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Measles, an acute viral disease, continues to be an important cause of child-

hood mortality worldwide. Infection with the measles virus is thought to be

associated with a transient but profound period of immune suppression.

Recently, it has been claimed that measles-induced immune manipulation

lasts for about 30 months and results in increased susceptibility to other

co-circulating infectious diseases and more severe disease outcomes upon

infection. We tested this hypothesis using model-based inference applied

to parallel historical records of measles and whooping cough mortality

and morbidity. Specifically, we used maximum likelihood to fit a mechanis-

tic transmission model to incidence data from three different eras, spanning

mortality records from 1904 to 1912 and 1922 to 1932 and morbidity records

from 1946 to 1956. Our aim was to quantify the timing, severity and patho-

genesis impacts of measles-induced immune modulation and their

consequences for whooping cough epidemiology across a temporal gradient

of measles transmission. We identified an increase in susceptibility to

whooping cough following recent measles infection by approximately 85-,

10- and 36-fold for the three eras, respectively, although the duration of

this effect was variable. Overall, while the immune impacts of measles

may be strong and clearly evident at the individual level, their epidemiolo-

gical signature in these data appears both modest and inconsistent.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
Understanding how infection with one pathogen can affect the severity,

transmissibility or susceptibility to co-circulating pathogens and their epide-

miological, medical and evolutionary implications is increasingly appreciated

[1–4]. Such a ‘polymicrobial’ perspective [5,6] needs to take into account mech-

anisms that may be primarily ecological [2] or immunological [3] and may lead

to interactions among pathogens that can be categorized as interference compe-

tition (resulting from cross immunity [7] or competition for susceptibles [8], and

host resources (bottom-up control of population size via resource limitation)

[9]), or facilitation (owing to, for example, antibody-dependent enhancement

[10] and immune suppression [11]).

Historically, the potential interaction between infectious diseases was well

recognized [12]. For instance, the medical historian Creighton [13] observed

that the 1808 epidemic of measles in Glasgow was followed by many deaths

attributed to whooping cough in 1809 and that while an association between

the two pathogens was generally accepted, it was poorly understood. Similarly,

Laing & Hay [14, p. 590] commented that ‘Most writers assert that there is an

intimate association between epidemics of measles and epidemics of whooping

cough, and that an epidemic strongly predisposes to the subsequent

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0270&domain=pdf&date_stamp=2019-05-06
http://dx.doi.org/10.1098/rstb/374/1775
http://dx.doi.org/10.1098/rstb/374/1775
http://dx.doi.org/10.1098/rstb/374/1775
mailto:nnoori@uga.edu
https://dx.doi.org/10.6084/m9.figshare.c.4444247
https://dx.doi.org/10.6084/m9.figshare.c.4444247
http://orcid.org/
http://orcid.org/0000-0003-3561-2720
http://orcid.org/0000-0002-7221-3801


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180270

2
development of the latter’. Consistent with this, Coleman [15]

reported an association between historical measles and

whooping cough incidence in the USA, with peak whooping

cough incidence lagging measles by approximately three to

four weeks. Clinical reports of sequential infections have con-

cluded that the order of exposure was important: whooping

cough developing during a measles infection was likely to

be more severe [16], while measles infection following

whooping cough either had no effect on the severity of

either disease [16] or served to ameliorate whooping cough

symptoms [17]. As a result of previous empirical experiences,

as far back as 1895, it was predicted that if the prevalence of

measles could be reduced, it would diminish the death toll

from both measles and whooping cough [18].

More recently, it has been shown that a reduction in measles

transmission after the introduction of the vaccine was associated

with a 23% decrease in all-cause mortality among children aged

less than 5 years from 1990 to 2008 across the globe [19]. Mina

et al. [20] revisited this topic and used population-level data to

document the roll out of measles immunization coinciding

with declines in non-measles infectious disease deaths. These

authors cited ample immunological evidence to explain their

findings. Specifically, it is known that infection with the measles

virus (MV) initiates in macrophages and dendritic cells in the

respiratory tract, followed by rapid spread to T- and B-lympho-

cytes in the draining lymphoid tissues, and then to multiple

organs [11]. Subsequent infection of the cellular receptor of

the MV results in a partial depletion of memory lymphocyte

repertoire, which is masked by the rapid expansion of

MV-specific lymphocytes, leading to ‘immune amnesia’ [21].

Measles immune suppression extends for several weeks to

months [11,22]. Challenge studies of measles infection in non-

human primates have shown that while infectious virus is

rapidly cleared, MV RNA persists in blood for up to three

months after infection. The persistence of viral RNA is thought

to be responsible for the prolonged immune suppression;

however, this causal relationship is not conclusively establi-

shed [23,24]. Mina et al. [20] found that their best-fitting

model assumed a mean duration of measles-induced

immuno-modulation of approximately 30 months.

These prior studies motivated us to examine the conse-

quences of transient measles-induced immune suppression

on the epidemiology and pathogenesis of subsequent

exposure to whooping cough. Whooping cough is a highly

contagious disease of the respiratory tract caused primarily

by the bacterium Bordetella pertussis [25]. We chose to exam-

ine the interaction of measles with whooping cough both

because of the historical literature regarding their suspected

association [13,14,18], but also because similarities in their

epidemiological traits led to a substantial overlap in the age

groups affected, with a similar estimated mean age of infec-

tion of approximately 4–5 years in England and Wales

during the 1940s and early 1950s [26,27].

To quantify the nature and magnitude of interactions, we

used likelihood-based statistical inference and confronted a

series of mechanistic transmission models that comprised

our hypotheses regarding the impacts of measles-induced

immune modulation on whooping cough epidemiology

with weekly incidence data from London that spanned

three distinct periods. We focused on the pre-vaccine era

since previous work on the rollout of measles immunization

in 1968 has shown no obvious impact of measles vaccination

on the epidemiology of pertussis [28].
Given the assumption of no history of whooping cough

infection, we tested whether recent infection with measles

(i) increased an individual’s susceptibility to subsequent

whooping cough infection (leading to a reduction in the

whooping cough infectious dose), or (ii) raised the risk of

mortality owing to whooping cough. In both cases, we also

estimated the duration of the effect. Comparison with fitted

models that focused on whooping cough alone allowed us

to gauge whether our explanation of whooping cough data

is improved by simultaneous consideration of the putative

effects of measles.
2. Methods
(a) Mortality and morbidity incidence data
Our data consisted of weekly notifications of mortality owing to

measles and whooping cough from London during 1904–1912

and 1922–1932, published by the Office of Population, Censuses

and Surveys [29]. Previous studies have suggested that over this

period, the case fatality probability for measles dropped from

13–20% to 5–7% [30,31] while for whooping cough estimates

suggest a reduction from 10–13% to 3–9% [32,33]. We chose to

fit these two eras separately to our model considering that dis-

ease-induced mortality and the amplitude of seasonality

changed over the 20-year period concerned [31]. We also studied

weekly records of measles and whooping cough (morbidity) inci-

dence in the pre-vaccine era (1946–1956) (figure 1). In addition to

epidemiological data, we obtained parallel demographic data con-

taining annual per capita birth rates as well as annual population

size estimates in London. Weekly population sizes and per capita
birth rates were obtained by smooth-spline interpolation.

(b) The process model
We formulated a seasonally forced deterministic continuous-time

susceptible-infectious-recovered (SIR) model of whooping cough

(figure 2), using measles incidence as a covariate [34,35]. We refer

to this as the model. Compartments S and I were additionally

subdivided to take into account individual status with respect

to measles infection. Specifically, SM and IM represent susceptible

and infectious individuals recently infected with measles, while

individuals in S and I have no relevant history of measles. We

estimated the size of SM, assuming that it is proportional to

measles incidence in the past n weeks, corrected for under-

reporting. For instance, when examining mortality reports, we

have, at time t, SM(t) ¼ (
Pn�1

i¼0 M(t� i)=a2 � hN(t)) S(t), where

N(t) is the population size, M(t) is the weekly reported measles

deaths, a2 is the measles-specific case fatality probability and h

is the measles reporting probability. To avoid potential trade-

offs with other parameters and to ensure of the identifiability

of other parameter values, we took advantage of previous esti-

mates of measles reporting probabilities (range 49–55%

[31,36,37]) to fix h at 52%. We assumed that the reporting rate

of measles deaths is similar to the reporting rate of measles

cases. Also, based on the literature [31], disease-induced mor-

tality owing to measles, a2, was fixed at the values of 0.15 and

0.025 for 1904–1912 and 1922–32, respectively. Parameters quan-

tifying interaction with measles were estimated along with

parameters that determine the basic epidemiology of whooping

cough, including its basic reproductive ratio (R0), the amplitude

(b1) and the phase (f ) of seasonality in transmission and the rate

of imports (i).

We used this model to test two hypotheses. First, that measles

infection over the past n weeks increases susceptibility to whoop-

ing cough. This mechanism was implemented by incorporating a

parameter, u, that represents the susceptibility impact of measles

infection. The first hypothesis, therefore, implies u . 1. The
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Figure 1. Weekly notification of whooping cough and measles fatality cases in London during (a) 1904 – 1912 and (b) 1922 – 1932 and (c) weekly incidence of
whooping cough and measles during 1946 – 1956.
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Figure 2. Schematic of the whooping cough transmission model. Individuals
progress from compartments S to I and I to R at rates of l and g, respect-
ively. Individuals recently infected with measles progress from compartments
SM to IM and IM to R at rates of ul and g, respectively. Disease-induced
mortality owing to whooping cough and measles are represented by a1

and a2, respectively. Here, M(t) is number of measles cases at week t.
Immune mediation parameters are coloured red; u quantifies the suscepti-
bility to whooping cough after measles infection, aM represents the risk
of disease-induced mortality owing to whooping cough after measles infec-
tion, and n is the immune modulation duration. The slice size does not
represent the actual size of SM.
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second hypothesis is that measles infection increases the risk

of mortality owing to whooping cough. We tested this by

examining whether the case fatality estimated for IM individuals

(denoted by aM) is greater than that estimated in a model of

whooping cough alone (a1). For the third era (1946–1956), we

fitted the morbidity data to the model, and therefore tested

only the first hypothesis. In each case, we estimated the time

scale of any association, n.

Our model ignores process noise and the only source of

variability in observations is assumed to be the measurement

error. Details of the process model are given in electronic
supplementary material, S1, with the model parameters

described in table 1.

(c) Trajectory matching and likelihood profiles
We fitted our deterministic models to the whooping cough data

using maximum-likelihood estimation (MLE) via trajectory

matching implemented in the R package ‘pomp’ [38]. To find

MLEs, we initiated a global search of parameter space comprised

of 5000 points generated using Latin Hypercube Sampling to span

the parameter ranges shown in table 1. These points were used to

sequentially initialize (i) the Nelder-Mead [39], (ii) simulated

annealing (SANN; [40]) and (iii) the Subplex algorithms [41].

We constructed the likelihood profiles for each of the measles

interaction parameters (u, aM, n) as well as a1; that is, we varied

the value of the parameter of interest systematically while max-

imizing the likelihood over all the remaining model parameters

using trajectory matching. Furthermore, a smooth line was

fitted through the values at the sampled points. The 95 per

cent confidence interval was taken to be the parameter range

that is x2
1 � 2 log-likelihood units below the maximum univariate

confidence limits using the x2 distribution [42]. To visualize the

potential interactions among these parameters, we also con-

structed two-dimensional likelihood surfaces; (u, n), (aM, n)

and (u, aM). To quantify the agreement between the fitted

model and data, we also calculated the generalized R2. Full

details of our protocol for likelihood estimation are given in elec-

tronic supplementary material, S2–S4.
3. Results
(a) Simulation study
To assess the feasibility of our approach, we first carried out a

systematic simulation study. For a given measles time series,



Table 1. Description of fitted disease parameters, and initial conditions.

parameter interpretation value or allowed range

R0 basic reproduction number [1,50]

b1 seasonality amplitude [0,1]

f timing of the peak transmission rate [0,1]

i number of imported cases [1,50]

a1 disease-induced mortality owing to whooping cough [0,1]

a2 disease-induced mortality owing to measles 0.15 (1904 – 1912), 0.025 (1922 – 1932)

h reporting probability of measles 0.52

u enhanced susceptibility to whooping cough after measles infection [0.5,200]

aM disease-induced mortality owing to whooping cough after measles

infection

[0,1]

n duration of measles-induced immune suppression [0,30]

e i reporting probability of whooping cough 0.15

ci overdispersion [0,1]

m death rate 0.025 yr21 (1904 – 1912), 0.018 yr21 (1922 – 1932,1946 – 1956)

1/g infectious period of whooping cough 21 days

S0 initial fraction of susceptible class [0.001,0.15]

I0 initial fraction of infected class [0.0001,0.01]

I0
M initial fraction of infected class following measles infection [0.0001,0.01]

R0 initial fraction of recovered class 1 2 S0 2 I0
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using the model with the interaction term between whooping

cough and measles (we call it here SIR-MV), we simulated

whooping cough incidence data assuming different combi-

nations of immune-suppression severity and duration. We

then fitted models to these synthetic data to explore the iden-

tifiability of measles-induced immune-suppression duration,

n, and impact, u. Full protocol details are provided in elec-

tronic supplementary material, S9. We found that the

severity of immune suppression (u) was generally well ident-

ified (electronic supplementary material, figure S10).

However, reliable estimates of the duration of immune sup-

pression (n) are only possible when immune impact (u) is

large (electronic supplementary material, figure S10).

We also carried out a separate simulation study to test

whether our model can estimate the simulation parameters

from aggregate data. We first simulated a time series using a

set of parameter values as shown in electronic supplementary

material, table S3. Next, we fitted our model to the simulated

data and estimated the parameters. Our fitting algorithm

could accurately estimate the parameter values that generated

the simulated data (electronic supplementary material, table S3).

(b) Era I. 1904 – 1912
For the fitted SIR-MV model, infection with measles signi-

ficantly increased the susceptibility to whooping cough

(u ¼ 85; CI: [5,153]), although this effect only lasted for

one week (n¼0; CI: [0,11] (figure 3a,b). n ¼ 0 here means

that measles infection increased the susceptibility to whoop-

ing cough within the same week. The model also identified

an almost threefold increase in risk of mortality owing to

whooping cough (aM ¼ 0.2; CI: [0.09-1] compared with

a1 ¼ 0.07; CI: [0.07-0.08]) (figure 3c,d ). Our two-dimensional

likelihood profiles highlighted a clear trade-off between
the duration and magnitude of the susceptibility impact

(electronic supplementary material, figure S1b). Shorter

durations of immune suppression were correlated with a

stronger susceptibility impact. By contrast, we found no

correlation between disease-induced mortality owing to

whooping cough and the duration or magnitude of suscepti-

bility (electronic supplementary material, figure S1a and

S1a,c). The proportion of infectious individuals previously

infected with measles (IM/I) was generally low and ranged

between 0.1% to 3% during peak whooping cough season

(electronic supplementary material, figure S7a).

Our fitted SIR model consisting of whooping cough alone

yielded very similar epidemiological estimates to the SIR-MV

model. However, while the log-likelihood for the more com-

plex SIR-MV model was higher, the nearly identical Akaike

information criterion (AIC) scores indicate that the SIR-MV

model does not outperform the SIR model. We also com-

pared model performance by calculating the R2 for the

fitted SIR and SIR-MV models relative to the data (electronic

supplementary material, figure S4). We found comparable

goodness-of-fit performance reaffirming that, for these data,

the addition of measles as a covariate did not improve

model performance (table 2).

(c) Era II. 1922 – 1932
The best-fitting SIR-MV model from the second era indicated

a 10-fold increase in susceptibility u ¼ 9.77; CI: [9,11],

although under this model the effect was predicted to

extend to 29 weeks (n ¼ 29). There was no support for a mor-

tality effect in this era (aM ¼ 0.0001; CI:[1024,0.005] and a1 ¼

0.05) (figure 3e–h). At the peak of whooping cough trans-

mission, individuals previously infected with measles (IM)

accounted for up to 19% of whooping cough fatalities (I),
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though this figure dropped to 0.23% during the troughs (elec-

tronic supplementary material, figure S7b). Comparison with

the fitted SIR model indicated strong support for measles-

driven immune effects shaping whooping cough epidemiol-

ogy in this era, with DAIC ¼ 107 (table 2; electronic

supplementary material, figure S5). The SIR-MV model also

better captured the peaks of whooping cough epidemics

than the SIR model with respective R2 of 0.38 and 0.26. How-

ever, while our SIR and SIR-MV model fits for the first era

exhibited strong parametric similarity, in this second era,

the two models provide contrasting explanations of the

data. The SIR estimates are largely consistent with those

from the first era, especially an R0 value of approximately

30. The corresponding estimate for R0 for the SIR-MV

model, however, is approximately 9 (table 2), although here

measles infections were predicted to lead to increased suscep-

tibility to pertussis for over six months. To ensure that the

SIR-MV model was not trapped at a local maximum, we re-

fitted the model but fixed R0 at 30, which is close to the esti-

mated value for the SIR model (electronic supplementary

material, table S2). We found no support for this fixed-R0

model, with log-likelihood, AIC and R2 all clearly identifying

the model with R0 � 9 as the better fit to these data (electronic

supplementary material, figure S8).
(d) Era III. 1946 – 1956
As shown in figures 3i,j, in this era, we found evidence for an

increase in susceptibility to whooping cough following

measles infection (u ¼ 36; CI : [16,45]), but this effect is very

short-lived (n ¼ 0; CI : [0,1]). The proportion of infectious

individuals previously infected with measles (IM/I) was

low during the third era, accounting for only 6% of total

infectious cases (I) during the peak season (electronic sup-

plementary material, figure S7c). Although the model

incorporating interaction with measles provided a superior

fit compared with the SIR model (DAIC ¼ 42; table 2), neither

model explained the data well (R2 values of 0.1 and 0.07,

respectively; electronic supplementary material, figure S6).
4. Discussion
In this study, we tested the association between two micro-

parasitic childhood diseases, measles and whooping cough.

This work was motivated in part by multiple studies at the

individual scale conducted on non-human primates, which

have suggested that the slow clearance of measles viral

RNA from blood and tissues is linked to decreased host

resistance to infection potentially as a result of immune



Table 2. MLE and parameter estimations of SIR and SIR-MV models using London data.

era 1904 – 1912 era 1922 – 1932 era 1946 – 1956

parameters SIR SIR-MV SIR SIR-MV SIR SIR-MV

AIC 2731.97 2731.99 2930.45 2822.24 6165.36 6122.93

R2 0.39 0.4 0.26 0.38 0.07 0.1

log-likelihood 21356.99 21351.59 21456.22 21397.12 23074.68 23049.46

R0 32.75 29.7 29.21 8.81 18.31 20.2

b1 0.16 0.16 0.23 0.286 0.07 0.058

f 0.76 0.75 0.71 0.69 0.85 0.85

i 3.23 � 10210 6.14 � 1023 2.46 � 1025 2.89 � 1023 6.45 � 10210 1.29 � 1025

a1 0.077 0.076 0.043 0.051 – –

aM – 0.18 – 1.49 � 10219 – –

u – 70.6 – 9.77 – 36.2

n – 0 – 29 – 0

S0 0.027 0.032 0.036 0.111 0.052 0.0458

I0 0.001 7.5 � 1024 3.9 � 1024 4.2 � 1024 6.8 � 1024 9.6 � 1024

I0
M – 0.0011 – 7.57 � 1025 – 0.0012

R0 0.972 0.966 0.964 0.889 0.947 0.952
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suppression [23,43]. Furthermore, the population-level find-

ings of Mina and colleagues [20]—based on trends in

annual incidence reports—also identified long-term immune

suppressive effects of measles infection on non-measles infec-

tious diseases. Therefore, here, our principal aim was to

evaluate the evidence in support of immune-mediated effects

of measles infection on whooping cough epidemiology by fit-

ting models to high resolution (weekly) long-term mortality

and morbidity data over a temporal gradient of decreasing

measles and whooping cough transmission.

Our findings were inconsistent across the datasets fitted.

In two of the three time periods examined, we found support

for an epidemiological impact of measles infection on whoop-

ing cough. However, estimates of the magnitude of this

interaction were quite variable. For the first era (1904–1912),

we found that while our model that included interaction

with measles identified a strong but short-lived immune sup-

pressive effect, this model did not fit the data any better than a

stand-alone SIR model of whooping cough. By contrast, for

the second era (1922–1932), there was evidence for a 10-fold

increase in susceptibility to whooping cough if an individual

had experienced a measles infection within the past six

months. Finally, for the data from 1946 to 1956, the estimated

duration of the immune modulation effect is one to two

weeks, associated with a 36-fold increase in susceptibility to

whooping cough. In this third era, however, forecasts from

the best-fitting SIR and the interaction (SIR-MV) models

were both in poor agreement with the data.

We examined whether our choice of seasonal transmission

function may account for these findings. Implementing seaso-

nal variation in contacts as a binary function, mimicking the

opening and closing of school terms [44], produced model

fits that provided both a poorer explanation of the data and

improbable epidemiological parameter estimates (electronic

supplementary material, S11 and table S4).
Differences in the inferences made across the three eras

may be in part owing to notable demographic shifts that

are known to affect the dynamics of these two diseases

[2,31,45]. In particular, when transmission fluctuates season-

ally, changes in per capita birth rates are known to impact

mean transmission and subsequently the inter-epidemic

period [45,46]. The first decade of twentieth century was

characterized by high birth rates leading to annual measles

and whooping cough epidemics [33]. The measles mortality

data are clearly annual, though exhibit biennial outbreaks

in 1909 and 1911 (figure 1a). Whooping cough mortality

data are rigidly annual throughout 1904–1912. In the

period immediately following World War I (1922–1932), we

observed large amplitude, biennial, and strikingly out-of-

phase epidemics of measles and whooping cough (figure

1b). Elsewhere, it has been argued that these changes in epi-

demiology were driven by a combination of a declining

population growth rate and increasing seasonality in trans-

mission owing to the roll out of Education Acts, which may

have led to higher school attendance [31,33]. In the post

World War II era, the baby boom from 1946 to 1950 coincided

with annual epidemics of measles and whooping cough

(figure 1c), followed by well-studied biennial epidemics in

measles [45,47,48] and irregular whooping cough outbreaks

with 2–3 inter-epidemic periods [48].

To test the robustness of our findings, we carried out

additional analyses on comparable data from the city of Bir-

mingham (UK) (electronic supplementary material, figure

S11). Reassuringly, as outlined in electronic supplementary

material, figures S12–S14 and table S5, our overall con-

clusions are consistent with those arrived at from fitting

models to the London data. Taken together, these fits lead

us to conclude that the impact of measles infections on

whooping cough incidence (quantified via the aetiological

fraction) is variable across three eras (electronic
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supplementary material, figure S7), suggesting there is no

single candidate explanation for these data.

Previously, it has been suggested that the epidemiology

of whooping cough may be explained in part by interaction

with other pathogens [2,49]. Our findings indicate that

measles-mediated dynamics can, in some time periods, gen-

erate whooping cough epidemics consistent with the data.

In the final era, however, when measles transmission was

lowest among the eras studied, our models fail to explain

whooping cough incidence. It is possible that inherently sto-

chastic models may be better able to capture the changing

epidemiology of whooping cough in the most recent time

period [48,50,51] and may perhaps lead to more consistent

inference regarding the nature and magnitude of measles

immune modulation. As previously discussed, epidemics of

whooping cough are qualitatively impacted by stochasticity

[52–54], with small perturbations leading to long-lasting

transient dynamics that are characteristically different from

the asymptotic dynamics [55]. Previous work has displayed

the effect of population size on whooping cough dynamics,

where a large population size leads to large annual outbreaks,

and a smaller population size leads to a mixture of annual and

multi-annual epidemics. Also, accounting for the environ-

mental stochasticity leads to a combination of annual and

multi-annual outbreaks [55]. Therefore, stochastic models

will likely better explain the observed irregular multi-annual

oscillations during 1946–1956 [48,50].

Future work needs also to examine whether immune

amnesia resulting from MV infection renders previously

infected and recovered individuals susceptible to whooping

cough once again. This possibility would necessitate the fit-

ting of more complex models with immune erasure and

potentially different epidemiological traits of individuals

experiencing repeat whooping cough infections [50,51,56].

Accounting for these mechanisms, as well as potential eco-

logical interference effects [2,8], would require the

development and fitting of explicit two-disease models [42].

Preliminary results of fitting such models to data from

London are provided in supplementary material, S8. The

AIC scores for these more complex models are systematically

higher than those of the simpler (SIR and SIR-MV) models,

indicating that their greater complexity is not supported by
the data. This is likely in part owing to the additional chal-

lenge faced by these models of also explaining the

epidemiological dynamics of measles.

Our study has attempted to use population-level footprints

of individual-level interactions among infectious agents. We

have provided a quantitative framework to quantify inter-

actions among infectious agents from epidemiological time-

series data. This framework is quite flexible and has previously

been shown to successfully yield unequivocal and consistent

conclusions regarding the consequence of influenza for sub-

sequent pneumococcal infections [34,35,57]. The absence of a

consistent finding may reflect either inherent variability in

the posited effects of measles infection (perhaps by age), the

need for additional models that attempt to diagnose these

effects using alternative formulations, stochastic inference

methodology, or a combination of these factors. Given the con-

certed global effort to eradicate measles [58], a better

understanding of its effects on other infectious diseases and

their epidemiology in a post-measles setting is both timely

and important. We note that while much of the focus of the

research on polymicrobial systems has been on human infec-

tious diseases, we believe the approach may be broadly

applicable to animal and plant infections. As an example,

infection of maize by the phytopathogenic fungi Fusarium ver-
ticillioides facilitates infection by several related fungi [59,60].

Understanding the ecology of such host multi-pathogens will

be central to the identification of effective control strategies.
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