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The 2019/2020 influenza season in the United States began ear-
lier than any season since the 2009 H1N1 pandemic, with an
increase in influenza-like illnesses observed as early as August.
Also noteworthy was the numerical domination of influenza B
cases early in this influenza season, in contrast to their typ-
ically later peak in the past. Here, we dissect the 2019/2020
influenza season not only with regard to its unusually early
activity, but also with regard to the relative dynamics of type
A and type B cases. We propose that the recent expansion of
a novel influenza B/Victoria clade may be associated with this
shift in the composition and kinetics of the influenza season in
the United States. We use epidemiological transmission models
to explore whether changes in the effective reproduction number
or short-term cross-immunity between these viruses can explain
the dynamics of influenza A and B seasonality. We find support
for an increase in the effective reproduction number of influenza
B, rather than support for cross-type immunity-driven dynam-
ics. Our findings have clear implications for optimal vaccination
strategies.

influenza | viral interference | genetic diversity |
epidemiological models | statistical inference

H istorically, studies of seasonal influenza epidemics have
primarily focused on influenza A viruses (IAVs) rather

than influenza B viruses (IBVs) and, in particular, on the sci-
entifically interesting and practically important phenomenon
of antigenic evolution of the hemagglutinin (HA) glycopro-
tein in A/H3N2 viruses (for example, refs. 1–5). The need
to understand and predict population immunity to evolving
seasonal IAVs has brought attention to the importance of
individual-level histories of influenza virus infections (6, 7). The
sequence of IAV infections an individual experiences shapes
their immune response to future IAV exposures. Thus, much
attention has focused on understanding this immunological com-
plexity and predicting the perpetual changes in the antigenic and
spatial structuring of circulating IAVs. However, this empha-
sis on the ecology and evolution of IAVs has come at the
expense of that of IBVs, despite awareness that these viruses
contribute to the global burden of influenza morbidity and
mortality (8, 9).

Consequently, the population biology of IBVs has, until
recently (10, 11), received less attention, despite dramatic evo-
lutionary changes over the past decade. Influenza B viruses first
diverged into two lineages (Yamagata and Victoria) 30 to 40
y ago (12–14). Recently, both lineages have exhibited higher
evolutionary rates and several selective sweeps, but with dif-
ferent mechanisms of evolutionary change (15, 16). Nucleotide
deletions in the B/Victoria HA gene segment have been iden-
tified and shown to characterize divergent, cocirculating sub-
clades. These nucleotide deletions are accompanied by epistatic
mutations in other B/Victoria gene segments and interclade
reassortment. In contrast, antigenic drift of the neuraminidase
(NA) gene segment has been shown to be a main driver in
recent B/Yamagata epidemic activity (16). These evolutionary

changes highlight that IBVs are capable of multiple adaptation
strategies, yet we lack an understanding of their epidemiological
consequences.

Here, we analyze the unusual 2019/2020 influenza season
(10, 17, 18), hereafter referred to as the 2019 season, in the
United States (independent of the later severe acute respi-
ratory syndrome coronavirus 2 [SARS-CoV-2] introduction).
We first characterize the highly atypical dynamics of the 2019
influenza season across the continental United States, relative
to those observed over the past decade. We then present phy-
logenetic analyses based on 5 y of US B/Victoria sequences.
We focus here on B/Victoria, as the Centers for Disease Con-
trol (CDC) weekly US influenza surveillance system reported
that 98.4%of positive influenza B specimens were contained
in the B/Victoria lineage (n = 14,077, cumulative from 2019
week 40 to 2020 week 12) (19). Finally, we use a combination
of strategic transmission models and likelihood-based statis-
tical inference to challenge alternative hypotheses to explain
the observed changes in seasonal influenza dynamics. Ulti-
mately, our modeling leads us to conclude that potential within-
host competition between IAVs and IBVs likely operates over
too short a time scale to account for the observed shifts in
influenza seasonality. Rather, we find that increased effective
transmission of novel IBVs provides a parsimonious explana-
tion for the early timing and relative dominance of these viruses
in 2019.

Significance

Influenza A viruses are known for persistent change that
allows them to reinfect individuals. Recently, influenza B
viruses have shown accelerated rates of evolutionary change,
but their epidemiological consequences are not understood.
We use quantitative methods to explore whether the unusu-
ally early start of the US 2019/2020 influenza B season relates
to changes in the structure of influenza B/Victoria viruses. A
combination of simulation studies and model-fitting exercises
demonstrate that atypical 2019 influenza dynamics are better
explained by changes in virus transmissibility and popula-
tion susceptibility than by a competitive interaction between
influenza A and B. Anticipating the timing of influenza A and
influenza B epidemics could improve vaccination schedules,
so that individuals have protection throughout the influenza
season.
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Results
In the 2019 season, influenza-like illness (ILI) reports rose in
August (Fig. 1A and SI Appendix, Fig. S1), exhibiting an earlier
seasonal influenza takeoff than any season since the 2009 H1N1
pandemic (17). In temperate countries, influenza A epidemics
tend to be larger and occur before influenza B epidemics (3).
The US 2019 season, however, was characterized by an atypically
large and early epidemic of influenza B, with the most severe
cases observed in children (18).

A

B

C

Fig. 1. Timing of influenza type A and type B epidemics in the United
States. (A) Weekly national total of positive samples by type (see SI Appendix,
Fig. S1 for total number of samples tested weekly by state). (B) Propor-
tion of positive samples of type B (weekly median of all states). Gray shows
periods of limited reporting (less than 50% of states reporting positive sam-
ples). (C) Weekly state-level proportion of positive samples that are type B.
Gray indicates weeks lacking positive samples (either because positive A and
positive B counts were both reported as zero or because one or more of
these counts were not reported). States are organized from north to south
(top to bottom). Weekly state-level type A and type B positive samples per
100,000 individuals are presented in SI Appendix, Figs. S2 and S3, respectively.

The Relative Timing of Peaks in the Type (A or B) of Confirmed Posi-
tive Influenza Samples Exhibited in the 2019 Season Is Unusual. The
2019 influenza season is the only season (of the 10 studied here)
in which the week with the largest number of positive type B
samples (specimens from patients confirming IBV infection) pre-
cedes the corresponding peak week for type A samples (Fig. 1A
and SI Appendix, Figs. S2 and S3). In most seasons, the propor-
tion of positive samples that are type B is lowest at the beginning
of the season and then increases in the spring (Fig. 1 B and C and
SI Appendix, Fig. S4). Again, the 2019 season is a notable excep-
tion, with an early spike in the proportion of positive samples
that are type B (see the end of 2019 calendar year in Fig. 1C).
We observe a high degree of similarity across states within each
season (SI Appendix, Figs. S5–S8), although variation in timing
across seasons is evident.

We next consider the timing of weekly positive samples of each
type (by state, per 100,000 residents) relative to type A peak
weeks (Fig. 2 A–D). We first identify, for each state and sea-
son, the week with the most positive type A samples and use this
peak as a reference week. For each state and season, we then
shift weekly positive samples per 100,000 individuals to align the
respective peaks (zero on the horizontal axis). Finally, for each
type and relative week, we summarize the distribution of pos-
itive samples across states and seasons. In Fig. 2 A and B, we
show the 2010 to 2018 seasons, where the majority of type B
samples trail the type A reference week. Fig. 2 C and D high-
lights the 2019 season, showing most type B samples precede
the reference week. We repeat this analysis using type B peaks
as reference weeks and observe similar results: Type A cases
typically precede type B peaks prior to 2019, yet mostly trail
the reference week in the 2019 season (SI Appendix, Fig. S9).
Within seasons, we observe similar proportions of type B samples
attributed to each lineage across age groups (20) (SI Appendix,
Fig. S10).

To establish whether the early type B peak (Fig. 1A) was
exceptionally unusual, we employed three separate methods. To
start, we constructed two types of generalized additive mod-
els (GAMs) that characterize changes in positive samples over
time. The first GAM estimates the expected weekly differences
between type A and type B samples per 100,000 individuals, high-
lighting the pattern where type A samples typically exceed type
B samples during the height of influenza seasons: approximately
weeks 10 to 30 (Materials and Methods and Fig. 2E). In stark con-
trast, type B samples peak before those of type A in season 2019,
with the expected number of type B samples per 100,000 individ-
uals exceeding that of type A from weeks 7 to 17 (Fig. 2E and SI
Appendix, Fig. S11). Our second GAM estimates the weekly pro-
portion of positive samples that are of type B within each season
(see Materials and Methods for details). We observe that mod-
els fitted to data from the 2010 to 2018 seasons fail to capture
the unusually high proportion of type B samples observed in the
early weeks of season 2019 (Fig. 2G and SI Appendix, Figs. S12
and S13).

To provide additional evidence, we use signal processing meth-
ods to examine the phase difference between IAV and IBV pos-
itive samples (Materials and Methods; Fig. 2F; and SI Appendix,
Fig. S14). Of the past 10 influenza seasons, 2019 is the only sea-
son in which state-level peaks in IBV samples predominantly
precede those of IAV samples (median 2.22 wk; interquartile
range [IQR], 0.51 to 4.04 wk).

Finally, we fit a deep autoencoder neural network for unsu-
pervised detection of potential anomalies. At the state level, we
characterize an anomaly in phase as a crossing of the 99.5th
percentile of the corresponding state’s normalized root-mean-
square deviation (NRMSD) error distribution (Materials and
Methods and SI Appendix, Figs. S15–S19). We find that the
months with the most anomalies occur in early 2019 (22 and
29 states in January and February, respectively). Other months
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Fig. 2. Relative timing of positive influenza samples of type A and type B. (A and B) For each state and influenza season (excluding the 2019 season), we
identify the week with the largest number of positive type A samples per 100,000 individuals. We then recenter these peak weeks at week zero and consider
other weeks of each season relative to their corresponding peak A reference week. We then summarize the distribution of positive samples in each relative
week (median in black, IQR and 80% CI in dark and light shading, respectively). In C and D, we repeat this analysis for the (incomplete) 2019 season (and
thus contain fewer observations). A and C show type A (red) and B and D show type B (blue). See also SI Appendix, Fig. S9. (E) Generalized additive model
fit showing, for each season (indicated by color), the expected weekly difference (per 100,000 individuals) in positive samples between types A and B (gray
shading shows 95% CI). Observed values for each week–state pair are displayed for each season in SI Appendix, Fig. S11. (F) Phase lag between weekly type
A and type B samples for weeks within seasons 2010 to 2019 (median, IQR indicated by boxplot). Dominant periods for each time series were calculated
using wavelet transform, with relevant phases extracted from filtered time series using a low-pass filter with cutoff period of 1 y (Materials and Methods).
(G) Performance of season-specific GAMs of weekly proportion of positive samples that are type B, displayed as model residuals (the difference between
observed and predicted proportions; Materials and Methods and SI Appendix, Figs. S12 and S13).

with more than 10 anomalies include August 2013 (13 states)
and April 2014 (12 states). Multimodel agreement that the 2019
US influenza season was atypical supports the existence of a
mechanistic change in underlying epidemiology.

A Novel Influenza B/Victoria Subclade (V1A.3) Emerged Recently
and Dominated Other Subclades during the 2019 Season. Multiple
genetically distinct subclades of the B/Victoria lineage (V1A.1 to
4) recently emerged and have cocirculated in recent influenza
seasons (2, 21). Subclade V1A.3 dominated the 2019 season,
accounting for 94.4% of genotyped B/Victoria samples (n = 849)
(19). Subclades V1A.1 to 4 arose simultaneously, bearing an
amino acid (AA) deletion of either two-AA (162 to 163; V1A.1)
or three-AA (162 to 164; V1A.2 to 4) positions in the HA gene
segment (16). These AA deletions are coupled with subclade-
specific mutations in both the HA and NA gene segments (16).
We find that shifts in the seasonal timing and magnitude of
US IBV samples coincide with estimated changes in IBV rel-
ative genetic diversity observed in the United States (Fig. 3 A

and B). This pattern is consistent with population bottlenecks
during the US summer months, when influenza incidence drops
sharply. However, the expected seasonal increase in diversity is
not observed during the 2018/2019 season. This asynchronous
trough in relative genetic diversity, followed by a steep increase
during the 2019 season, is consistent with a selective sweep and
subsequent expansion of a viral lineage. Indeed, this is exactly
the point at which the V1A.3 subclade emerges and rapidly
diversifies (Fig. 3 C and D).

We note that our phylogenetic results are consistent with
recent work by Virk et al. (16). Our results show three cocirculat-
ing diverged subclades (V1A.1 to 3) within influenza B/Victoria
clade V1A. Subclade V1A.3 remains monophyletic in the HA
gene segment but segregates into different lineages in the NA
phylogeny (Fig. 3 C and D). A similar pattern was recently
described for subclade V1A.1, which indicates some interclade
reassortment in the NA gene segment (16). Previous phylody-
namic results, however, do not show the 2019 dominance and
recent expansion of subclade V1A.3 that we find in our analysis.
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A

C

B

D

Fig. 3. Phylodynamic analysis of influenza B/Victoria viruses in the United States. (A and B) Relative genetic diversity of HA and NA gene segments estimated
using a Bayesian Skyride model with Gaussian Markov random field (GMRF) smoothing. (C and D) Reconstructed temporal phylogenies for HA and NA gene
segments, respectively. Tip color on phylogenies denotes subclades (V1A.1 to 3) determined by the HA gene segment.

What Mechanisms Can Explain Novel Seasonal Influenza Dynamics?
Viral Interference or Changes in Transmissibility and the Suscepti-
ble Population? Here we develop transmission models to explore
distinct hypotheses for the epidemiological changes we have
documented: one related to viral transmissibility and the other
determined by within-host competitive mechanisms (22). The
recent global spread of novel B/Victoria clades and attendant
increases in their diversity have raised the possibility that the
HA amino acid deletions have resulted in higher transmission
efficiency of these viruses (16). Alternatively, changing epidemi-
ology may be the result of individual-level competitive mecha-
nisms, such as viral interference (22, 23), whereby an individual’s
innate immune response temporarily hinders the infection abil-
ity of other viruses (24). Viral interference has been noted
between influenza and noninfluenza viruses (24–26) and has
been suggested to play a role in the tendency of type B influenza
epidemics to occur later in the northern hemisphere than type
A epidemics within a particular influenza season (27). Infec-
tion with IBV following an IAV within the same season has
been observed in children, with a mean interval between diag-
noses of 50 d (28). Challenge experiments in ferrets suggest
that, depending on the order of infections, viral interference is
possible between IAV subtypes as well as between IAVs and
IBVs when the interval between infections is less than 1 wk (29).
While evidence indicates that human antibodies can provide
cross-protection across influenza B lineages (11), support for
antibody-mediated protection across influenza types is lacking.
Other immunological mechanisms that might provide a degree
of cross-type protection include depletion of susceptible target
cells, infection surviving epithelial cells (30), and T cell responses

(31–33). Social distancing and isolation of symptomatic individ-
uals during influenza epidemics may also limit the number of
potential hosts during an outbreak of a cocirculating influenza
type (34–36).

To explore the plausibility of these putative explanations, we
develop a strategic, two-type mechanistic compartmental model
(Materials and Methods and SI Appendix, Fig. S20 and Table S1).
The model structure permits an investigation of how potential
changes in type-specific transmissibility and potential cross-type
interference might influence the timing and magnitude of type-
specific influenza epidemics. We consider a range of potential
cross-protection parameter values (Fig. 4, Materials and Methods,
and Table 1) and find that changes in type-specific basic repro-
duction numbers can, in principle, explain the observed changes
in the relative timing of their peaks in the absence of cross-type
protection. In fact, for a set ratio of type-specific reproduction
numbers, changes in average cross-protection do not substan-
tively change the lag between type-specific influenza peaks or
differences in peak height (Fig. 4 A and B, scenarios b and c).
When the type A reproduction number (RA

0 ) exceeds the type
B reproduction number (RB

0 ) (Fig. 4, scenario a), we observe
dynamics consistent with prior seasons in which type A cases
peak first and have a larger peak. By contrast, when the type B
reproduction number surpasses that of type A, we observe an
early and large peak in B cases (Fig. 4, scenario d) as observed
in the 2019 US influenza season. We note that such a peak is not
observed when the duration of natural immunity for type B is
high relative to that for type A (SI Appendix, Fig. S21).

Similarly, we find no support for cross-protection as a
driving epidemiological mechanism when we use maximum
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A B

Fig. 4. Simulation study reflecting dynamic effects of cross-protection
(χAB =χBA =χ) and relative changes in type-specific R0s. (A) The difference
in the epidemic phases of types A and B (Top) and the peaks ratios (Bot-
tom) of the two influenza types with relative changes of RB

0 with respect to
RA

0 (horizontal axis). (B) Epidemic dynamics (cases per 100,000) for the two
types resulting from parameter values selected at points a, b, c, and d in A.
RA

0 is fixed at 2, and duration of cross-protection is fixed at 1 m. Type-specific
immunity is assumed to last 4 y for both types.

likelihood (see Materials and Methods for details) to fit our strate-
gic model to Massachusetts influenza case data for the 2016 to
2018 influenza seasons. In particular, we fit the two-type model
(Materials and Methods and SI Appendix, Table S1 and Fig. S20)
and compare its explanatory power of the data to a null model
that assumes transmission dynamics of IAV and IBV to be inde-
pendent (SI Appendix, Table S2 and Fig. S22). As we describe in
Table 2, the added complexity of the model assuming short-term
viral interaction (“cross-protection” model) is not supported by
the data (∆AIC = 90.56).

To examine whether changes in virus transmission potential
may underlie the observed epidemiological shifts, we fit the neu-
tral model to incidence data for the 2019 season (SI Appendix,
Fig. S23 and Table S3). When comparing estimates based on
2016 to 2018 seasons to the 2019 season estimates, we observe an
18.5% increase in estimated RA

0 from 2.59 (95% CI: 2.59, 2.60)
to 3.07 (3.06, 3.08) for season 2019 (Table 2 and SI Appendix,
Tables S2 and S3). Strikingly, we observe a 54.4% increase in the
estimate of RB

0 from 1.56 (1.56, 1.58) in seasons 2016 to 2018 to
2.41 (2.40, 2.42) in season 2019. Note that a similar increase is
found when RB

0 is estimated from Bayesian Skyride data (Mate-
rials and Methods), with a rise from a value of 1.15 (95% CI: 1.11,
1.20) in 2016 to 1.82 (1.71, 1.96).

Given that our estimate of RB
0 for the 2019 season is lower

than that of RA
0 , an increase in the basic reproductive number

alone cannot account for the recent seasonal influenza dynamics.
What, then, explains the unusual epidemiological patterns of the
2019 season? To answer this, we observe that simple transmission
models describe the growth rate of an epidemic as

dI

dt
= γI

(
R0

S

N
− 1

)
, [1]

where γ is the recovery rate. Therefore, in the early stages of an
influenza season, epidemic takeoff is determined by the combi-
nation of pathogen transmissibility, as quantified by R0, and the

fraction of the population that is susceptible, S
N

. Their product
is commonly referred to as the effective reproduction number,
Reff (35). We submit, therefore, that the unusually early and
rapid rise in IBV cases in the 2019 season resulted from the
documented substantial increase in RB

0 which coincided with a
large fraction of the population susceptible to influenza B due
to historically lower RB

0 values (Fig. 5). In concert, in the late
summer months of 2019, these factors led to a higher relative
per capita transmission rate for influenza B

(
1
IB

dIB

dt
= 2.698

)
than for influenza A

(
1
IA

dIA

dt
= 2.584

)
, using Eq. 1, with SB and

SA obtained from the fitted model (SI Appendix, Table S3 and
Fig. S23).

To illustrate our claim, we present a series of scenario analyses
in Fig. 5. We show that an increase in RB

eff in 2019 resulting from
the combination of a higher RB

0 and a large susceptible fraction
can capture the atypically early and large influenza B outbreak
(Fig. 5 A and B), compared with no change in RB

eff during sea-
sons 2016 to 2019 when RB

0 either remained low (1.56) or high
(2.41). Further, as shown in Fig. 1, there were relatively few IBV
positive samples in the 2018 influenza season, and therefore we
examine whether a buildup of individuals susceptible to influenza
B would explain the 2019 season patterns without an accompany-
ing increase in RB

0 . This simulation could also be interpreted as
a test of two additional ideas: first, the possibility that amino acid
deletions in the novel B/Victoria viruses have resulted in anti-
genic evolution, by increasing the available susceptible pool via
newly susceptible previously infected individuals, and second, the
potential increase in the susceptible population due to the dom-
inance of B/Yamagata in the 2016 to 2018 seasons (SI Appendix,
Fig. S10). We find that an accumulation of susceptible individ-
uals leads to an unusually large outbreak in 2019, but does not
affect the lag with the influenza A outbreak (Fig. 5 C and D).

As a final test of our key idea, we fit the neutral model to
the data assuming no change in RB

0 across these four seasons
(2016 to 2019). We find strong support for a model with an
increase in RB

0 at the outset of the 2019 season (∆AIC = 530.42;
SI Appendix, Table S4).

Discussion
We document intriguing differences between the 2019 US
influenza season and previous seasons, with an uncharac-
teristically early surge in influenza type B cases that was
accompanied by noteworthy evolutionary transitions within the
dominant B/Victoria lineage. Our exploration of transmission
models reveals that the relative timing of the epidemics of these
viruses is more sensitive to their respective transmission poten-
tial, as quantified by R0, than to any changes to cellular- or

Table 1. Parameters for strategic model

Symbol Value Definition

N 6.70× 106 Total population
R(n)

0 1 to 5 Reproductive no. of type n (n∈{A, B})
1/γA 2.5 d (57) Infectious period of type A
1/γB 3.4 d (57) Infectious period of type B
1/φn 1 mo Cross-protection duration after type n infection
χmn 0 to 1 Cross-protection against m after infection with n
ηn 1/d Importation rate of type n
1/wA 4 y (1) Duration of type A-specific immunity
1/wB 4, 10 y Duration of type B-specific immunity
bA 0 to 1 Amplitude of seasonality for type A
bB 0 to 1 Amplitude of seasonality for type B
tA
0 day 40 Timing of seasonal peak for type A

tB
0 day 50 Timing of seasonal peak for type B
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Table 2. Parameter estimates and goodness of fit

2016 to 2018 2019

Estimated parameters Cross-protection Neutral Neutral
RA

0 2.54 2.59 3.07
RB

0 2.30 1.56 2.41
χAB 0.0061
χBA 0.95
bA

1 0.28 0.44 0.31
bB

1 0.27 0.38 0.3
ρA 0.0038 0.0062 0.0032
ρB 0.0014 0.0023 0.0019
tA
0 0.15 0.13

tB
0 0.18 0.15

logLik −3,669.89 −3,626.61 −631.54
AIC 7,359.78 7,269.21 1,287.08
∆AIC 90.56 0

Cross-protection and neutral models were formally contested to assess
relative goodness of fit in the 2016 to 2018 seasons. Goodness of fit
was assessed using the Akaike information criterion (AIC), calculated by
fitting models to weekly, type-specific, incidence data for influenza for Mas-
sachusetts. See Materials and Methods for definitions of parameters and SI
Appendix, Table S3 for associated 95% confidence intervals.

immune-mediated interactions. It is important to emphasize that
our results do not argue against such within-host effects; instead,
our models indicate that these virus–virus interactions do not
leave a strong dynamical footprint in population-level incidence
data. This is because of the combination of modest R0s for both
virus types leading to a relatively small fraction of the population
affected and the short-term nature of any influenza interference
between virus types (potentially lasting only a few days) (29). Our
working hypothesis instead is that the early arrival and large epi-
demic of influenza B cases in the 2019 season can be explained
by the combined effects of the emergence of a novel subclade
of influenza B/Victoria (V1A.3; Fig. 3) with higher transmissi-
bility than prior IBVs (16) and the availability of an unusually
large susceptible pool due to historically lower RB

0 values in

past seasons, as illustrated in Fig. 5A. This proposed explana-
tion is consistent across our likelihood-based model fitting and
our strategic modeling.

An expected consequence of our findings is a selective sweep
of B/Victoria viruses by the V1A.3 subclade and the attendant
atypically early and intense influenza season. However, as evi-
denced by contrasting patterns of IAV transmission in North
America and Europe in 2017 to 2018 (37), influenza epidemi-
ology and evolution are both complex and context specific,
determined in part by local population immunity (6), patterns
of mobility (38), and environmental drivers of transmission (39),
which may be type specific. Thus, while these V1A.3 viruses
have not been associated with a pandemic, sequence data indi-
cate their dominance over other B/Victoria viruses locally (40).
Finally, elsewhere an association has been proposed between
influenza B epidemiology in Australia and evolutionary changes
in influenza B lineages and differences in risk across age (15, 16).

Our analysis is limited by the number of years of data avail-
able and seasonal variation reporting (Fig. 1 and SI Appendix,
Fig. S1). Reporting procedures changed dramatically following
the 2009 H1N1 pandemic, and we have restricted our analy-
sis to include seasons after the pandemic. Studies connecting
subsequent infections with type A and type B influenza at the
individual level, such as ref. 28, are needed to fully determine
whether cross-protection between types occurs and, if so, the
typical duration of protection.

A key outstanding question is how influenza virus evolution
may change the type-specific age distribution of cases (or posi-
tive samples) (15). Influenza infection histories are more likely
to include one or more prior infections with an influenza B virus
for those in older age groups. These infections may allow older
individuals to escape IBV infection even when novel IBVs are
introduced (SI Appendix, Fig. S10). It is possible that dominat-
ing lineages play a role in determining the proportion of positive
samples that are type B. Important avenues for future research
include considering the roles of lineage-determined disease
severity, reporting probability, and age-specific susceptibility.

Changes in the timing of type A and type B influenza
peaks have implications for optimal vaccination strategies (3),

A B

DC

Fig. 5. Illustration of our hypothesis. (A) Simulation experiments demonstrating susceptible dynamics (dotted lines) and the corresponding relative timing
and amplitude of influenza A (solid red line) and influenza B (solid blue lines). For influenza B, we depict three distinct scenarios: RB

0 is low throughout
(=1.56) or high throughout (=2.41), or RB

0 starts low (=1.56), but increases (=2.41) at the start of the 2019 season (highlighted in orange). The associated
effective reproductive numbers (Reff = R0× S

N ) are presented in C. B and D present similar information to that in A and C but perform an alternative
experiment, testing whether the absence of an influenza B outbreak in the 2018/2019 season highlighted in gray and resulting accumulation of susceptible
individuals alone would explain the anomalous dynamics in influenza season 2019. Parameter values are presented in Table 2 and SI Appendix, Table S5.
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particularly given that the effectiveness of influenza vaccines is
thought to wane over a period of approximately 6 mo (41). The
apparent connection between evolution of influenza lineages and
early timing of influenza B cases suggests that measures of evo-
lutionary change could be a valuable source of information for
designating the timing of vaccination campaigns. Type-specific
differences between susceptibility to infection and severe disease
could also help identify high-risk age groups for targeted vacci-
nation. Thus, it may be beneficial to identify at-risk age groups
based on the expected timing of type-specific peaks in infections.
Increased viral surveillance and characterization will be needed
to effectively determine the optimal timing of vaccination, which
may differ between age groups (42). Early awareness of the circu-
lation of a novel influenza clade (such as the B/Victoria subclade
V1A.3 identified in the 2019 season) could motivate early ini-
tiation of vaccination of younger age groups that may be at a
higher risk of infection. This knowledge would be helpful for
physicians and public health officials, particularly when other
viruses with varying effects across age groups (e.g., SARS-CoV-
2) are cocirculating.

Materials and Methods
Epidemiological Data Collation and Sources. We downloaded weekly state-
level subtype-specific influenza sample data from CDC FluView Interactive
ILI and Viral Surveillance (20). Starting in the 2015/2016 season, data from
public health laboratories and clinical laboratories are presented separately
(see ref. 43 for additional information). We collated data available (com-
bined) from 2010 to 2015 and clinical laboratory data from 2015 to 2019
by updating field names to be consistent between files. We aggregated
positive influenza A sample counts for the cases when subtyping was not
performed or it was not possible to subtype the sample, into a single “no
subtype” category. Weekly positive type A samples were tabulated into six
categories: H1, 2009 pandemic H1, H3, H3N2v, and no subtype. Similarly,
weekly positive type B samples were split into three categories: B/Victoria,
B/Yamagata, and B-no lineage provided. Finally, we converted epidemiolog-
ical weeks (Epiweeks) into calendar dates. Unless otherwise specified, our
analyses incorporate data from all states that reported sample counts in a
particular week for both type A and type B (note that a count of zero sam-
ples is considered a reported count). Particularly for summer weeks, it was
common for states not to report sample counts (Fig. 1 B and C).

We used the standard influenza season specification for the United
States. The season starts with Epiweek 40 and ends with Epiweek 39 of the
following calendar year. We used the convention that the calendar year
corresponding to the beginning of the season is designated as the sea-
son. We used the centroid latitude to order states from north to south. We
extracted population projections from CDC Wonder (44) for each state–year
pair. These projections were used to calculate the number of samples per
100,000 individuals (see below). For each state–week pair, we also calculated
the proportion of positive samples of type B.

Values for January 3, 2015 were repeated twice for each state: once with
the week of year designated as one and once as week 53 of 2014. We
removed the week one values from our dataset, so that the date would not
be duplicated. Additional detail is provided in the “00-processs-FluView.R”
script (45).

Epidemiological Data Exploration. We characterized the relative timing of
epidemics of influenza type A and type B within each influenza season. For
each type, we identify the season week with the highest count of positive
samples and use this as a reference point (week zero). For each type, we con-
sidered the median IQRs for positive samples per 100,000 individuals across
the states which reported data for the week in consideration. We limited
the weeks of consideration to those falling between 25 wk prior to the peak
and 25 wk after the peak to avoid boundary effects from adjacent seasons
(Fig. 2 A–D and SI Appendix, Fig. S9 A–D).

Next, we characterized spatiotemporal patterns of type A and type B pos-
itive samples. To facilitate comparisons between states, we first adjusted
weekly positive samples by annual state population projections from
CDC Wonder (44) and reported the positive samples per 100,000 people.
We inspected the corresponding trajectories for six representative states
(Arizona, Georgia, Louisiana, Massachusetts, New York, and Texas) within
each season (SI Appendix, Fig. S6) and within states across multiple seasons
(SI Appendix, Fig. S7). We also computed the difference between type A
and type B samples per 100,000 individuals by week. We summarized these

results using a GAM of this difference across weeks, with a separate model
for each season (Fig. 2E). The GAM was constructed with the R package
“mgcv,” with season as random effect, state as fixed effect, and week of
season as a cubic regression spline, i.e., gam(..., formula = y s(x, bs = ‘cs’))
(46). The result is the expected weekly mean difference between type A
and type B samples per 100,000 individuals, marginalized across states and
conditioned on weeks within a season.

To quantify asynchrony between peaks in type A and type B weekly
samples, we performed a phase lag analysis between their state-level time
series. We present phase lag results for epidemiological weeks 44 through 8
(Fig. 2F). Raw time series were first square rooted to stabilize the variance,
then normalized by subtracting the mean and dividing by the standard devi-
ation, and zero padded up to the next power of 2 to mitigate the edge
effects. Next, we used a continuous Morlet wavelet transform (47) with a
nondimensional frequency of ω0 = 6 to determine the dominant period of
each time series. We then applied a low-pass filter with cutoff period of 1 y
to extract the time series around the dominant period. Finally, we applied
a Hilbert transform (48) to derive the analytical signal from each filtered
time series and used it to find the phase angle. Preprocessing and phase lag
calculation steps for the state of Massachusetts are depicted in SI Appendix,
Fig. S14.

We used a deep autoencoder neural network for unsupervised detec-
tion of potential anomalies (49–51) in the time series of influenza B samples
across states. The autoencoder (AE) is composed of a long short-term mem-
ory (LSTM) encoder layer which encodes a time series of length L into a
vector of length m (m< L), which is passed to a decoder LSTM to reconstruct
the time series L̂. The AE is trained on the times series of weekly influenza
B samples over the total number of positive samples for each state. We
used state-specific error thresholds at 95%, 99%, and 99.5% intervals (SI
Appendix, Fig. S19).

Regression Model and Analysis. We estimated the probability that a par-
ticular positive influenza sample is type B across time and space, again
using the mgcv R package to fit a GAM of the proportion of total sam-
ples per week that are type B. We used a binomial link function, state as
a fixed effect, season as a (random-effect) smoothing term, and week of
season as a (fixed-effect) smoothing term, i.e., gam(y ∼ state + s(week,
bs = ‘cs’) + s(season, bs = ‘re’)) (46). We evaluated model performance by
season using leave-one-out prediction. That is, for each season, we first fit
the GAM using all data except that season and the 2019 to 2020 season.
We then made out-of-sample predictions for the season under considera-
tion. Finally, we computed model residuals for each state and week: the
observed proportion of positive samples of type B minus corresponding
model predictions (Fig. 2G). As the 2019 season was still in progress, we
excluded the 2019 season from all model fitting above and computed only
residuals for the available “early” weeks of the 2019 season: 1 to 18 (SI
Appendix, Fig. S13). We chose not to extend this analysis to include addi-
tional weeks to avoid changes in reporting resulting from the COVID-19
pandemic.

Phylogenetic Analysis. A total of 4,302 molecular samples of influenza
B/Victoria collected in the United States between 1 January 2016 and 15
March 2020 were retrieved from the GISAID database. These samples were
those remaining after filtering for those which had complete sequences
for both HA and NA gene segments. The total set of genetic samples
was down-sampled for computational efficiency while performing Bayesian
phylogenetic reconstruction and population dynamic estimation. Down-
sampling was performed by randomly selecting an equal number of samples
within each sampled year (625 in total; see SI Appendix, section 1 for
sequence accession details). Maximum-likelihood (ML) phylogenies of both
HA and NA gene segments were reconstructed using RAxML v8.2.11 (52)
using the generalized time-reversible nucleotide substitution model and
gamma rate heterogeneity. Temporal signal was verified for both gene seg-
ments using TempEst v1.5.3 (53) prior to estimation of population dynamics
for a final set of 608 sequences using BEAST v1.10.4 (54). An uncorrelated
lognormal relaxed clock and a Gaussian Markov random field smoothing of
effective population size were used in the estimation of the molecular clock
and effective population sizes. A generalized time-reversible nucleotide sub-
stitution model with gamma rate heterogeneity plus invariant sites was
used through all analyses. Six independent runs of the described analy-
sis were performed using 100 million generations while sampling every
10,000 generations. Tracer v1.7.1 (55) was used to evaluate statistical sup-
port and convergence of all independent runs. LogCombiner v1.10.4 was
used to combine independent runs after removing the burn-in period (10%

or 10 million generations). TreeAnnotator v1.10.4 was used to produce the
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maximum clade credibility trees. All phylogenetic tree visualizations were
created using the R package “ggtree” v1.16.6 (56).

We estimated the basic reproduction number (R0) for influenza B/Victoria
at the start of each influenza season (2016/2017, 2017/2018, and 2019/2020)
using the results of our Gaussian Markov random field Bayesian Skyride
analysis and the following equation, derived in ref. 35:

Λ = γ(R0− 1), [2]

where Λ is the exponential growth rate of the virus population, and
1/γ is the mean duration of infection (in this case assumed to be 3.4 d)
(57). To estimate Λ, we first log-transform the relative genetic diversity
data (Fig. 3A) and then use linear regression to calculate the slope of
the best-fit line. For each season, we choose the number of initial points
to be included based on the number of points that maximize the R2 of
the linear regression. We also require that the number of data points
exceeds two.

Influenza Transmission Model. To explore the potential role of cross-
immunity in determining the timing and magnitude of influenza A vs.
B peaks, we developed a two-strain susceptible infectious cross-protected
recovered susceptible (SICRS) model (SI Appendix, Fig. S20) (35). The
population (of size N) is divided into 10 compartments dependent on
infection and immune status. Susceptible (S) individuals have no immu-
nity and can be infected with either type at rate λn, where λn is the
force of infection of type n (n∈{A, B}). Upon infection individuals move
to the corresponding In compartment. Following the infectious period (with
mean duration 1/γn) individuals recover and move to the cross-protected
compartment, Cn. After recovering, individuals initially have perfect immu-
nity against reinfection with the same type and partial cross-protection
against infection with the other type. Cross-protection against type m
due to prior infection with n corresponds to a reduction in the infection
rate, (1−χmn)λm. The cross-protection strength, χmn, takes values between
0 (no cross-protection) and 1 (perfect cross-protection). Cross-protection
wanes with rate φn. Individuals who have lost cross-protection against type
m but retain type-specific immunity move to Rn. Type-specific immunity
also wanes, with rate wn. If individuals experience an infection with the
second type, m, before their type-specific immunity wanes they become
infectious with type m and move to the Imn compartment. Upon recov-
ery they move to the final model compartment, R, which corresponds
to individuals with type-specific immunity to both types. In SI Appendix,
Tables S1 and S2 summarize the model compartments and parameters,
respectively.

The force of infection for type n depends on the number of individuals
infectious with type n and the rate cases are imported to the population
from external sources (proportional to ηn),

λn(t) = βn(t)(In + Inm + ηn)/N. [3]

Our model allows for seasonality in the transmission rate,

βn(t) = γnR(n)
0

[
1 + bn cos

(
(2πt− tn

0 )/T
)]

, [4]

where R(n)
0 , bn, and tn

0 are respectively the basic reproductive number,
amplitude of seasonality, and peak day for type n and T is the period
seasonality (1 y).

The model dynamics are captured by a system of ordinary differential
equations,

dS

dt
=
∑

n

{−λnS + wnRn}, [5]

dIn
dt

=λnS− γnIn, [6]

dCn

dt
=−(1−χmn)λmCn + γnIn−φnCn, [7]

dRn

dt
=−λmRn +φnCn + wmR−wnRn, [8]

dImn

dt
= (1−χmn)λmCn +λmRn− γmImn, [9]

dR

dt
=
∑

n

{γnInm−wnR}, [10]

for n∈{A, B}. If n = A, then m = B and vice versa.

For the likelihood-based inference, we generated the cumulative number
of cases according to

dKA

dt
= γA(IAB + IA), [11]

dKB

dt
= γB(IBA + IB). [12]

For formal comparison with data, the weekly counts of new A and B cases
were calculated, Qn(t) = Kn(t)−Kn(t− δ), where δ= 1 wk. The determinis-
tic model was implemented in R using the package “pomp” (58). Numerical
simulations were performed using the resulting pomp object. Simulations
were initialized at the endemic equilibrium of the noninteracting two-type
model (χBA =χAB = 0) without seasonality (bA = bB = 0), which possesses an
analytical solution (35). The first 100 y were discarded as transient dynamics,
before the subsequent 3 y were used in likelihood calculation.

Model Fitting and Comparison. Using type-specific data for Massachusetts
(20) influenza seasons 2016 to 2018, we performed maximum-likelihood
estimation of the parameters of our two-strain model to investigate
whether there was support for a significant strength of cross-protection
from viruses belonging to the other type (A vs. B). We fitted two versions of
our model, a noninteracting model in which the cross-protection parameters
(χAB and χBA) were fixed at zero and the full model in which these param-
eters were allowed to vary. We then performed a formal model comparison
of these models (described below).

Maximum-likelihood estimates (MLEs) for the unknown parameters were
found using trajectory matching. Weekly case counts were assumed to be
subject to Poisson-distributed reporting error. The likelihood function for
the data {x}T

t=0 given model parameters Θ was

`(Θ) =
∏

n∈{A,B}

T∏
t=0

P(xn,t|ρQn(t; Θ)), [13]

where ρ is the reporting probability, Qn(t; Θ) is the simulated number of
new cases at time t using parameters Θ, and P(·|λ) is the Poisson probability
mass function with parameter λ. Note that we estimated separate reporting
probabilities for influenza types A and B (ρA and ρB, respectively).

We employed a numerical optimizer routine for two tasks: 1) explore
the parameter space and find the MLEs for all unknown parameters and
2) verify whether the inclusion of cross-protection improved model fits
to confirmed sample data. Trajectory matching was performed using the
R package pomp which allows for the construction and optimization of
likelihood-based objective functions (58). The optimization routine was as
follows:

1) A population of 500 parameter configurations were used to initialize
a stochastic optimizer that implemented a hybrid-genetic algorithm to
maximize the objective function. Guesses were generated using a Latin
Hypercube (Sobol) design to ensure efficient sampling of the parameter
space (59, 60).

2) The genetic algorithm routine was implemented using the R package
“GA” (61). This technique evolves the solution until a configuration that
maximizes the objective function is found. Probability of random muta-
tions was set to a low value (0.2) while the probability of crossover was
set to a high value (0.8). Force of selection was assumed to be linear in
fitness of the solution in the objective space.

3) At every significant increase in the objective, an increase in the fitness
value by 10%, the solution was pushed through a deterministic optimizer
method (limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
[L-BFGS]) (62) to rapidly arrive at intermediate local maxima. We used
a hybrid version of the optimizer to decrease convergence times to the
global maximum for each of the two models (63).

4) An exhaustive population of evolving solutions provided high initial
fitness diversity and a convergence criterion of 500 evolutionary itera-
tions ensured the optimizer’s convergence to a global maximum in the
objective space (64).

We used the Akaike information criterion (AIC) to assess the relative
goodness of fit of the two hypotheses—a noninteracting neutral model
and a full two-strain model. At 5% level of significance, an AIC value of
2 was taken to be a significant difference in the comparative agreements of
the two models. Parameter estimates as well as their projected type-specific
cases were used in this assessment. For the 2016 to 2018 era, models were
allowed to reach equilibrium (burn-in period of 100 y) and subsequent 3 y
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were used in the fitting procedure. Parameter estimates corresponding to
the best-fitting model, neutral, from the initial era were used to infer initial
conditions of state variables for the 2019 season. This model was refitted to
estimate type-specific reproductive ratios for this season.

Estimation of Uncertainty around Parameter MLE. The method of paramet-
ric bootstrap was used to estimate 95% confidence intervals around the
parameter MLE obtained in the previous step. This involved the following:
1) For each model in the two eras, MLEs obtained in the preceding section
were used to simulate 1,000 synthetic time series. 2) Starting at the MLE,
a local search with an L-BFGS optimizer was conducted and the parameter
reestimated for every time series. 3) This results in a bootstrapped distribu-

tion of parameter estimates around the MLE. Estimate sets corresponding
to 2.5 and 97.5 percentiles of this distribution were taken to be as the 95%
confidence bounds of the model MLEs.

Data Availability. Source code and data have been deposited in Zenodo
(DOI: 10.5281/zenodo.4411959) (45).
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