a variation of the SIR model which neglects suscepti-

ble depletion (i.e. St = N0). The BDI process is a one-dimensional stochastic process, depending

only on the number of infected It, and possesses an exact mathematical solution (for full details

see [13]). This allows expressions for the moments and correlation functions of It to be found

(Table 3, fourth column). BDI theory predicts that most EWS (the mean, variance, index of

dispersion, autocovariance, decay time and first differenced variance) are expected to grow

hyperbolically as R0 approaches one. The autocorrelation is expected to grow exponentially,

the kurtosis quadratically and the skewness linearly. The coefficient of variation is the only

EWS which does not grow, instead remaining constant. We propose observing these trends in

data as a basis for anticipating disease emergence. The numerical estimators used in this paper

are listed in Table 3, third column, discussed in more depth below.

Table 2. Transitions of the SIR process model. At the beginning of each aggregation period C is reset to 0.

Name (ΔS, ΔI, ΔR, ΔC) Propensity

birth of S (−1, 0, 0, 0) αN0

death of S (−1, 0, 0, 0) αS
death of I (0, −1, 0, 0) αI
death of R (0, 0, −1, 0) αR
importation (−1, 1, 0, 0) zS/N0

transmission (−1, 1, 0, 0) β(t)SI/N0

recovery (0, −1, 1, 1) γI

https://doi.org/10.1371/journal.pcbi.1006204.t002
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Quantifying EWS performance

Theoretical predictions from the BDI process are based on It and do not take into account

effects of reporting error and aggregation. The focus of this paper is to examine the robustness

of each EWS to reporting process parameters, using simulated case report data, Kt. BDI theory

predicts that 9 out of 10 EWS increase as the transition is approached. We quantify the associa-

tion of each EWS with time using Kendall’s rank correlation coefficient [19]. A coefficient

close to (+/−)1 implies consistent increases/decreases of the EWS in time. As the underlying

dynamics of the case reports are stochastic, the value of the rank correlation coefficient is itself

a random variable. Multiple simulations of the test (emerging) and null (stationary/not emerg-

ing) scenarios result in two distributions of correlation coefficients for each EWS. We measure

performance using the AUC statistic, defined as the overlap of the two distributions, and may

be interpreted as the probability that a randomly chosen test coefficient is higher than a ran-

domly chosen null coefficient, AUC = P(τtest > τnull) [39, 40]. The name comes from one

method of calculating it, the area under the receiver operating characteristic (ROC) curve, a

parametric plot of the false positive rate against true positive rate as the decision threshold is

varied [41].

Instead of explicitly calculating the ROC curve, the AUC can be efficiently calculated after

ranking the combined set of test and null correlation coefficients by value [40],

AUC ¼ ½rtest � ntestðntest þ 1Þ=2�=ðntestnnullÞ; ð2Þ

Table 3. List of early-warning signals.

EWS Mathematical definition Estimator� Theoretical prediction† Correlation with R0

Mean μt = E[Xt]
bm t ¼

Xtþðb� 1Þd

s¼t� ðb� 1Þd

Xs

2b � 1

z=g

1 � R0

+

Variance s2
t ¼ E½ðXt � mtÞ

2
�

bs2

t ¼
Xtþðb� 1Þd

s¼t� ðb� 1Þd

ðXs � bmsÞ
2

2b � 1

z=g

ð1 � R0Þ
2

+

Coefficient of variation CoVt = σt/μt dCoVt ¼
bs t

bm t

(z/γ)−1/2 0

Index of dispersion IoDt ¼ s2
t =mt dIoDt ¼

bs2

t

bm t

1

1 � R0

+

Skewness Skewt ¼ E½ðXt � mtÞ
3
�=s3

t dSkewt ¼
1

bs3
t

Xtþðb� 1Þd

s¼t� ðb� 1Þd

ðXs � bmsÞ
3

2b � 1

(z/γ)−1/2(1+ R0) +

Kurtosis Kurtt ¼ E½ðXt � mtÞ
4
�=s4

t dKurt t ¼
1

bs4
t

Xtþðb� 1Þd

s¼t� ðb� 1Þd

ðXs � bmsÞ
4

2b � 1

(γ/z)(2 + R0)2

+3(1 − γ/z)

+

Autocovariance‡ ACovt(δ) = E[(Xt − μt)(Xt−δ − μt−δ)]
dACov t ¼

Xtþðb� 1Þd

s¼t� ðb� 1Þd

ðXs � bmsÞðXs� d � bm s� dÞ

2b � 1

z=g

ð1 � R0Þ
2
e� ð1� R0Þgd

+

Autocorrelation‡

ACtðdÞ ¼
ACovtðdÞ

stst� d

cAC t ¼
dACov t

bs tbs t� d

e−(1−R0)γδ +

Decay time‡ �t t ¼ � d=ln½ACtðdÞ� b�t t ¼ � d=ln cAC tðdÞ
h i

1

ð1 � R0Þg

+

First differenced variance‡
Ds2

t ¼ s2
t � s2

t� d cDs2
t ¼ bs

2
t � bs

2
t� d

2z=g

ð1 � R0Þ
3
cd

+

�For snapshots data Xt = It, for case reports data Xt = Kt.
†All BDI theory results calculated using the stationary approximation, assuming R0(t) = ct and cδ� 1, see [13].
‡δ denotes one time step.

https://doi.org/10.1371/journal.pcbi.1006204.t003
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where rtest is the sum of the ranks of test coefficients and ntest and nnull are the number of reali-

zations of the test and null models respectively.

In this paper the AUC statistic quantifies how successfully an EWS distinguishes whether or

not a disease is approaching an epidemic transition. An AUC = 0.5 implies that an observed

rank coefficient value conveys no information about whether or not the disease is emerging, i.e.

the EWS is ineffective. If the AUC< 0.5 then a decreasing trend in the EWS indicates emer-

gence, whereas if AUC> 0.5 an increasing trend indicates emergence. A larger |AUC − 0.5|

implies better performance, if |AUC − 0.5| = 0.5 the rank coefficient value classifies the two sce-

narios perfectly.

Numerical estimators for EWS

The mathematical definitions of the EWS depend on expectations of the stochastic process,

E[f(X)] (Table 3, second column). To calculate EWS from non-stationary time series data we

use centered moving window averages with bandwidth b as estimators for expectation values.

For example, the mean at time t is estimated using

bmt ¼
Xtþðb� 1Þd

s¼t� ðb� 1Þd

Xs

2b � 1
; ð3Þ

where δ is the size of one time step. Near the ends of the time series (t< bδ and t> T − bδ),

the normalization factor 2b − 1 is reduced to ensure it remains equal to the number of data

points within the window. Applying Eq 3 to the time series for X results in a time series for bm.

Certain EWS depend on others, for example the variance depends on the mean. EWS are

therefore calculated iteratively, for example bm is first calculated using Eq 3, and then bs2 is

found using

bs2

t ¼
Xtþðb� 1Þd

s¼t� ðb� 1Þd

ðXs � bmsÞ
2

2b � 1
: ð4Þ

Estimators for each EWS are in Table 3. For snapshots data Xt = It, and for case report data

Xt = Kt. Throughout this paper we use a bandwidth of b = 35 time steps (weeks or months

depending on aggregation period). Results have been found to be similar for a bandwidth of

b = 100 time steps.

Experiment design

To quantify the sensitivity of each EWS to reporting process, we calculate the AUC from simu-

lated data for a range of different model parameter combinations. The experimental design is

fully factorial (i.e. considers all parameter value combinations). The following four parameters

are varied: (i) the infectious period, 1/γ, which can be either 7 or 30 days, (ii) the reporting

probability, ρ = 2−8x for x in {0, 0.05, 0.1, . . ., 1}, (iii) the dispersion parameter, ϕ, which is one

of {0.01, 1, 100}, (iv) the aggregation period, δ, which is either weekly or monthly.

For the test model, the disease emerges over T = 20 years, via an increase R0. For the null

model, R0 is constant. One epidemiological interpretation for the test scenario is it models

transmission in a population with high vaccine coverage, where gradual pathogen evolution

results in increasing evasion of host immunity. An alternative interpretation is it models zoo-

notic spillover, where pathogen evolution within an animal reservoir results in gradually

increasing human transmissibility [42]. In both interpretations, the null model assumes no

change in host-to-host transmissibility.
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The transmission dynamics were simulated using the Gillespie algorithm [33]. The Gillespie

algorithm assumes all model parameters (including the transmissibility) are constant. To sim-

ulate disease emergence we modify the Gillespie algorithm, discretely increasing β at the end

of each day and after each reaction to ensure an approximately linear increase in R0 over

T = 20 years, from R0(0) = 0 to R0(T) = 1. For the null model, transmission is simulated for 20

years at a constant rate, R0 = 0. Our choice of null has no secondary transmission, making the

classification problem easy under perfect reporting. This enables clearer identification of

responses to reporting process effects as results span the full range of the AUC statistic. We

repeated the experiment with null model R0 = 0.5, and found no qualitative differences.

For both scenarios transmission is subcritical, with disease presence maintained by reintro-

duction from an external reservoir. For each parameter combination 1000 replicates of both

scenarios are generated.

We perform these computational experiments in R using the pomp package [43] to simulate

the SIR model and the spaero package [44] to calculate the EWS. Code was written to simulate

aggregation and reporting error. All code to reproduce the results is archived online at doi:10.

5281/zenodo.1185284.

Results

AUC values are calculated for EWS using snapshots data (Fig 4) and case reports data (Figs 5

and 6). When calculated from snapshots data (the data type used in theoretical predictions),

most EWS easily identify emergence (|AUC − 0.5|� 0.5), with only small variation in perfor-

mance with infectious period. The coefficient of variation, skewness and kurtosis are the excep-

tions. If the data are monthly snapshots (Fig 4, left column) they perform poorly (|AUC − 0.5|

close to 0). If the data are weekly snapshots, then the skewness and kurtosis still perform

Fig 4. Performance of EWS calculated from weekly and monthly snapshots of the infectious population. AUC

values further from 0.5 imply better performance. To investigate performance when the aggregation period is less than,

equal to, and greater than the infectious period, results are shown for 1/γ = 1 week and 1 month. Simulations were

performed using a stochastic non-fatal SIR model with birth and death. In a fully susceptible population, on average 1

susceptible individual per week acquires the infection from external sources. Individuals have a mean lifespan of 70

years. The average population size N = 106 individuals. In simulations of the emerging scenario, R0 increases linearly

from 0 to 1 over 20 years, in simulations of the stationary scenario R0 = 0. AUC values calculated using 1000 replicates

of both models, see Methods.

https://doi.org/10.1371/journal.pcbi.1006204.g004
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poorly, however the coefficient of variation performs well. This improvement is particularly

pronounced if the mean infectious period is 1 month (Fig 4, top right).

Fig 5 shows AUC values for each EWS when calculated using case report data. Each pixel in

the heat maps corresponds to a distinct EWS and parameter combination. Based on the rela-

tionship between AUC value and reporting process parameters, we identify four groups of

EWS.

Additional figures (S1–S4 Figs) show results for variations in experimental design. Qualita-

tive findings were found to be robust to changes in: bandwidth b, initial R0 and emergence

Fig 5. Heat maps showing impact of reporting process parameters and infectious period on performance of EWS.

AUC values further from 0.5 imply better performance. For each reporting scenario, 1000 20 year long replicates of both

the test (emerging) and null (stationary) SIR model are simulated using the Gillespie algorithm, for fixed model

parameters see Methods. All EWS are then calculated for each replicate. To quantify ability to identify emergence, AUC

values are calculated from the distributions of the rank correlation coefficient for each EWS, see Methods. The scales for

both the overdispersion and reporting probability are logarithmic.

https://doi.org/10.1371/journal.pcbi.1006204.g005
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timescale T. Examples of the simulated time series are shown in S5 Fig, using the same report-

ing process parameters as in Fig 6.

Coefficient of variation, skewness, kurtosis

Provided the data are aggregated monthly, with high reporting probability and low overdisper-

sion, the coefficient of variation, skewness and kurtosis have similar AUC values when calcu-

lated from snapshots data (Fig 4) and case report data (Fig 5, right column). Unlike the other

seven EWS, this it is not the case for weekly data. If calculated from weekly snapshots data

with 1/γ = 1 week, the coefficient of variation has an AUC = 0.18 (Fig 4, bottom right). With

reporting, if ρ = 1, ϕ = 100 the AUC = 0.005 (Fig 6, top right). By switching to case report data

the performance of the coefficient of variation has improved dramatically. Similar improve-

ments are seen for the skewness and kurtosis. In addition, and perhaps counterintuitively,

these three EWS’s performances are further enhanced at lower reporting probabilities (com-

pare the top right and bottom right panels of Fig 6). At low overdispersion and low reporting

probability, the coefficient of variation (|AUC − 0.5| = 0.5) is joint with the mean and variance

as the best performing statistic, closely followed by the skewness (|AUC − 0.5| = 0.497) and

kurtosis (|AUC − 0.5| = 0.491).

The improvement in performance at low reporting probability is acutely sensitive to other

model parameters. Both overdispersion in the reporting (for example Fig 6, left column) and

larger aggregation period (Fig 5, right column) severely dampen the sensitivity to ρ. All three

EWS perform poorly if ϕ = 0.01, regardless of the other model parameters.

Autocovariance, autocorrelation, decay time

This group of EWS are all measures of the correlation between neighboring data points. At

high reporting probability (ρ> 0.33) and low overdispersion (ϕ = 100), all three perform well

(AUC > 0.77), regardless of infectious and aggregation periods (see Fig 5). Performance is

Fig 6. Performance of EWS under high/low reporting probability and high/low overdispersion scenarios. For high

reporting ρ = 1.0 and low reporting ρ = 0.047. For high overdispersion ϕ = 0.01, for low overdispersion ϕ = 100. For all

panels both the mean infectious period and aggregation period are 7 days. AUC values are from the same data set used in

Fig 5.

https://doi.org/10.1371/journal.pcbi.1006204.g006
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comparable with snapshots data (Fig 4). Overall, they perform best if 1/γ = 1 week (Fig 5,

top row) and worst if 1/γ> δ (Fig 5, bottom left). At low overdispersion, decreasing the report-

ing probability reduces the AUC (compare the top right and bottom right panels of Fig 6,

AUC = 1.000 vs 0.831). The performance drop is largest if 1/γ = 1 month and δ = 1 week. The

performance of all three EWS is negatively affected by overdispersion. Sensitivity to overdis-

persion is least for 1/γ = δ = 1 week, performance is only poor if ϕ = 0.01 and/or ρ≲ 0.036

(Fig 5, top left). These three EWS are reliable indicators of emergence provided δ� 1/γ and

ϕ = 100.

Mean, variance, first differenced variance

Unless reporting error is highly overdispersed (ϕ = 0.01), the mean, variance and first differ-

enced variance perform extremely well (AUC� 1, see Fig 5). If case reports are aggregated

weekly and have high overdispersion (ϕ = 0.01), they are among the best performing EWS.

The mean and variance have AUC> 0.85, and the first differenced variance has AUC� 0.66,

but is largely unaffected by reporting probability and infectious period. However, if case

reports are aggregated monthly and ϕ = 0.01, then all three perform poorly. This holds regard-

less of reporting probability and infectious period, and is in line with the results for other

EWS.

Index of dispersion

The index of dispersion (unrelated to the dispersion parameter) has a similar performance to

the previous group of EWS, however with certain differences. We first consider low overdis-

persion (ϕ = 100). At low reporting probabilities the index of dispersion performs best if

1/γ = 1 week and δ = 1 month (Fig 5, top right). For other combinations of infectious period

and aggregation period, performance suffers a sharp drop as reporting probability decreases.

This drop occurs at a reporting probability dependent on the infectious period and aggrega-

tion period, around ρ = 0.047 for δ = 1 week, and around ρ = 0.027 for δ = 1/γ = 1 month.

Unique among the EWS, the index of dispersion performs best at intermediate overdispersion

(ϕ = 1), in particular at small reporting probability. This is true for all infectious and aggrega-

tion periods, although most pronounced if 1/γ = 1 month and δ = 1 week. For ϕ = 0.01 the

index of dispersion performs better if the data are aggregated weekly, and best if the infectious

period is also one week, with AUC� 0.71 for ρ = 0.047 (Fig 6, bottom left). Provided ρ≳ 0.05

and ϕ> 0.01, performance is good for all aggregation and infectious periods. Overall perfor-

mance is best if 1/γ = 1 week and δ = 1 month.

Summary of results

Taken in isolation, the mean and variance are the EWS least impacted by reporting. Unless the

overdispersion in the observation process is high (ϕ = 0.01), their performance is largely unaf-

fected by reporting process parameters. At low reporting probabilities they outperform the

autocorrelation, autocovariance, decay time and index of dispersion, and are independent of

aggregation period and infectious period.

EWS sensitive to correlation between neighboring data points perform well unless i) ϕ = 0.01

and/or ii) 1/γ> δ and ρ≲ 0.06. While it is clear how high overdispersion in reporting reduces

correlation in the data, an explanation for ii) is less clear.

If calculated from snapshots data, the coefficient of variation, kurtosis and skewness are the

worst performing statistics (|AUC − 0.5|� 0). Using case report data improves performance

under certain conditions. If cases are aggregated weekly with low reporting probability and

low overdispersion then they are among the best performing EWS, with |AUC − 0.5|� 0.5. In
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addition the trends of the skewness and kurtosis (both decreasing) are opposite those given by

the BDI process (both increasing). Overall, we conclude that these three EWS are unreliable

indicators of disease emergence as their performance is conditional on a limited range of

reporting process parameters.

Discussion

For mathematical reasons, proposed EWS for disease emergence have assumed access to regu-

lar recordings (“snapshots”) of the entire infectious population [8–13]. However, epidemiolog-

ical data are typically aggregated into periodic case reports subject to reporting error. To

examine the practical consequences of this mismatch between theory and data, in this paper

we calculated EWS from case report data. We performed extensive numerical simulations to

determine the sensitivity of each candidate EWS to imperfect data. Case aggregation and

reporting error change the statistical properties of the data, and can have subtle effects on an

EWS’s performance. We identified four groups of EWS based on their sensitivity to the various

reporting process parameters. The performance of one group, consisting of the EWS with

either polynomial or no growth with R0, has a nuanced relationship with the reporting process

parameters. We therefore conclude that the coefficient of variation, kurtosis and skewness per-

form poorly as EWS. In general, the other EWS (the mean, variance, first differenced variance,

index of dispersion, autocorrelation, autocovariance and decay time) all performed well and

are strong candidates for incorporation in monitoring systems intended to provide early warn-

ing of disease emergence.

Surprisingly, the combination of reporting error and aggregation of data does not always

have a detrimental effect on EWS performance. The coefficient of variation, kurtosis and skew-

ness perform best when both reporting probability and overdispersion are low. At first glance

this result appears counter-intuitive: as an increasingly large fraction of cases are missed, per-

formance improves. The point to stress here is that by changing the parameters of the report-

ing process we are systematically changing the statistical properties of the time series. For

instance, the BDI process predicts no trend in the coefficient of variation, due to the standard

deviation and mean increasing with R0 at an identical rate [13]. With aggregation and report-

ing error this identity does not necessarily hold, introducing a trend in the coefficient of varia-

tion and improving its performance. To fully explain this phenomenon requires an analytical

solution for the statistics of Kt, which requires solving the stochastic process including aggrega-

tion and reporting error. However, it can be seen to be plausible if we focus only on stochasti-

city resulting from reporting error. For low overdispersion (e.g. ϕ = 100), the reporting

probability distribution can be approximated by a Poisson distribution with parameter

λ = ρCt. Ignoring demographic stochasticity, we replace Ct with E[Ct] = ηδ(1 − R0)−1. Both the

coefficient of variation and skewness for this distribution are λ−1/2 = {(1−R0)/ρηδ}1/2 and the

kurtosis is λ−1 = (ρηδ)−1(1 − R0). These two expressions both decrease as R0 increases from 0 to

1, consistent with the experimentally observed AUC< 0.5. The improved performance at low

ρ is a consequence of the increased stochasticity in reporting outweighing demographic sto-

chasticity. Can these EWS be used to anticipate disease emergence? If overdispersion and

reporting probability are known to be low, then yes. However, it is unlikely that the reporting

process is sufficiently understood for an emerging disease. We conclude that these three EWS

are unreliable and therefore not good indicators of emergence.

There is a similar reason for why the index of dispersion has a peak in performance at inter-

mediate reporting overdispersion. The negative binomial reporting distribution, conditioned

on E[Ct] as above, has index of dispersion given by σ2/μ = 1 + ρηδ{ϕ(1−R0)}−1. Therefore

increasing reporting overdispersion (i.e increasing ϕ−1) amplifies the response of σ2/μ to
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changes in R0. This leads to a greater differential, improving performance of the index of dis-

persion as an EWS. However, increased reporting overdispersion also implies increased vola-

tility of data within a finite sized window, which reduces reliability. These two countervailing

factors provide an explanation for the optimal performance at intermediate overdispersion

values.

In our analysis we considered an SIR model with epidemiologically plausible parameters.

The negative binomial distribution is meant to provide a stringent test on EWS performance,

and the parameter ranges are conservative (especially for overdispersion). For instance, if

there are 10 actual cases in a week, and reporting error is negative binomially distributed with

ρ = 0.1 and ϕ = 0.01, then the mean number of reported cases is 1. However, the probability of

no cases being reported is P(K = 0) = 0.955 whereas the variance in reported cases is σ2 = 101.

The resulting time series is highly volatile, with little similarity in appearance to the underlying

time series of actual cases. It is unlikely that case reports for an emerging disease will have such

high overdispersion. In addition, for a highly pathogenic emerging disease, such as Middle

East respiratory syndrome (MERS) or H7N9 avian influenza, the reporting probability is likely

much higher than ρ = 1/256 (the smallest value we studied). Nonetheless, one of the encourag-

ing findings of this study is that high reporting is not essential for reliable early warning. Clear

trends in the EWS can still be identified, provided there are sufficiently many introductions

for cases to be sporadically detected prior to emergence. These dynamics are typical for a

reemerging vaccine controllable disease, such as measles, where cases are continually intro-

duced into disease-free regions from endemic regions [45, 46].

Performance of EWS which depend on correlation between neighboring case reports was

found to be contingent on the aggregation period being larger than the serial interval (equal to

the infectious period for the SIR model). If this is not the case, there is a smaller probability

that successive links in a chain of transmission fall into neighboring case reports. We speculate

that this reduces the impact of fluctuations in a particular report on the subsequent report,

diminishing their correlation. This effect is exacerbated if the reporting probability is low. A

more rigorous explanation requires a full solution to the stochastic process with aggregation

and reporting error. For many known pathogens the serial interval is larger than one week, for

example measles virus and Bordetella pertussis [47]. For other pathogens it is less than one

week, such as SARS coronavirus [48] and influenza virus [47, 49]. In order for the autocorrela-

tion, autocovariance and decay time to be reliable EWS, our results suggest the data need to be

aggregated by periods larger than the serial interval. The performance boost outweighs costs

associated with having fewer data points. We expect that these three EWS will work best for

pathogens with short serial intervals; for pathogens with extremely long serial intervals (such

as HIV) reliable use of these EWS is unlikely.

The purpose of this study was not to identify the best EWS, but to investigate the robustness

of this approach to the reporting process. In order to isolate the effects of incomplete reporting

and aggregation error, we ignored parameter uncertainty by fixing epidemiological parameters

(e.g. the infectious period and the introduction rate), rather than drawing them from a distri-

bution. As shown in Table 3, both the mean and the variance scale with the introduction rate,

which is a product of the per capita introduction rate and the susceptible population size. On

the other hand, the index of dispersion, autocorrelation and decay time are all independent of

introduction rate. Uncertainty of important factors, such as the susceptible population size, is

a key challenge to anticipating emergence, and these three EWS may outperform the mean

and the variance if uncertainty is included. Thus, while the mean and the variance are most

robust to imperfect data, they are not necessarily the best EWS.

Instead, our results suggest that imperfect data is not a barrier to the use of EWS. One chal-

lenge to early-warning stems from the potential suddenness of novel pathogen emergence, for
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example SARS was unknown prior to the global outbreak in 2002-2003. For known pathogens,

intermittent data availability presents a separate challenge. Mumps was excluded from the US

CDC’s MMWR in 2002 following a period of low incidence. Subsequently, there was a series

of large outbreaks, notably in 2006 in the Midwest, and mumps was reincluded. Methods such

as EWS are contingent on surveillance efforts being maintained.

In addition to underlining the importance of disease surveillance, our work suggests ways it

can be improved. Case reports sometimes include additional metadata, for example whether

all suspected cases are counted or only clinically confirmed cases. The reporting error of case

reports with differing case identification criteria is expected to be very different, as has been

seen for instance with MERS [50]. This paper shows that EWS depend on the reporting pro-

cess, and cross-validating EWS calculated from each data stream could improve performance.

Provided it is available, how to leverage metadata is a promising avenue for future research

into enhancing EWS.

These results provide an essential stepping stone from previous theoretically focused works

to implementable early-warning systems. Our findings further reinforce the hypothesis that

disease emergence is preceded by detectable EWS. While epidemiological factors preclude

early-warning for certain pathogens, for example Ebola virus (estimates of R0 have consistently

been greater than one [51]) and HIV (see above), they do not rule out many others, including

reemerging childhood diseases [52], H7N9 avian influenza virus [53], and MERS coronavirus

[54]. These pathogens all present public health risk, and EWS may be able to play an important

role in monitoring for their emergence.
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