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Mathematical models of childhood diseases date back to the early twentieth
century. In several cases, models that make the simplifying assumption of
homogeneous time-dependent transmission rates give good agreement with
data in the absence of secular trends in population demography or trans-
mission. The prime example is afforded by the dynamics of measles in
industrialized countries in the pre-vaccine era. Accurate description of the
transient dynamics following the introduction of routine vaccination has
proved more challenging, however. This is true even in the case of measles
which has a well-understood natural history and an effective vaccine that
confers long-lasting protection against infection. Here, to shed light on the
causes of this problem, we demonstrate that, while the dynamics of homo-
geneous and age-structured models can be qualitatively similar in the
absence of vaccination, they diverge subsequent to vaccine roll-out. In particu-
lar, we show that immunization induces changes in transmission rates, which
in turn reshapes the age distribution of infection prevalence, which effectively
modulates the amplitude of seasonality in such systems. To examine this
phenomenon empirically, we fit transmission models to measles notification
data from London that span the introduction of the vaccine. We find that a
simple age-structured model provides a much better fit to the data than
does a homogeneous model, especially in the transition period from the
pre-vaccine to the vaccine era. Thus, we propose that age structure and hetero-
geneities in contact rates are critical features needed to accurately capture
transient dynamics in the presence of secular trends.
1. Introduction
The recurrent epidemics of immunizing infectious diseases, such as measles,
mumps and rubella, represent well-documented examples of cyclic population
dynamics [1–5], especially before the advent of routine infant immunization.
Historically, such diseases mainly affected children owing to their extreme
contagiousness and the long-lasting immunityelicitedby infection.These character-
istics, along with the direct mode of transmission of these diseases, mean that the
epidemiological dynamics of many childhood diseases are capably modelled
using the susceptible–exposed–infected–recovered (SEIR) model framework [6–9].

Early attempts to explain the determinants of these dynamics were initially
focused on models that were not explicitly age-structured (e.g. [2,10–13]).
We call these homogeneous models since ignoring age structure is equivalent
to assuming homogeneous mixing, such that individuals from all age classes
contact each other at the same rate. These models were able to reproduce the
qualitative dynamics of some diseases by capturing key mechanisms: seasonal
variation in contacts and susceptible depletion. However, following the classic
work of Schenzle [14], Bolker &Grenfell [15] argued that quantitatively capturing
pre-vaccine biennial cycles of measles required the explicit consideration of age-
stratified pattern of contacts. The importance of age structure was subsequently
called into question by Earn et al. [16], who demonstrated that the key ingredient
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Figure 1. Schematic diagram of the age-structured compartmental model of
vaccination used in §2–4.

Table 1. Description of parameters of the general age-structured model.

symbol parameter

M number of age classes

μ per capita birth and death rates

σ incubation rate

γ recovery rate

βi,j(t) transmission rate between age class i and j. We

assume βi,j(t) = βj,i(t) for all t, i and j

νi ageing rate from age class i to i + 1, for

i ¼ 1, . . . , M� 1. We also set ν0 = νM = 0

i constant transmission rate from outside the population

p fraction of newborns vaccinated

b mean transmission rate among school-aged children,

averaged over the entire year (refer to electronic

supplementary material, S1)

s amplitude of seasonality in the corrected term-time

forcing function (refer to electronic supplementary

material, S1)
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necessary for a homogeneous model to successfully explain
measles epidemics was the use of an appropriate seasonal
forcing function (mimicking schools opening and closing),
rather than age structure per se (see also [17]). These authors
further demonstrated that, via a linear change of variables, a
single bifurcation diagram may be constructed to summarize
measles dynamics in response to changes in per capita birth
rates or trends in vaccine uptake.

Models have been less successful at recreating dynamics
during transition from the pre-vaccine to vaccine era of disease
transmission. Under the assumption that the susceptible popu-
lation is replenished by births and that a vaccine confers perfect
protection against infection, theoretically, the vaccine era
dynamics should be similar to the pre-vaccine era but with
birth rates reduced to reflect the vaccine coverage reducing
entry into the susceptible population, as predicted by Earn
et al. [16]. However, a mathematical transmission–vaccination
model that can capture key features of the observed transition
from the regular pre-vaccine erameasles epidemics to themore
irregular vaccine era disease dynamics has remained elusive.
While a homogeneous model with appropriately discounted
susceptible influx rate can adequately reproduce the large
decline in incidence after the introduction of vaccination, the
transient dynamics accompanying the decline have been diffi-
cult to capture, in particular, features such as the changing
periodicity [18].

In this paper,we compared the dynamics of a homogeneous
model and an age-structuredmodel of measles during the tran-
sition from the pre-vaccine to vaccine era. In the age-structured
model, school-aged children were assumed to have high, sea-
sonally varying contact rates (due to school-term forcing),
while adult contact rates were lower and constant throughout
the year. As in a homogeneous model, in the age-structured
model, vaccination has the obvious effect of decreasing the frac-
tion of the population susceptible to measles and hence a
reduced mean transmission rate. However, age-structured con-
tact rates lead to an additional effect of vaccination: reduced
effective amplitude of seasonal forcing. This is due to the shift
in transmission from primarily children to older age groups
in which contact rates are less seasonal.

To illustrate the dynamical impact of age structure, we
compared goodness of fit of a homogeneous model to that of
a model with age structure, using historical measles data from
London. In order to quantify the performance of models in
explaining transient dynamics, we compared model
fits for the pre-vaccine (1945–1968), pre-vaccine and early vac-
cine (1945–1978) and pre-vaccine to modern vaccine era
(1945–1990). Our aim in this study was to examine the hypoth-
esis thatmodels that can capture the dynamic feedback between
susceptible recruitment rates and the shifting age distribution of
prevalence, together with the concomitant impact on the effec-
tive amplitude of seasonality will better explain the data. As a
result, our models were deliberately simple and deterministic.
We found that the age-structured model provided a better
explanation of the data than the homogeneous model in both
the pre-vaccine and the vaccination era.

Previous studies have recognized that age structure is an
important component of the response of measles dynamics to
vaccination [19–25]. In this paper, we emphasize that age struc-
ture is particularly relevant when there are secular trends in
transmission, including the transition period soon after the
start of routine immunization.We also provided empirical sup-
port for this claim by showing that age structure substantially
improves the fit of a minimally complex model of measles vac-
cination to data. More broadly, our findings imply that age
structure and heterogeneities in contact rates should be
accounted for to capture transient dynamics associated with
trends in the transmission of immunizing infectious diseases.
2. A transmission–vaccination model with an
arbitrary number of age classes

We considered a standard SEIR model, with an additional V
component for individuals vaccinated at birth [9,26–28]. Each
compartment was further divided into M age classes (M = 1
for the homogeneous model). For each age class i (i = 1
to M), we set Ni to be the total population of age class
i and assume that this remains constant for all time t. Thus,
Vi(t) + Si(t) + Ei(t) +Ii(t) +Ri(t) =Ni for all t and we further
assume that N ¼ PM

i¼1 Ni ¼ 1. The model is illustrated in
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Figure 2. Dynamics of a model with two age classes (M = 2) after vacci-
nation with m ¼ (1=50) yr�1, s ¼ (365=8) yr�1, g ¼ (365=5) yr�1,
ν1 = (1/12) yr−1 and i ¼ 10�4 yr�1. The younger age class N1 is assumed
to have higher and seasonal contact rates due to school-term forcing, β1,1(t) =
bT(t) where T(t) is the term-time forcing function [9]. The older age class N2
is assumed to have contact rates given by β2,2 = β1,2 = β2,1 = (1/2)b where
b ¼ 435 yr�1. Refer to electronic supplementary material, S1 for further
details on how these parameter values were chosen. (a) The aggregate preva-
lence (black) in a model with two age classes changes with vaccine uptake
(red). A biennial cycle of epidemics is observed during the pre-vaccine era.
The asymptotic dynamics in the vaccine era are annual. (b) The average trans-
mission rate �b(t) (black), its mean value and its amplitude of oscillation
decreases with the increasing vaccine uptake given in (a). The mean age
of the infected class (blue) increases with increasing vaccine uptake.
(Online version in colour.)
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Figure 3. Bifurcation diagram of the homogeneous model over the mean
transmission rate b and seasonality amplitude s. The blue line shows that
under 60% vaccination, the homogeneous model is equivalent to a model
with the same seasonality amplitude but a 60% lower transmission rate.
By contrast, the two-age class model shifts to a lower seasonal amplitude
and even lower mean transmission rate. Dynamics of a model with two
age classes (M = 2) after vaccination using the same parameter values as
in figure 2. (Online version in colour.)
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figure 1 and the model equations are given in (2.1). The
parameters of this model are described in table 1 and
mathematical properties of this model are discussed in
Magpantay [29].

For i ¼ 1, . . . , M,
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Figure 4. Comparison of the steady-state dynamics of a model with two age
classes (M = 2) versus a homogeneous model (M = 1). Values used for the
model are the same as in figure 2. (a) Pre-vaccine era, (b) vaccine era. (Online
version in colour.)
dVi

dt
¼ pmdi,1 � mVi þ ni�1Vi�1 � niVi,

dSi
dt

¼ (1� p)mdi,1 � liSi � mSi þ ni�1Si�1 � niSi,

dEi

dt
¼ liSi � sEi � mEi þ ni�1Ei�1 � niEi,

dIi
dt

¼ sEi � gIi � mIi þ ni�1Ii�1 � niIi

and
dRi

dt
¼ gIi � mRi þ ni�1Ri�1 � niRi:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(2:1)
Here, the subscript i refers to the ith age class, δi,j is the
Kronecker delta function, νi is the ageing rate from age
class i to i + 1 (ν0 = νM = 0) and the force of infection
experienced by the ith age class is given by

li ¼
XM
j¼1

bi,j(t)
I j
N j

þ i: (2:2)
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3. Average and effective transmission rates
To illustrate our claim that age-specific contact rates affect the
overall dynamics of transmission, we define the average and
effective transmission rate of the system of equations (2.1). For
p∈ (0, 1), let V(t)¼ (1=p)

PM
i¼1Vi(t), S(t)¼ (1=(1�p))

PM
i¼1Si(t),

E(t) ¼ (1=(1� p))
PM

i¼1 Ei(t), I(t) ¼ (1=(1� p))
PM

i¼1 Ii(t) and
R(t) = (1=(1� p))

PM
i¼1 Ri(t). Then from (2.1) we derive,

dV
dt

¼ m� mV,

dS
dt

¼ m� lS� mS,

dE
dt

¼ lS� sE� mE,

dI
dt

¼ sE� gI � mI

and
dR
dt

¼ gI � mR:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(3:1)

Here, the force of transmission, λ, average transmission rate,
�b(t), and the effective transmission rate, b̂ (t) (Earn, Rohani,
Bolker & Grenfell 2000, unpublished results) are given by

l(t) ¼ b̂ (t)I(t)
N

þ i, b̂ (t) ¼ (1� p)�b(t) and

�b(t) ¼
PM

i,j¼1 bi,j(t)(I jSi=Nj)PM
i,j¼1 (I jSi=N)

:

9>>>>=
>>>>;

(3:2)

The average transmission rate, �b(t), reflects the transmission
rate averaged over all contacts between susceptible and infected
individuals in all age classes at a specific time t. The special case
with homogeneous contact rates among age classes, βi,j(t) =
β1,1(t) for all i and j, is equivalent to a homogeneous model
with only one age class and the average transmission rate
�b(t) ¼ b1,1(t).

The effective transmission rate, b̂ (t), takes into account the
reduction in transmissiondue tovaccination.Forahomogeneous
model, the system in (3.1) is equivalent to a homogeneousmodel
with no vaccination butwith the original transmission rate β1,1(t)
replaced everywhere by b̂ (t) ¼ (1� p)b1,1(t). This has been
noted before by Earn et al. [16] for homogeneous models.

We note that we derived the expressions for the average
and effective transmission rates under the assumption that
the vaccine coverage p is constant. However, in this paper, we
use the expressions in (3.2) to explore what happens to these
transmission rates over long periods of time over which
the vaccine coverage might have changed for a portion of
that period.

In the model equations (2.1) and the derivation of the aver-
age and effective transmission rates above, we assumed that all
age classes have the same constant death rate. The analysis is
the same if we make the assumption that the death rate
is zero in all age classes except for the last one.
4. Comparison of the dynamics of age-structured
and homogeneous models

To illustrate the interplay between trends in transmission,
seasonality and epidemiological dynamics, we contrasted



Table 2. Comparison of the homogeneous model and age-structured model (M = 3) at their maximum likelihood point estimates to different lengths of the
London measles data. The homogeneous models each have 12 free parameters (including six spline coefficients for the seasonal transmission rate, one
parameter for infection from outside the population, two parameters for the reporting model, three free initial conditions). The age-structured models have
nine more parameters than the homogeneous models (including five additional transmission rate parameters and four additional initial conditions). Refer to
electronic supplementary material, S4 for details.

length of data
log-likelihood of
homogeneous model

log-likelihood of
age-structured model

difference in
log-likelihood

difference
in AIC

1945–1968 − 7628 − 7497 131 − 244

1945–1978 − 10 754 − 10 531 223 − 428

1945–1990 − 13 793 − 13 638 155 − 292

Table 3. Best fit parameter values of the age-structured model and 95%
confidence intervals computed using profile likelihood. All transmission rates are in
units of yr− 1. The parameter i in this model is the infection rate from outside the
population in units of yr− 1 times the population size (refer to electronic
supplementary material, S4.4). Due to the use of seasonal B-splines to fit the
seasonal transmission rate for older children, the geometric mean of βCC(t) over
time at the maximum-likelihood point estimate is straightforward to compute and
is presented here instead of the arithmetic mean. A summary of the descriptions
of the model parameters is given in electronic supplementary material,
tables S4.2–S4.3. Estimates of the basic reproduction number using the maximum-
likelihood point estimates are provided in electronic supplementary material, S5.

length of
data parameter

max. likelihood
estimate

1945–1968 βYY 39.5 (38.8, 40.0)

βYC 4.2 (3.2, 4.8)

βYA 1.8 (1.8, 2.8)

βCA 52.8 (46.2, 60.3)

geom. mean of βCC(t) 383.9

βAA 154 (108, 246)

i 3703 (3303, 5255)

ρ 0.59 (0.57, 0.61)

τ 0.56 (0.54, 0.58)

1945–1978 βYY 32.1 (22.5, 33.2)

βYC 9.2 (6.0, 17.0)

βYA 44.6 (15.2, 94.5)

βCA 11.8 (7.6, 17.2)

geom. mean of βCC(t) 417.9

βAA 1199 (1109, 1267)

i 10 110 (9659, 10 711)

ρ 0.49 (0.48, 0.51)

τ 0.65 (0.64, 0.67)

1945–1990 βYY 7.5 (6.4, 8.9)

βYC 22.2 (20.0, 24.2)

βYA 95.1 (83.5, 105.3)

βCA 6.6 (3.2, 11.0)

geom. mean of βCC(t) 359.6

βAA 58.1 (16.0, 166.2)

i 13 564 (12 963, 14 314)

ρ 0.37 (0.36, 0.38)

τ 0.72 (0.71, 0.74)
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the dynamics of an age-structuredmodel (equations (2.1)) with
two age classes (M = 2) with those of a homogeneous model
(M = 1) before and after the introduction of vaccination. In
both the homogeneous and age-structured cases, we assumed
that contact rates were higher during school terms than school
holidays such that β1,1(t) = bT(t), where T(t) is the corrected
term-time forcing function [9] and is fully described in the elec-
tronic supplementary material (electronic supplementary
material, S1). In the age-structured model, the older age
class is assumed to have lower and constant contact rates
within its own age class and with the younger age class
(b2,2 ¼ b1,2 ¼ b2,1 ¼ 1

2 b). All parameter values in the model
were fixed except for b, the mean transmission rate and s, the
amplitude of seasonality.

Numerical solutions of the homogeneous model identified
stable periodic orbits with periods of 1, 2 and 3 years for differ-
ent values of the mean transmission rate, b, and the amplitude
of seasonality, s. Using numerical continuation techniques [30],
we solved for periodic solutions of the model (with periods
of 1, 2 or 3 years) at each point on a 400 × 200 grid over the
(b, s) plane and determined the stability of these periodic sol-
utions by calculating Floquet multipliers (refer to electronic
supplementary material, S3).

To illustrate the dynamical impacts of immunization in an
age-structure model, in figure 2a, we present an example tra-
jectory of the model with two age classes as vaccine coverage
jumps from zero to 30% in 1968 and linearly ramps up to 60%
by 1980. These vaccine coverage values are motivated by esti-
mates of measles immunization coverage in England and
Wales from 1968 to 1980 [31]. In this section, vaccine coverage
was maintained at 60% after 1980. This exercise provided us
with some intuition on why the transition period is difficult
to recreate in homogeneous models (as also shown in §5).

Figure 2a demonstrates that biennial epidemics in the pre-
vaccine era giveway to longer period transients that eventually
settle to annual epidemics [16,31]. The dynamical effects of
increasing immunization coverage on the average transmission
rate �b(t) are shown in figure 2b. In this age-structured model,
both themean value of �b(t) aswell as the amplitude of seasonal
variation decrease in the transition from pre-vaccine to vaccine
era. As expected, the mean age of infection increases with
increasing vaccine coverage. This shift in the age distribution
of the infected class leads to a parallel shift in �b(t) from high
and strongly seasonal when the core transmission group is
school-aged children (the first age group in our model), to
lower and less seasonal when fewer children are infected.

In figure 3, we present the two-dimensional bifurcation
diagram of the homogeneousmodel. The four different colours
reflect the four distinct dynamical regimes investigated. In the
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white region, the system has a 1-year periodic solution that is
stable, with no stable 2- or 3-year periodic solutions. In the
light green region, stable 1-year and 2-year periodic solutions
are observed, with asymptotic dynamics determined by the
initial conditions of the model. In the orange region, the
system has 1-year and 3-year stable periodic solutions, and,
finally, in the dark green region, only a 2-year periodic solution
was found to be stable.

We chose parameter values (b, s) = (bhom, shom) for the homo-
geneousmodel that lie on thedarkgreen region in the absenceof
immunization. As has been shown by Earn et al. [16] and
demonstrated by equation (3.1) for the homogeneous model,
vaccinating a fraction p of the population is equivalent to multi-
plying the mean transmission rate b by a factor of (1− p). This
does not affect the amplitude of seasonality s. Thus, before
vaccination the homogeneous model has parameters bhom and
s = shom, and after vaccination with coverage p, the new model
has dynamics that are equivalent to that of a homogeneous
model with b = (1− p)bhom and s = shom. This is illustrated on
the bifurcation diagram demonstrating that, in the vaccine era,
the homogeneous model ends up in the orange region, with
dynamics described either by an annual or triennial cycle.

We calculated the parameters (b, s) = (bage, sage) necessary for
the age-structured model to have the same pre-vaccine era aver-
age transmission rate magnitude and amplitude as the
homogeneousmodel. Thedetails of this calculationaredescribed
in electronic supplementarymaterial, S2.Notably, this results in a
basic reproductionnumber (computedusing thenext-generation
matrix method and using the mean transmission rate for the
children’s age class) of about 7.8 for the age-structured model
and about 24 for the homogeneous model. This discrepancy
between the basic reproductionnumbers betweenhomogeneous
and age-structured models displaying the similar prevalence
has been documented before [21,32].
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We confirmed that by using (b, s) = (bage, sage) the age-
structured model displayed similar pre-vaccine era dynamics
to the homogeneousmodel (a 2-year periodwith similar trajec-
tory of the total number of infectious individuals). While the
age-structured model does not have precisely the same bifur-
cation structure as a homogeneous model (discussed in
electronic supplementary material, S4), we observed similar
dynamics when their effective transmission rates b̂ (t) had
the same mean and amplitude. Thus, to illustrate how the
dynamics of the age-structured model change under
vaccination, we plotted the magnitude and amplitude of the
effective transmission rate b̂ (t) of the age-structured model
on the bifurcation diagram in figure 3. Starting the age-
structured model at the same point in the bifurcation diagram
as the homogeneous model, we note that increasing vacci-
nation leads to a divergence in their respective trajectories.
In particular, late into the vaccine era, with steady vaccine
coverage of p, the age-structured model ends up in the white
region of the bifurcation diagram, with b̂ (t) having magnitude
less than (1− p)bhom and amplitude that is less than shom.
This suggests that the vaccine era asymptotic dynamics of the
age-structured model can only eventually settle down to a
solution with a 1-year period. This clearly contrasts with the
homogeneous model, which also allows for vaccine era
dynamics with a stable 3-year period.

In figure 4, we present the asymptotic solutions of both
homogeneous and age-structured models. In the pre-vaccine
era, both display biennial cycles as shown in (figure 4a). After
vaccination, we know that the homogeneous model can
have either a 1-year or 3-year periodic solution, and the age-
structured model has a 1-year periodic solution. The 3-year
periodic solution of the homogeneous model and the 1-year
periodic solution of the age-structured model are plotted
together in figure 4b to show how the two models with similar
pre-vaccine dynamics have very different vaccine era dynamics.

5. Comparison of the fit of an age-structured
and homogeneous model to London measles
data (1945–1990)

To examine how the choice of model structure affects infer-
ences made about data, we fitted a homogeneous model and
an age-structured model with three age classes to historical
reports of measles cases in London from 1945 to 1990. These
models were based on (2.1) (with M = 3 for the age-structured
case andM = 1 for the homogeneous case); full details are avail-
able in the electronic supplementary material, S4. All data and
code required to reproduce the results of §5 are available via the
Dryad Digital Repository (doi:10.5061/dryad.vj645q8). We
emphasize that our goal here is not to produce the best per-
forming model for measles, but to support our central thesis
that age-structured models can better capture transient
dynamics when trends in transmission exist.

Assuming a mean lifetime of 70 years, the first age class
corresponded to ‘young children’ with a mean age of about
3.8 years (n1 ¼ (1=4) yr�1). The next age class corresponded to
‘older children’ who are in school, with a mean age of about
14 years (n2 ¼ (1=12) yr�1) and the last age class corresponded
to ‘adults’. Details on computing these mean ages, the age dis-
tribution within each age class and other information about
model fitting are provided in the electronic supplementary
material, S4. We set β2,2(t) to be a seasonal B-spline composed
of six basis functions with an annual period. The other trans-
mission rates are assumed to be constant over time: β1,1(t) =
βYY, β1,2(t) = β2,1(t) = βYC, β1,3(t) = β3,1(t) = βYA, β2,3(t) = β3,2(t) =
βCA and β3,3 = βAA. In this notation for the transmission rates,
the subscript Y refers to age class i = 1 (young children), C
refers to age class i = 2 (older children) and A refers to age
class i = 3 (adults). We also split the exposed and infectious
compartments into three sub-compartments to allow for
gamma-distributed latent and infectious periods [33,34].

We obtained measles reports and demographic data
(number of births and population sizes) for Greater London
from Grenfell et al. [31]. We calculated the birth rates using
the raw data, and estimated the population for inner London
by multiplying the values for Greater London by 0.4 (refer to
electronic supplementary material, S4). These covariates are
plotted in figure 5. We see that the total population size N is
changing over time. We set the birth rate in equations (2.1) to
be a time-varying birth rate μB(t) using the data, and the
‘death’ rate in equations (2.1) to be a time-varying rate μ(t)
that reflects both death and net migration, to keep the popu-
lation size correct according to the data (refer to electronic
supplementary material, S4).

The system of equations for the states of the model was
deterministic (and hence the number of true cases over any
interval is deterministic), but we modelled the reporting of
cases using a negative-binomial distribution. We fitted the
age-structured model to measles reports over three different
periods: (1) 1945–1968, which represents the pre-vaccine

http://dx.doi.org/10.5061/dryad.vj645q8
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Figure 8. The infected fraction, susceptible fraction and average transmission rate over time of the homogeneous model at its maximum-likelihood parameter values
when fitted to the 1945–1990 data and simulated from 1945 to 2020. Recall that the average transmission rate �b(t) from (3.2) is the transmission rate averaged
over all contact between the different susceptible and infected age classes. With only one age class (M = 1) the average transmission rate simplifies to
�b(t) ¼ b1,1(t) is the corrected school-term forcing function with a 1-year period that does not change from the pre-vaccine to the vaccine era.
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period, (2) 1945–1978, which includes the first 10 years after
the introduction of vaccination, and (3) 1945–1990, which
extends deep into the vaccine era with high vaccine coverage
(figure 5). For comparison, we also fitted a corresponding
model with only one age class (M = 1) to data from these
different eras. All parameter fitting was conducted using
the trajectory matching function in the R package pomp [35].

A comparison of the Akaike information criterion (AIC) of
the homogeneous (M = 1) and age-structured (M = 3)models at
their maximum-likelihood parameter estimates is presented in
table 2. This shows that the fit of the age-structured model is
consistently much better than that of the homogeneous
model, irrespective of the time period considered. The differ-
ence between the AICs of the two models is largest when
they are fitted to the 1945–1978 data (pre-vaccine era to the
early vaccine era). The best fit parameter values for the
age-structured model are also presented in table 3.
Representative realizations (including measurement
noise) of the fitted age-structured and homogeneous
models are shown in figure 6. This shows that both models
can adequately reproduce the transition from annual cycles
to the pronounced 2-year epidemics of measles in pre-vaccine
London. Both models may still be lacking mechanisms to
more accurately reproduce the vaccine era dynamics, but
the results in table 2 show that the age-structured model
does a better job than the homogeneous model. A compari-
son of the log-likelihood values corresponding to each data
point of the homogeneous and age-structured models is
also shown in figure 7.

The trajectories of the infected and susceptible fractions of
the two models as well as their average transmission rates
(�b(t), given by (3.2)) are shown in figures 8–9. In figure 8, the
average size of the susceptible population in the homogeneous
model is shown to not change very much relative to the entire
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population. The average transmission rate of the homogeneous
model is also presented in the bottom panel to emphasize that
this is not affected by vaccination. By contrast, in figure 9, the
susceptibility of the young children in the age-structured
model is shown to be markedly decreasing as more young chil-
dren are vaccinated. This affects the average transmission rate of
the model. In the bottom panel, we see that the average trans-
mission rate of the age-structured model has an overall lower
magnitude than that for the homogeneous model, and it
changes with vaccination. It initially increases in magnitude
during the transition period, then eventually decreases in mag-
nitude and seasonality amplitude. The eventual decrease is
similar to that displayed by the average transmission rate of
the testmodelwith two age classes shown in figure 2b; however,
the temporary increase in magnitude during the transition
period is not found in the test model with two age classes.
This indicates that the transient dynamics during the transition
period can be sensitive to the age structure of the model popu-
lation. We present the changing composition of the infected
and susceptible populations of the age-structured model in
figure 10. As the number of infections from children go
down, the fraction of the infected population that are adults
increases. This is consistent with studies of age-stratified
measles notification from England and Wales [23].
6. Discussion
In this paper, we used models of disease transmission based
on the standard SEIR formalism to investigate the importance
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of age in the dynamics of infectious diseases in response to
secular trends in transmission, resulting from, for example,
sustained immunization. We found that when parametrized
appropriately, the trajectories of the infectious classes gener-
ated using homogeneous and age-structured models can be
very similar in the pre-vaccine era when most of the trans-
mission may be occurring within one core group (usually
school-aged children) with high and strongly seasonal con-
tact rates. However, the dynamics of these models can
diverge in the vaccine era, where the transmissions among
school-aged children drastically go down and infections in
older age classes, with lower mean contact rates and no sea-
sonalilty, account for a significant fraction of transmission.
The results in figure 3 show that vaccination in the age-
structured model leads to a lower overall mean and
amplitude of the effective transmission rate of the disease
than does a homogeneous model. Both of these effects are
due to the shift in disease transmission from primary
school aged children to older age classes. Thus while an
age-structured model can have similar dynamics to a homo-
geneous model in the pre-vaccine era, their predictions can be
qualitatively different in the vaccine era (figure 4).

We have also shown that an age-structured model
provides a much better fit (as quantified by AIC) to
the London measles data compared to an analogous
homogeneous model. As shown in table 2, this is true irre-
spective of the time period considered. The fact that the
age-structured model fits the 1945–1968 (pre-vaccine era)
data better than the homogeneous model suggests that age
structure is already relevant even in the absence of vacci-
nation. This difference in model performance may arise
from changes in per capita birth rates during this period affect-
ing the average transmission rate, as shown in figure 9 (and in
electronic supplementary material, figure S4.7, which shows
the changing transmission rates for the fit to the 1945–1968
data). The difference in the AIC of the age-structured and
homogeneous models is largest when they are fitted to the
1945–1978 data, which encompasses 10 years of the
early vaccine era. This result indicates a distinct advantage
for age-structured over homogeneous models in explain-
ing the transition period following the roll-out of the infant
immunization programme. The difference between these
models appears to be the most pronounced during this
period because this is the interval over which the rate of
change of the susceptible population’s age structure is
most extreme. Finally, we found that a homogeneous
model requires a much higher average transmission rate
to model the 1945–1990 data compared to the age-structured
model. This has important implications for control efforts and
further supports our conclusion that age structure is an essen-
tial component for modelling pre-vaccine to vaccine era
disease dynamics.

As in §4, the basic reproduction numbers of the age-struc-
tured models in §5 were found to smaller than those for
homogeneous models fitted to the same data. These reproduc-
tion numbers, aswell as themethods used to compute themare
detailed in electronic supplementary material, S5. The esti-
mated force of infection experienced by each age class is also
shown in electronic supplementary material, S6. These results
are compared to estimates of the force of infection and basic
reproduction number in Edmunds et al. [21].

Our data fitting results support that the inclusion of age-
structured contacts improves our models of transmission
and vaccination. However, we note several ways in which
the fit of our age-structured models might be improved.
First, we expect that the use of stochastic models would
be better for modelling measles epidemiology, especially
during the vaccine era when incidence is lower so that
intrinsic stochastic fluctuations assume greater dynamical
importance (e.g. [32,36]). The deterministic models (both
homogeneous and age structured) that we have fitted to
the data currently require high levels of observation noise
to compensate for the lack of stochasticity in the infection
process. This is evident in figure 6. Second, we note that
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we have been using a linear interpolation of the annual
national vaccine coverage data for the vaccine coverage
function p(t) in the model. The use of this annual national
average may not be best for modelling measles in London
where the vaccine coverage in the city may differ from the
national average. Since the dynamics of a model appear to
be sensitive to our assumptions regarding vaccine coverage,
we are currently looking at ways to improve our assump-
tions on the function p(t). In particular, we are
investigating whether we can reduce this sensitivity by
treating vaccine coverage as data, rather than as a precisely
known covariate, using non-parametric approaches to
represent the latent true vaccine coverage.

Finally, we note that as the demand for real-time
forecasting of infectious disease dynamics increases, the
need for mechanistic models that adequately translate
the individual-level kinetics of transmission to their
population-level impacts is clear.
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