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The majority of known early warning indicators of critical transitions rely on
asymptotic resilience and critical slowing down. In continuous systems, criti-
cal slowing down is mathematically described by a decrease in magnitude of
the dominant eigenvalue of the Jacobian matrix on the approach to a critical
transition. Here, we show that measures of transient dynamics, specifically,
reactivity and the maximum of the amplification envelope, also change sys-
tematically as a bifurcation is approached in an important class of models for
epidemics of infectious diseases. Furthermore, we introduce indicators
designed to detect trends in these measures and find that they reliably clas-
sify time series of case notifications simulated from stochastic models
according to levels of vaccine uptake. Greater attention should be focused
on the potential for systems to exhibit transient amplification of pertur-
bations as a critical threshold is approached, and should be considered
when searching for generic leading indicators of tipping points. Awareness
of this phenomenon will enrich understanding of the dynamics of complex
systems on the verge of a critical transition.
1. Introduction
Anticipating abrupt shifts in system state that are caused by gradual directional
change in system conditions (critical transitions or ‘tipping points’) is a key
issue for the natural and social sciences [1], including climate science [2,3], ecol-
ogy [4–8], finance [9] and epidemiology [10–12]. In the situation where the
change in an exogenous forcing variable is slow relative to the characteristic
speed of the internal variables, the tipping point may be described mathemat-
ically as a bifurcation. As a bifurcation is approached, the system exhibits
critical slowing down, i.e. its return rate to a stable equilibrium state following
a perturbation decreases [13,14]. The long-term return rate to a stable equili-
brium (sometimes called ‘asymptotic resilience’ [15,16]) is approximated by
the dominant eigenvalue of the Jacobian matrix of the model representing the
system. Prior to a bifurcation, the real part of the dominant eigenvalue
approaches zero in continuous-time models (equivalently, the magnitude of
the dominant eigenvalue approaches unity in discrete-time models).

Commonly used early warning signals for tipping points such as auto-
correlation [17], variance [18] and the power spectrum [19,20] in one dimension
are all functions of asymptotic resilience [21,22]. However, in systems that are
non-normal, i.e. systems in which the eigenvectors of the Jacobian matrix
obtained from linear stability analysis about a stable equilibrium are non-orthog-
onal [23,24], return to equilibrium can be dominated by long transients rather
than the asymptotic return rate [23,25,26]. In normal systems, using asymptotic
resilience as a measure of return rate is appropriate because trajectories quickly
follow the direction of the dominant (slow) eigenvector and therefore move
towards equilibrium [24,26]. In non-normal systems (termed ‘reactive’ byNeubert
& Caswell [16]), if eigenvectors are nearly parallel to each other, then trajectories
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can initially be pulled in the direction of faster subdominant
eigenvectors, away from the stable equilibrium [24], and
towards an alternative equilibrium. Indeed, many systems in
ecology and epidemiology are characterized by a non-normal
Jacobian matrix [24,27,28]. Non-normal dynamics, character-
ized by extended and amplified transient behaviour, are
common close to bifurcations and when there is a difference
in timescales [29,30]. For example, in infectious disease
systems, non-normality arises due to the difference in time-
scales between vital dynamics of the population and disease
transmission [31,32]. In food webs, long transients arise due
to timescale differences in predator–prey and consumer–
resource interactions [27,30,33–35]. Until now, it has not been
clear how the tendency for perturbations to amplify or go
away from equilibrium in reactive systems could be harnessed
as an early warning signal of a critical transition.

Neubert & Caswell [16] introduced twomeasures of transi-
ent dynamics, reactivity and amplification envelope. Both metrics
can be calculated using the Jacobianmatrix about a stable equi-
librium. Reactivity provides an estimate of the potential for
instantaneous growth of perturbations, and the maximum of
the amplification envelope (maximum amplification) quantifies
the relative maximum magnitude that a perturbation can
transiently attain. Measures of transient dynamics offer a
complementary alternative to resilience-based indicators for
quantification of a system’s response to perturbations prior to
a critical transition, and may be especially useful for reactive
systems. The performance of transience statistics as an early
warning system has not yet been assessed. To address this
gap, we use vaccine-preventable infectious diseases as case
studies for systems near criticality that have detectable transi-
ent behaviour [36,37]. Developing methods for monitoring
reemergence of childhood immunizing diseases that can be
used by decisionmakers is important for emergency prepared-
ness [11,12,38,39], and tools that use signals in transient
behaviour of time-series data could be especially helpful.

We studymeasles and pertussis as prototypical examples of
childhood immunizing diseaseswith potential for re-emergence
while causing significantmorbidityandmortality [40,41]. Firstly,
measles and pertussis have very high transmission potential
(represented by very similar basic reproduction numbers) but
differ in their infectious periods, and in this respect, represent
ends of a spectrum. Given the historical importance of these
infectious diseases and the availability of long-term incidence
data, they have been the subject of intense scrutiny, with numer-
ous efforts to explain their epidemiological dynamics using
mechanistic transmission models. This body of work has high-
lighted the role played by seasonality [42,43], nonlinearity and
stochasticity [44–47], contact patterns [48,49] and immunity
[50–52] in shaping infectious disease dynamics. Secondly,
measles and pertussis systems exhibit a separation of timescales.
Outbreaks are often abrupt, and are followed by low disease
prevalence over longer timescales. Thirdly, measles and pertus-
sis have resurged in a number of developed countries [41,53–
57]. Two dominant hypotheses for the resurgence are long-
term declines in vaccine uptake [58] and very slowly waning
immunity [52]. Changes in vaccine uptake or immunity are a
slow driver of resurgence dynamics of childhood immunizing
diseases (relative to the timescales of transmission and infection),
inducing the crossing of a critical re-emergence threshold.
Fourthly, infectious disease systems can undergo critical tran-
sitions [11]. Criticality in infectious disease models occurs at
the point where the basic reproduction number R0—the
numberof secondary infected cases arising fromasingle infected
case in a susceptible population—is equal to unity. If the basic
reproduction numberof a disease exceeds unity, then the disease
maybe endemic; alternatively, ifR0 < 1, itwill eventually die out.
In deterministic compartmental susceptible–infectious–
recovered (SIR)models of immunizing pathogens, a transcritical
bifurcation occurs at the critical point. For these four reasons,
measles and pertussis systems provide a useful case study for
exploring how changes in transient behaviour can serve as an
early warning signal prior to a critical transition [11].

Here, we show that reactivity and maximum amplifica-
tion increase prior to the transcritical bifurcation of an SIR
model with host demography and vaccination in both direc-
tions. Small perturbations to the endemic and disease-free
equilibria of these systems potentially may grow in magni-
tude as the transcritical bifurcation is approached, i.e. when
the disease is on the verge of elimination. This phenomenon
has not been previously noted for compartmental disease
models (but see Hosack et al. [32], which proposed reactivity
as an index for transient increases in prevalence of infected
hosts of a vector-borne disease). We show that reactivity
depends on asymptotic resilience for these systems, and can
be a reliable indicator of a critical transition resulting from
directional changes in host immunity level. Next, we demon-
strate these results in measles and pertussis time series. We
show that increase in reactivity and maximum amplification
prior to a critical transition predicted by theory is detectable
in stochastic simulations of measles and pertussis models.
Our demonstration that diagnostic changes in transient
properties accompany the approach to a critical threshold
may be important for health policy, including preparedness
for temporary resurgence and forecasting. Furthermore,
from a scientific perspective, our work indicates transient
dynamics of complex multi-timescaled systems may be
targeted for developing novel indicators of tipping points.
2. Methods
2.1. Model
We study the short-term response of the following model. Denot-
ing the number of susceptible, infected and recovered
individuals in a population of size N by S(t), I(t) and R(t),
respectively, the standard SIR model with host demography
and vaccination is given by

dS
dt

¼ mN(1� p)� bSI
N � mS,

dI
dt

¼ bSI
N � (gþ m)I

and dR
dt

¼ mNpþ gI � mR,

9>>>=
>>>;

(2:1)

where μ is the per capita mortality rate, β is the transmission coef-
ficient, p is the fraction of individuals vaccinated at birth and γ is
the per capita recovery rate [59,60]. The per capita birth rate is
equal to the per capita mortality rate to keep the population
size S(t) + I(t) +R(t) =N constant. Setting p = 0 recovers the SIR
model without vaccination. The basic reproduction number R0

for the SIR model in the absence of vaccination is β/(γ + μ).
If p > 0, the effective reproduction number is R0(1− p). System
(2.1) has two steady states, the disease-free equilibrium, (N(1−
p), 0, Np) and the endemic equilibrium (N/R0, μN(R0(1− p)−
1)/β, N [1− 1/R0− μ(R0 (1− p)− 1)/β]). The system exhibits
a transcritical bifurcation, i.e. the disease-free equilibrium and
the endemic equilibrium meet and exchange stability at
p* = 1− 1/R0. If p < p* the endemic equilibrium is locally



Table 1. Matrices and expressions. We use shorthand variables Γ = γ + μ and x = R0(1− p) to denote rate of transfer out of the infectious class and effective
reproduction number, respectively. Note x < 1 if p > p* and x > 1 if p < p*; 1− x > 0 if x < 1 and x− 1 > 0 if x > 1. Subscript d indicates disease-free
equilibrium; subscript e indicates endemic equilibrium.
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asymptotically stable and if p > p* the disease-free equilibrium is
locally asymptotically stable. Thus, p* is the critical proportion of
new recruits to the population (births) that must be vaccinated to
achieve elimination of the infection. Therefore, the mathematical
description of elimination is the occurrence of a transcritical
bifurcation, with the fraction vaccinated p as the bifurcation par-
ameter. Similarly, emergence of disease due to reduction of
immunity levels also corresponds to a transcritical bifurcation
of the SIR model.

Since the population size is constant, we reduce system (2.1)
to a system of two equations,

dS
dt

¼ mN(1� p)� bSI
N � mS

and dI
dt

¼ bSI
N � (gþ m)I:

9=
; (2:2)

To investigate the dynamics of perturbations from a stable
equilibrium (�S, �I) (depending on the value of vaccine uptake,
either the endemic equilibrium or the disease-free equilibrium
can be stable), linearizing system (2.2) about a stable equilibrium
yields the matrix equation,

dz(t)
dt

¼ Jz(t), z(0) ¼ z0, (2:3)

where J is the Jacobian matrix evaluated at the stable equilibrium
(�S, �I) of system (2.2), z(t) ¼ (S(t)� �S, I(t)� �I) is a 2 × 1 perturbation
vector and z0 ¼ (S(0)� �S, I(0)� �I) is the initial perturbation from
the equilibrium (�S, �I). The solution of the linearized system (2.3)
may be written as

z(t) ¼ z0 exp (Jt), (2:4)

where exp (Jt) is the matrix exponential.
2.2. Analytical measures of transient growth
Transient growth of a perturbation is an increase in the magnitude
of a perturbation in the phase space, away from the stable
equilibrium, as time increases. In a normal system (where the eigen-
vectors of a Jacobian matrix are orthogonal), the dominant
eigenvalue λ1 of the Jacobian matrix accurately describes how the
magnitudes of perturbations from the equilibrium change with
time [16,24]. However, if the Jacobianmatrix is non-normal, asymp-
totic resilience may not always govern the system’s response to
pulse perturbations [16,23,26]. Particularly, if the Jacobian matrix
is non-normal, perturbations can temporarily move away from
equilibrium (amplify) before they eventually decay at rate −Re λ1.

A measure of short-term transient growth is reactivity [16],
denoted by ν, which is the maximum instantaneous growth
rate of a perturbation (in the limit t→ 0 in continuous time)

n ¼ max
kz(0)k=0

1
kz(t)k

dkz(t)k
dt

� �����
t¼0

, (2:5)

where || · || denotes the l2-norm (Euclidean vector norm).
The reactivity of each equilibrium of system (2.2) is the dominant
eigenvalue of the Hermitian part of the Jacobian matrix,
H(J) = (J + JT)/2, where JT is the transpose of J [16,23]. Reactivity
is a rate, and therefore its units are per unit time. If ν is positive,
the equilibrium is reactive, i.e. some (but not necessarily all) per-
turbations can exhibit transient growth away from
the equilibrium. The magnitude of positive reactivity indicates a
system’s potential to exhibit transient growth of perturbations.

To examine how reactivity changes as the transcritical bifur-
cation is approached from both directions in the SIR model (2.2)
we calculated analytical expressions for reactivity of the endemic
equilibrium (R0(1− p) > 1, elimination scenario) and for reactivity
of the disease-free equilibrium (R0(1− p) < 1, emergence scen-
ario). Table 1 shows the Jacobian matrices, Hermitian matrices,
eigenvalues and reactivity expressions for both scenarios, as
well as equations for the shorthand variables x =R0 (1− p) and
Γ = γ + μ.

Another useful measure of short-term transient growth is the
maximum of the amplification envelope, defined as the maxi-
mum possible amplification that a perturbation to the steady
state may achieve relative to the initial displacement from
equilibrium [16],

r(t) ¼ max
kz0k=0

kz(t)k
kz0k ¼ max

kz0k=0

kz0 exp (Jt)k
kz0k ¼ kj exp (Jt)kj, (2:6)

where kj · kj denotes the matrix norm induced by the l2 norm.
The matrix norm of the matrix exponential exp (Jt) is the largest
singular value obtained from the singular value decomposition
of the matrix exponential at each time t ≥ 0, and so must be cal-
culated numerically. A perturbation is amplified relative to an
initial perturbation z0 from the steady state if the ratio ||z(t)||/
||z0|| is greater than unity. Since the amplification envelope
maximizes this ratio over all initial perturbations from the
steady state, it yields a ‘worst case’ estimate for amplification
of perturbations [16]. Note that because the amplification
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indicators. The maximum amplification indicator may be read from the
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Figure 2. Transient indicators calculated from historical pertussis case reports
increased over the period 1940–1955. (a) National level weekly total of per-
tussis case notifications for most states in the United States. (b) Estimated
smoother of qt (2.12). This smoother is proportional to the number of sus-
ceptibles, which our transient indicators target. (c) Both transient indicators
increase in each successive 5-year window, which may be a consequence of
increasing use of an effective vaccine.
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envelope is a ratio, its maximum (which we term maximum
amplification) is dimensionless. To determine how transient
amplification of perturbations changes as the critical threshold
of the SIR model is approached from both directions, we calcu-
lated maximum amplification for measles and pertussis as a
function of vaccine uptake using Wolfram Mathematica 10.4.
2.3. Data and study design
Our purpose in studying transient dynamics in models is to
develop methods to provide insight into biological data. Next,
we describe specific examples of datasets that we consider to
be good candidates for an analysis based on transient indicators.

As a specific example of an infectious disease whose potential
for emergence is of interest, we consider measles in the USA in the
2010s. For specific examples of two outbreaks to compare, we con-
sider the outbreak originating in California in December 2014
described by Zipprich et al. [61] and the outbreak originating in
Minnesota in April 2017 described by Hall et al. [62]. The available
data for these outbreaks are the number of confirmed cases by the
date of rash onset (figure 1). Different outbreak settings are likely
to vary in how close they are to the point of emergence due to
differences in contact rates and vaccination coverage.

As a specific example of infectious disease whose potential for
elimination is of interest, we consider pertussis in the USA in the
period of 1938–1956. The available data consist of weekly reports
of the number of cases of pertussis in each US state, which
have been provided in a digital format by Van Panhuis et al. [63].
Pertussis may have moved closer to elimination in this period
due to the rollout and increased coverage of whole-cell pertussis
vaccines [64]. We prepared the time series for analysis following
a similar procedure to Magpantay & Rohani [65], linearly interpo-
lating missing data and excluding all data from states with a rate
of missingness above 50%. State counts were added together to
create a single US pertussis time series (figure 2a). Our pre-proces-
sing code is publicly available online [66].

To allow for the performance of the statistical methods that
we develop below to be systematically studied, we simulated
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additional datasets having the same structure as these example
empirical datasets. In the emergence scenario, the population
immunity level of a locally eliminated disease decreases and
we evaluate the ability of indicators to identify that the disease
is closer to the point of emergence. In the elimination scenario,
population immunity to an endemic disease jumps higher due
to vaccination and we evaluate the ability of transient indicators
to determine whether the system has moved closer to the point of
elimination. A similar pair of scenarios was considered by
O’Regan & Drake [10], but, given that the subject of the present
work is transient dynamics, our scenarios occur over much
shorter timescales. A detailed description of the simulation
models may be found in the electronic supplementary material.

2.4. Indicators
2.4.1. Emergence
The direct output of our simulationmodel, a time series of cases per
day, does not permit the direct calculation of reactivity and the
maximum amplification according to their definitions. In particu-
lar, the part in the definitions about being the maximum over all
possible perturbations seems impractical for the calculation of an
indicator based on the observation of a single perturbation. How-
ever, even from a single observed perturbation it is possible to
calculate indicators that are directly related to the reactivity and
the maximum of the amplification envelope. The mathematical
link between these two pairs of indicators is the behaviour of the
eigenvectors of the linearized model (2.3). The derivation of these
indicators is available in the electronic supplementary material.

Our specific formulae for calculating these indicators from
the time series of cases of each outbreak are as follows. Let

nt ¼
Xt

i¼1

Ci, (2:7)

where Ct denotes the number of cases in day t. Thus nt denotes
the cumulative number of cases up to and including week t.
The slope of the least-squares regression of nt on t follows:

~nd ¼
Ptmax

t¼1 (nt � �nt)(t��t)Ptmax
t¼1 (t��t)2

, (2:8)

where the overbar denotes the sample mean and tmax denotes the
index of the last observation in the time series. Equation (2.8) is a
standard estimator for the slope of a straight line. Its use is justi-
fied by the approximate linearity of the cumulative number of
cases over time in both the empirical (figure 1) and simulated
(electronic supplementary material, figure S1) data. Strong
departures from linearity in a dataset may indicate model viola-
tion, and the justification for the methods we describe here
should be re-evaluated in light of likely causes of nonlinearity
before they are applied. This ~nd variable serves as our reactivity
indicator for the emergence scenarios, and the maximum
amplification indicator is simply

~rd ¼ max (nt): (2:9)

To allow comparison of our transient indicators with some
previously studied generic indicators [1] derived from asympto-
tic dynamics, we also computed the mean, variance and lag-1
autocorrelation for each outbreak time series.

2.4.2. Elimination
In the elimination scenario, analysis of the eigenvectors of the lin-
earized model (2.3) again provides a rationale for the use of
practical indicators of reactivity and maximum amplification. In
this case, the eigenvectors are complex, and the modulus of each
element determines the relative amplitude of the S and I variables
in damped oscillation around the equilibrium. Figure 3 illustrates
that, for parameters typical of childhood diseases (i.e. x < Γ, μ≪
1, [59]) the relative amplitude of the S variable is many times
that of the I variable. Therefore, transient growth of the norm of
(S� �S, I � �I) and maximum amplification must be dominated by
the S component. Given that we know that S is a sine wave with
decaying amplitude, our approach then is to use an estimate of
the rate at which S first crosses the equilibrium as our reactivity
indicator and an estimate of the amplitude of S in its first cycle
as our maximum amplification indicator.

This approach requires us to estimate S, which is not
observed in our model. Actually, since we are interested in
trends in these indicators rather than in absolute values, it suf-
fices for us to estimate a time series that is proportional to S.
We do so by using the following relationships:

E(Ct) ¼
ðt
t�1

gI(t) dt ¼ g~It (2:10)
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and

E(Ctþl) �
ðt
t�1

bS(t)I(t)=[S(t)þ I(t)þ R(t)] dt

� b~St~It=
ðt
t�1

[S(t)þ I(t)þ R(t)] dt, (2:11)

where the number of recovery events (cases) in week t is denoted
by Ct and the overtilde denotes the integrated value of a random
variable over the week indicated in the variable’s subscript.
Equation (2.10) comes from integrating the transition rate of the
recovery event in electronic supplementary material, table S1
over the course of week t. The approximation (2.11) is based on
firstly assuming that individuals who are recovering in week t
were on average infected about l weeks prior. A further approxi-
mation is then made that the integral over the transition rate of
the transmission event in electronic supplementary material,
table S1 may be separated into integrals over component factors.
We now introduce the estimator q as

qt ¼ Ctþl

Ct
/ ~St: (2:12)

For l, we use thewhole number of weeks that is closest to the infec-
tious period of the disease (l = 2 for measles and 3 for pertussis).

The qt calculated using (2.12) are noisy estimates and thus we
next smooth them using the loess function in R [67], setting the
span parameter to 0.4. We chose this span subjectively to balance
responsiveness to changes in S in our simulations and the
elimination of noise. We used the same value for our analysis
of empirical pertussis data, which corresponds to a greater
degree of smoothing given the longer length of the time series.
We justified this choice by reasoning that the empirical data
was subject to more observation noise than was present in our
simulations and because the smoothed time series (figure 2b)
seemed responsive to the dominant multi-year cycles in cases.
Figure 2b also illustrates that the smoother tended to take on
extreme values at the ends of the time series. We therefore
excluded the first and last 1–2 years of the smoothed time
series from the following steps of calculating the indicators.

The smoothed time series of qt is centred by subtracting the
mean to generate a times series of approximate norms, which we
denote ot. The series ot is first-differenced and divided by the
time step size to calculate a time series of approximate growth
rates of the norm of the deviations, which we denote mt. The sol-
ution (2.4) has the form of a vector of linear combinations of
exponential functions, where the eigenvalues are the coefficient
of time in the exponents. In this scenario, the two eigenvalues
are complex conjugates and using Euler’s formula the exponential
function may bewritten in terms of sinusoidal functions. The Har-
monic Addition Theorem [68] then implies that small deviations in
S decay as damped sinusoidal waves. For such deviations, the
growth rate of S is near-maximal when the deviations are near-
zero. Thus, as a reactivity estimate, we average |mt| over all t
such that |ot| is within a small fraction ϵ of the range of ot.
Specifically, we use ϵ = 0.05. In summary, we have

~ne ¼ mean(jmtj) for t such that jotj
, 0:05� [max(ot)�min(ot)]: (2:13)

In our simulations, ot and a value of ~ne were calculated separately
for 5-year windows before and after the step change in vaccine
uptake, yielding two reactivity indicators for each simulation.
Likewise, we obtain two maximum amplification indicators ~re
according to

~re ¼ max(ot)�min(ot): (2:14)

We use periods of 5 years based on the fact that the cycles of cases
in our empirical and simulated data are typically 3–5 years long
and inclusion of a complete cycle ensures that the extreme values
of ot are available as inputs for equations (2.13) and (2.14). In the
empirical pertussis time series (figure 2a), we do not know when
any large changes in vaccination occurred but expect that such
changes occurred one or more times, so we simply divide the
data evenly into three 5-year windows.

As with the emergence scenarios, we computed themean, var-
iance, and lag-1 autocorrelation on the cases time series of each
window to allow the performance of these transient indicators to
be comparedwith previously studied generic indicators. However,
we use the negative mean as an indicator for elimination because
we expect cases to decrease with vaccination.
3. Results
3.1. Emergence
3.1.1. Analytical results
The eigenvalues of the disease-free equilibrium are real but
just one depends on vaccine uptake p (table 1), namely
−Γ(1− x). Although this eigenvalue has greater magnitude
than μ for p > 1− γ/β, it is clearly the eigenvalue that is
more informative of vaccine uptake. Only very close to the
emergence threshold does this eigenvalue have smaller mag-
nitude than μ, suggesting that signatures of critical slowing
down might remain hidden to methods that seek to detect
it through asymptotic resilience [69,70]. Moreover, this infor-
mative eigenvalue of the disease-free equilibrium is greater
for measles than pertussis. Thus, for the same levels of vac-
cine uptake, subcritical pertussis systems are predicted to
take longer to go to equilibrium than measles systems.

The disease-free reactivity νd is typically positive because the
determinant and trace of H(Jd) will both be negative provided
x< 1 and γ≫ μ, which is typical for childhood immunizing dis-
eases [59], since γ and μ are the reciprocals of the infectious
period and human lifespan, respectively. The disease-free
reactivity, νd, depends on the eigenvalue −Γ(1− x), and conse-
quently increases with p as the threshold p* is approached
from the right (electronic supplementary material).

For our measles and pertussis models, the magnitude of
maximum transient amplification and the timing of its occur-
rence increase as the system moves closer to emergence
(figure 4).The measles dynamics exhibit greater magnitudes
of transient amplification compared with pertussis and the
timing of the maximum amplification for pertussis transients
is more delayed relative to measles. In summary, our models
for measles and pertussis differ in their transient dynamics in
spite of having equivalent asymptotic resilience.

3.1.2. Data analysis results
To determine which of the two empirical measles outbreaks
in figure 1 occurred in populations closer to the point of
emergence, we calculated values of transient indicators for
each outbreak using equations (2.8) and (2.9). The California
outbreak had a reactivity indicator value of 2.76 susceptibles
per day and a maximum amplification indicator value of 110
susceptibles. The Minnesota outbreak had a reactivity indi-
cator value of 1.43 susceptibles per day and a maximum
amplification indicator value of 65 susceptibles. Thus the
transient indicators suggest that the California outbreak’s
population was closer to the point of emergence.

To evaluate the performance of our transient indicators in
absolute terms and relative to previously studied indicators
for infectious disease, we calculated indicators on simulated
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outbreaks in which the vaccination rate of the populations
varied. Electronic supplementary material, figure S4 shows
the distribution of all indicators for each of the parameter
settings in our simulations. For these simulations, the distri-
bution of the indicators for measles and pertussis parameters
was essentially the same. The transient indicators behaved as
predicted by the deterministic analysis in §3.1.1 in that out-
breaks from simulations with lower levels of vaccine uptake
had higher values of the indicators.

To evaluate the use of the indicators for classifying data
by vaccination rate, we calculated AUC for distributions
from all pairs of vaccine uptake for each indicator. Although,
classification performance was poor for small differences
in vaccine uptake, for the largest difference in vaccine
uptake both of the transient indicators had AUCs above 0.6
(figure 5). Maximum amplification had an AUC which
grew faster than all of the other indicators and it approached
0.8 for the largest difference in vaccine uptake. In sum, tran-
sient indicators can provide a reasonable approach to
monitoring how close a disease is to emergence.

3.2. Elimination
3.2.1. Analytical results
The eigenvalues of the endemic equilibrium are complex con-
jugates, and therefore the real part indicates the speed of the
approach to equilibrium (asymptotic resilience) and the mag-
nitude of the imaginary part yields the period of damped
transient oscillations to equilibrium. Asymptotic resilience
of the endemic equilibrium is independent of recovery rate,
and thus it is the same for measles and pertussis systems.
However, the oscillatory period of perturbations of the ende-
mic equilibrium depends on recovery rate, which would be
one way to distinguish between them. Pertussis oscillations
have slightly longer periods than measles oscillations
(figure 6), indicating that pertussis perturbations move
more slowly. Thus, for the same levels of vaccine uptake,
supercritical pertussis systems take longer to relax to equili-
brium than measles systems.

The reactivity of the endemic steady states of model (2.2)
is positive since the trace and the determinant of H(Je) are
negative. The endemic reactivity, νe, is a function of asympto-
tic resilience (table 1), and is an increasing function of vaccine
uptake p in the typical case that R0 (1− p) < Γ/μ + 1 (electronic
supplementary material). As resilience decreases with p, reac-
tivity increases, thereby signalling the critical slowing down
of the system prior to the bifurcation. The maximum of the
amplification envelope responds to progress toward elimin-
ation in the same way as it responds to movement towards
emergence. That is, the magnitude of maximum transient
amplification and the timing of its occurrence increase as
the system moves closer to elimination (figure 4).

3.2.2. Data analysis results
To determine whether progress towards elimination of per-
tussis occurred in the USA during the period 1940–1955
(figure 2a), we calculated values of transient indicators in suc-
cessive 5-year windows of the time series using equations
(2.13) and (2.14). Values of both indicators increased in each
successive window (figure 2c), suggesting sustained progress
toward elimination throughout the period.

To evaluate the performance of our transient indicators in
absolute terms and relative to previously studied indicators
for infectious disease, we calculated indicators on simulated
outbreaks in which the vaccine uptake of the populations
jumped upwards. Electronic supplementary material, figure
S5 shows the distribution of the difference in value of the
indicators between windows before and after the jump in
vaccine uptake for each of the parameter settings in our simu-
lations. The transient indicators behaved as predicted by the
deterministic analysis in §3.2.1 in that the difference of the
indicators shifted to the right with the size of the step in
vaccine uptake.

To evaluate the use of differences in indicators for identify-
ing differences in vaccine uptake, we calculated AUC using
distributions of differences in indicators between windows
when no change occurred in vaccine uptake as a null distri-
bution and distributions for each of the jumps in vaccine
uptake as a test distribution. In contrast to the results of our
emergence simulations, we found that all indicators had
AUCs above 0.6 for all changes in vaccination rate (figure 7).
The negative mean, in fact, always had an AUC of 1. The
transient indicators of maximum amplification and reactivity
had similar AUCs which generally exceeded those of the
other indicators for both measles and pertussis parameters.
In sum, transient indicators can provide a reasonable approach
to monitoring progress towards elimination.
4. Discussion
In this paper, we have provided the first demonstration of tran-
sient indicators of tipping points. We have shown theoretically
that short-term responses of immunizing disease systems,
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characterized by reactivity and the maximum of the amplifica-
tion envelope, can change systematically as a tipping point is
approached. The theory performs robustly when tested on
measles and pertussis time series and stochastic simulations
of vaccine-preventable diseases, indicating that measurements
of transient dynamics may be a useful addition to the tipping-
point-detection toolbox and may serve as a promising avenue
for future research.Moreover, the transient indicators developed
here could be used to forecast re-emergence of vaccine-preven-
table diseases through analysing epidemiological incidence
data. Our work shows that transient indicators provide an
additional approach for predicting resurgence that can be
used in tandem with resilience-based indicators.

Our emergence scenario is intended to be broadly represen-
tative of infrequently reported notifiable diseases, such as
diseases that have been eliminated locally and diseases that
occur in small outbreaks following an infrequent transmission
from another species. Our elimination scenario is intended to
be representative of a commonly reported notifiable disease
for which a major change in the extent of vaccine use occurs.
In both of these scenarios, our indicators have major advan-
tages over more generic methods of estimating reactivity.
Our SIR-specific indicators exploit the structure of the SIR Jaco-
bian matrix, unlike generic methods that estimate the Jacobian
as an intermediate step to the estimation of reactivity, Neubert
et al. [71], for example. This need for additional estimation
likelymakes the generic approach less efficient, and potentially
highly unreliable for short time series such as the ones in our
simulation study. Moreover, observation of all of the system’s
state variables is needed. Such observations were not included
in our scenarios because they are rarely available in practice.
Although the use of state-space reconstruction methods may
allow for this problem to be addressed, it seems that using indi-
cators such as ours that rely on commonly employedmodelling
assumptions may be preferable. For the simulation study in
this work, we found our reactivity indicators to produce
higher AUCs than we were able to obtain with a straightfor-
ward application of the method of Neubert et al. [71]. Our
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application of transient indicators to stochastic simulations of
vaccine-preventable diseases has indicated that transient indi-
cators can perform at least as well as standard early warning
signals based on critical slowing down (figures 5 and 7).

Our analysis sheds light on the mechanisms driving post-
vaccination-era dynamics of measles and pertussis. In the
supercritical situation, pertussis has slower dynamics than
measles, although asymptotic resilience is the same for both
diseases. In oscillatory systems, an estimate for the period of
oscillations is needed in addition to resilience to assess the ten-
dency for the system to switch dynamical state. Our pertussis
models had longer periods of transient oscillations than our
measles models (table 1 and figure 6) and transient growth of
perturbations from equilibrium can last longer in the pertussis
models and reach a greater magnitude prior to bifurcation
(figure 4). Nevertheless, both systems exhibit a detectable
change in transient dynamics before elimination and emer-
gence, and performance of transient-based indicators was
similar for both systems in our simulations (figures 5 and 7).

The use of transient indicators has some limitations. First,
they can only be used if non-normal dynamics are suspected.
This is easily checked by computing reactivity using methods
developed in Neubert & Caswell [16] and Caswell & Neubert
[27], as non-normality is confirmed by positive reactivity. If it
is established that reactivity increases as a parameter moves
toward a bifurcation point, a system-specific indicator could
be developed to detect changes in transient dynamics. Tran-
sient indicators take advantage of the fact that non-normal
dynamics are a general and widespread phenomenon; these
dynamics appear in systems with multiple timescales. There-
fore, transient dynamics may be effectively targeted for
indicator development in a wide variety of systems.

In conclusion, we have shown that transient dynamics
can change systematically prior to a bifurcation. In the vicin-
ity of the critical vaccination threshold in immunizing disease
systems, increased short-term growth and increased maxi-
mum size of perturbations may be expected. Measurement
of such characteristics may be useful for detection of impend-
ing tipping points more generally. In particular, changes in
reactivity could be a promising leading indicator of a tipping
point in a variety of systems, not just infectious disease sys-
tems, because reactivity is likely to change systematically
within non-normal dynamical systems [23,27,35].
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