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Stability and Resilience of Transportation Systems:
Is a Traffic Jam About to Occur?

Amin Ghadami , Charles R. Doering, John M. Drake, Pejman Rohani, and Bogdan I. Epureanu

Abstract— Measurement of traffic flow stability and resilience
is a critical step toward evaluating the performance of trans-
portation systems and implementing appropriate management
strategies. Quantifying changes in the stability and resilience of
transportation systems, however, is hampered by the complexity
of real traffic dynamics and the diversity of infrastructures.
Here, we demonstrate that changes in traffic flow stability
and resilience are signaled by generic features, known as early
warning signals in the theory of critical slowing down, observed
before traffic instabilities occur. This finding is incorporated
in an operational data-driven algorithm to evaluate the risk
of traffic jams on highways. Theoretical findings and tests
on simulated and empirical case studies support the premise
of this approach and identify candidate statistical measures
that are sensitive to changes in the stability and resilience of
transportation systems. Our use of universal measures advances
the monitoring capability, prediction and control of complex
transportation systems.

Index Terms— Early warning signals, resilience, traffic conges-
tion, tipping point, complex system.

I. INTRODUCTION

CONTINUOUS growth of the number of motor vehicles
has made traffic congestion a serious problem around the

world. Traffic congestion is intertwined with other concerns
that significantly affect quality of life, ranging from economic
and environmental problems to behavioral and health conse-
quences related with vehicle emission [1]–[3]. Recent concepts
related to smart cities and flexible, multi-modal transportation
further increase the complexity of the dynamics of transporta-
tion systems of the future. Hence, the study of the complex
dynamics of traffic has emerged as a topic of considerable
attention from engineers, planners, and policymakers [4]–[6],
with the ultimate goal of improving the stability and resilience
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of transportation systems by real-time traffic control manage-
ment. However, to implement smart control of road traffic,
predicting traffic conditions and developing universal measures
of traffic stability and resilience are a prerequisite.

Predictions and evaluations based on empirical models is
one of the traditional approaches in traffic technology to
analyze traffic patterns [7]–[9]. These models have provided
invaluable understanding of vehicular traffic systems and the
underlying dynamics resulting in traffic congestions. However,
practical real-time application of these approaches face signif-
icant challenges, particularly the necessity to approximate and
to validate model parameters corresponding to real-time traffic
conditions [10], [11]. Recently, availability of traffic data have
motivated data-assisted and data-driven techniques to improve
the existing methods and address existing challenges in traffic
jam analysis and forecasting [12]–[14]. Despite great advan-
tages of these methods, they usually demand extensive data for
model building and prediction. In addition, the applicability
of the methods remains a question in places where sufficient
data availability is an issue [15]. As a result, what is needed
is a methodology that connects data-driven and parametric
approaches. Here, we present such a framework by introducing
universal measures of traffic performance to capture, monitor,
and evaluate changes in the system stability and resilience
over time regardless of availability of any detailed information
about the underlying system model and parameters.

Previous studies have confirmed that traffic jams are the
result of an instability and phase transition (i.e., rapid transi-
tion to a new equilibrium state) in the traffic flow dynamics
where the traffic dynamics switches from a homogeneous
flow state to a congested flow state [16]–[18]. For instance,
if the density of vehicles on a road exceeds some critical
value or a change in driving strategies occurs depending
on time and weather conditions, the initially homogeneous
traffic loses its stability resulting in traffic jams that move
upstream [16], [19]–[21]. Recent advances in complex sys-
tems theory offer a hope to identify footprints of critical
phenomena in dynamical systems, e.g., instabilities and rapid
change in equilibrium state, solely from recorded measure-
ments of the system dynamics during normal operational
conditions [22]–[25]. When a dynamical system approaches
a tipping point – a threshold that when exceeded leads to
instability or large changes in the state of the system – its
dynamics become progressively slow, a phenomenon known
as critical slowing down. As a consequence of the slowing
down phenomenon, perturbations to the system lead to longer
transient recoveries to the equilibrium state, and the system
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Fig. 1. (a) Schematic of the critical slowing down phenomenon illustrated for a traffic flow system approaching a tipping point. Panels A, B and C show
the behavior of the system around its uniform flow equilibrium state while approaching an instability (i.e., a traffic jam). The local minima of the potential
well represent stable attractors, and the ball shows the present state of the system. While approaching the critical parameter, the local minimum of the stable
equilibrium becomes shallower, and the recovery of the ball in response to small perturbations is progressively slowing down. The footprint of this slowing
down is observed in the statistical measures obtained from measured time series of the dynamics. When the local minimum finally disappears, the system
undergoes a critical transition from its initial equilibrium (free flow) to a new equilibrium state (congested flow). In the diagram, ρmax − ρmean reflects the
equilibrium state, where ρmean is the average car density on road and ρmax is the maximum observed local car density over of the road in a steady state
situation. (b) Schematic of the proposed method of early warning signals for online applications in vehicular traffic systems. Statistical indicators of traffic
flow instability are extracted from measured traffic dynamics (e.g., average driving speeds) on the road, and they are analyzed to assess the traffic stability
and resilience, the effectiveness of adopted traffic management strategies, and the risk of an upcoming congestion.

is critically slow at the tipping point [26] (Fig. 1).Hence,
probing for the signs of slowing down accompanying critical
transitions can be employed as a basis for novel data-driven
approaches to anticipate stability, resilience and emergence
of critical phenomena in transportation systems. A detectable
slowing down can be interpreted as an increased risk of
instability and loss of resilience in the sense that the traffic
flow system could easily be tipped into a congested state.

In order to test whether a system undergoes slowing down,
one would ideally investigate its response to perturbations
from time to time, although such an approach may not be
feasible in practice [23], [27]. As an alternative, the footprints
of slowing down in dynamical systems can be investigated
via trends in the statistical moments of time-series data as
the transition is approached, known as early warning signals
(EWSs) [22]–[24], [28]. Early warning signals are measures
of the characteristic recovery time of the system and are
directly related to the stability of a dynamical regime (Fig. 1).
In principle, one only needs to monitor the system behavior

in the stable/free flow state to identify how close the system
is to an instability (i.e., close to a traffic jam), or how the
system stability will respond to the applied traffic management
strategies. In this study, we introduce generic early warning
indicators of traffic instabilities and assess whether warning
signals predict nonlinear transitions from free flow to con-
gested flow on highways when the road conditions deteriorate.
The analyses identify candidate statistical measures that are
sensitive to changes in the stability and resilience of trans-
portation systems.

Developing methods to predict the risk of traffic congestion
in short-term has been considered in previous research. For
instance, regressive models have been used for forecasting
traffic conditions [15], [29]. Pattern recognition [30]–[32]
and neural networks [33]–[35] have also been applied to
short-term traffic forecasting. While these methods perform
well for certain case-specific conditions, their predictions
are less satisfactory for other cases where external changes
occur or where the number of historical data is limited [36].
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The main advantage of the proposed data-driven early warning
signals in this study is that they are not case-specific. Hence,
the proposed signals may serve as generalizable indicators,
requiring relatively little data from a system to predict its
future state. In recent years, there has also been an increased
interest in developing metrics to evaluate and monitor trans-
portation systems resilience [37]–[39]. The proposed early
warning signals are developed based on universal underlying
dynamics of traffic congestions, so they have an improved gen-
erality for practical applications. These characteristics suggest
that early warning signals may be employed to keep track
of changes in the stability and resilience of the traffic flow
dynamics, which is of practical interest for performing traffic
management. Results of this study advance the monitoring
capability, prediction and control of transportation systems
where information regarding the status of system stability and
resilience is a significant advantage.

II. METHODS

A. Traffic Flow Modeling

To simulate data, macroscopic modeling of traffic flows is
employed. The resulting equations are solved numerically to
reproduce stable and unstable traffic flow behaviors observed
in real traffic. Particularly, simulations are performed based on
an anisotropic macro speed gradient continuum model devel-
oped through the micro-macro linkages of vehicular traffic
dynamics [18]. This model comprises two partial differential
equations, namely the vehicle density equation ρ(x, t) repre-
sented by a continuity equation, and the equation of motion
derived from car-following theory, as follows [18]

δρ

δt
+ δq

δx
= g (x, t) , (1a)

δv

δt
+ v

δv

δx
= Ve(ρ) − v

T
+ c0

δv

δx
+ ξ(x, t), (1b)

where q = ρv is the flow rate of the traffic stream, v is the
space mean speed, ξ(x, t) is additive spatiotemporal Gaussian
noise with zero mean, white in space and time reflecting the
spatiotemporal stochasticity in driver accelerations, and g(x, t)
is the generation rate. The generation rate is zero when there is
no ramp on the road, and is nonzero otherwise at the location
of an in/out ramp g (x, t) = qinδ (x − xin)− qoutδ(x − xout)).
In this equation, T is the relaxation time, c0 represents the
propagation speed of the disturbances, and Ve is a function
representing the relationship between the mean speed and the
traffic density under equilibrium conditions, which is selected
to be Ve = vmax

(
1/(1 + exp( k/km−0.25

0.06 )) − 3.72 × 10−6
)

[9].
Spatiotemporal stochasticity ξ(x, t) reflects the fact that
drivers have error in approximating the road density and
adjusting their speed based on the optimal function Ve(ρ).
Numerical simulations were carried out using the finite dif-
ference method for the following choice of parameters [18]:
vmax = 30m/s, T = 10s, km = 0.2veh/m, c0 = cm = 11m/s.
To carry out the numerical simulation, we use an upwind
integration scheme developed for speed gradient models to
discretize the equations, as in the refs. [18], [40], using �t =
1s and �x = 100m as discretization parameters. The traffic

dynamics is then sampled every 20 seconds to generate the
results.

The stability of homogeneous traffic flow can be evaluated
by analyzing the effect of a change in a selected system
parameter, namely a control parameter, on dynamics. The
control parameter is a parameter to which the stability of the
system is sensitive, and a change in that parameter may move
the system towards/away from an instability (Fig. 1). The car
density on the road and average velocity of cars moving on
the road are examples of control parameters in traffic flow
dynamics that affect the flow stability. Assuming the mean
density is the control parameter, theoretical stability analysis
of the equations of motion shows the homogeneous traffic flow
loses its linear stability when the average density of cars on
the road crosses two critical densities, namely ρc1 and ρc2 ,
and the homogeneous traffic flow is linearly unstable when
ρc1 < ρ < ρc2 (see Appendix). When the traffic flow is linearly
stable, small disturbances to the flow dynamics will disappear,
and traffic will return to its homogeneous state. In contrast,
in a linearly unstable traffic, disturbances will grow in size
resulting in rapid variations in speed and traffic density in
an oscillating pattern referred to as a stop-and-go traffic jam.
In what follows and for the sake of brevity, the stability
(instability) of homogeneous traffic flow state is replaced with
traffic flow stability (instability).

The choice of numerical scheme and discretization parame-
ters to solve Eq. (1) can influence the critical densities from
the quantitative perspective, but the qualitative dynamics of
the flow is preserved [18], [40]. The proposed early warning
signals predict the critical points reported from numerical
simulations, though, which are ρc1 = 0.041veh/m and ρc2 =
0.077veh/m based on our numerical results; values accurately
the same as in previous findings [18], [40].

B. Early Warning Signals

Early warning indicators are statistical indicators obtained
from online measurements of the system that reveal proximity
to a tipping point. These indicators are developed based on the
dynamical system theory and the theory of critical slowing
down [22], [24], [26], and are applicable to systems with
small fluctuations around their equilibrium state resulting from
stochastic perturbations. As a system approaches to a tipping
point (e.g., a traffic jam in this study), the system dynamics
becomes progressively slow. As a result of this slowing
down phenomenon, the system becomes more correlated with
its past leading to an increase in autocorrelation estimated
from the time series of appropriate system observables (see
Appendix). Furthermore, perturbations can accumulate, which
leads to an increase in the size of the fluctuations and as a
result, an increase in variance or other higher-order statistical
indicators [22], [41] (see Appendix). An increase in variance
and lag-1 autocorrelation of fluctuations of the system has been
observed in numerous theoretical and experimental complex
systems prone to critical transitions [24], [25], [42], [43]. Other
indicators have also been explored as early warning signals of
impending transitions, including an increased spectral density
ratio which is also employed in our analyses [44].
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Fig. 2. Early warning signals of traffic instability in a highway with periodic boundary conditions. (a) Spatiotemporal pattern of the traffic flow velocity
under a change in the mean density. The mean car density on the road is stationary for the first simulated two hours and increases linearly afterward to reach
to its critical value. Patterns of upstream stop and go traffic jam are observed when the dynamics passes its stability threshold. (b) Early warning signals of
loss of the traffic stability and resilience obtained from stochastic fluctuations in the measured mean velocity of cars at selected road segments. In each graph,
the solid black line is the EWS obtained from a single 500m segment of the road, the dashed blue line is the average of the EWSs obtained from all road
segments, and the vertical red line shows the time at which the traffic instability is observed.

C. Approximating Early Warning Signals From
Traffic Flow Measurements

To search for indications of critical slowing down prior to
the traffic instability, we assess the recorded stochastic fluctua-
tions of the measured traffic variables and calculate early warn-
ing statistics from the recorded time series. As demonstrated in
Fig. 1(b), the selected observables of the traffic flow dynamics
(e.g. mean density/velocity of cars) are measured online at
each time instant. Trends in early warning indicators are
estimated using a moving window. Data at each window are
detrended, and the variance, lag-1 autocorrelation and spectral
density ratio of the recorded measurements are extracted.
The spectral density ratio at each window is defined as the
spectral power in the lowest 20% to the highest 20% portion of
spectral frequencies in the window. The moving window will
then shift in time to include the new measurements and the
early warning signals are instantly computed in the updated
window. As a result, the trend of early warning signals is
observed online as more measurements are gradually added
to the time series (Fig. 1(b)). Strong positive trends in early
warning signals are expected from the theoretical studies once
the traffic approaches an instability (see Appendix).

In addition to monitoring single indicators, to determine
whether a composite signal would provide an earlier and more
accurate warning of the approaching instability, we calculate
composite indicators based on the sum of the standardized
deviations of each statistic from its long run average [24].
The time series for each statistic (wi ) is normalized at every
time point by subtracting the long-run average of that indicator

dividing it by the long-run standard deviation, i.e.,

ŵi,t =
wi,t − 1

n

t∑
τ=1

wi,τ

sd(wi,τ )
, (2)

where n is the number of samples from times 1 to t , and
sd(wi,τ ) is the standard deviation over the same period. The

composite indicator is then defined as Wt =
p∑

i=1
ŵi,t , and

p is the number of incorporated indicators in the composite
signal. The composite early warning index is considered
to produce an early warning signal when the value of the
composite index exceeds its running mean by two standard
deviations [24]. In this study, we show whether and how com-
bining incorporating single indicators to a composite indicator
improves the performance of warning signals in predicting an
impending transition. Note that the composite indicator and its
corresponding 2σ threshold are not derived from the theory
of slowing down. This method quantifies how significant an
indicator or a combination of indicators change relative to the
reference condition when no sign of slowing down exists in
the time series.

III. RESULTS

Theoretical findings and tests on simulated and empirical
case studies reveal that the slowing down phenomenon in the
traffic flow dynamics is detectable prior to its linear stability
boundary. We assessed the performance of three time-varying
early warning signals, namely variance, lag-1 autocorrelation,
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and spectral density ratio extracted from measured stochastic
fluctuations of the observed flow dynamics on highways.
Our main finding is that each of the introduced indicators
shows a substantial increase as the flow loses its stability and
resilience and the system approaches its critical condition, i.e.
a traffic jam. In addition to warning impending instabilities,
early warning metrics are shown to be sensitive to changes
in the stability and resilience of the traffic dynamics making
them a potential tool to evaluate the effectiveness of adopted
management strategies.

A. Results of a Study Using Simulated Data
Early warning signs of traffic instabilities are introduced and

evaluated in two simulated traffic scenarios: (i) traffic jam on a
closed road loop without a bottleneck, and (ii) traffic jam on an
open-road with ramps. The analyses are based on macroscopic
traffic flow dynamics, neglecting individual vehicle dynamics
and focusing on the average properties of flow dynamics on
the considered road segment. For the traffic flow to approach
an instability, a deteriorating condition needs to be modeled
so that the system is progressively pushed toward a transition
(traffic jam) over time (Fig. 1). Such a deteriorating condition
is characterized by a control parameter, which can be any
single factor affecting the traffic dynamics, e.g. average car
density on the road, the time of day, the weather conditions,
driving strategies, or a combination of them that changes
over time and pushes the system toward an instability. In the
following examples, we selected a variety of control parame-
ters including the average car density on the road, maximum
speed limit and the traffic inflow to the road. However, the
methods discussed are more general, and may be applied
to cases with other known/unknown underlying causes of
instability.

The closed loop road is modeled as a road segment with
periodic boundary conditions. Assuming the mean density is
the control parameter and for the range of parameters con-
sidered in the simulation, a stop-and-go traffic appears when
the mean car density on the road progressively increases from
values ρ < ρc1 toward the critical value of ρc1 = 0.041veh/m.
The flow simulation starts at an initial mean road density of
ρ0 = 0.01 in the free flow equilibrium condition, a value suffi-
ciently far from the critical value, with spatiotemporal stochas-
ticity added to the driver accelerations. After an initial phase
of stationary simulations at ρ0 reflecting steady condition on
the road, the mean density is gradually increased toward ρc1 .
To extract early warning signals, we monitor selected road
segments of the length 500 m and monitor the stochastic
fluctuations in the dynamical features of the flow over time.
The potential traffic dynamics variables to be monitored are the
mean velocity and the mean density of cars in the selected road
segment over time. In what follows, for the sake of brevity,
we presented results only for measured velocities. Similar
approach can be followed by measuring the density of vehicles
on road. For any simulated trajectory, we calculated and
assessed the performance of early warning signals extracted
from measured stochastic fluctuations of mean vehicle speeds
on the selected road segments (Fig. 2). Results show that the
introduced indicators exhibit a substantial increase as the mean

Fig. 3. Receiver Operator Characteristics (ROC) for the seven early warning
signal metrics. The curves were constructed by 1000 independent simulations
of the traffic flow equations, half of which exhibiting instability in their
dynamics. Curves are constructed by varying the number of the consecutive
signals above the 2σ threshold as the sign of an imminent transition. Solid
circles on the curve show the location corresponding to five consecutive
signals above the 2σ threshold.

Fig. 4. (a) Example of the constructed composite signal combining standard-
ized variance (V ar), lag-1 autocorrelation (AU T ) and spectral density ratio
(S DR) plotted against time. The blue circles show the composite signal, and
the running average (μ) and standard deviation boundaries (σ and 2σ) are
also marked in the figure. A passage of the 2σ threshold by the composite
index represents a slowing down in the dynamics. (b) Percentage of the
true positives, i.e. the composite index passes the 2σ threshold for five
consecutive time steps, for each combination of the EWSs obtained from
400 independent simulations of the traffic flow dynamics exhibiting instability.
(c) Mean number of maximum consecutive passages of the 2σ threshold for
each combination of EWSs. (d) Distribution of the remaining time to a traffic
jam when the composite indicator W = V ar + AU T + S DR predicts an
imminent instability based on the 2σ criteria.

density of cars on the road approaches its critical value and
the system approaches a traffic jam.

Although one observes a progressive increase in the values
of the warning signals as the system loses its stability and
resilience, we investigated whether a composite signal would
provide a more accurate and stronger warning of the approach-
ing transition. To this aim, in line with previous work by
Drake and Griffen in ecological systems [24], we normalized
each indicator independently and constructed a composite
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Fig. 5. Measurable changes in the trend of the early warning signals at a fixed mean density and a progressive (a) decrease and (b) increase in the maximum
allowed driving speeds. The solid black lines represent the EWSs obtained from a single 500m segment of the road, and the dashed blue lines show the
average of the EWSs obtained from all road segments.

indicator combining multiple indicators into a single metric
based on the sum of the standardized individual indicators.
The resulting composite signal is considered to be unequivocal
when its value exceeded its running average by two standard
deviations (2σ), reflecting a significant slowing down and risk
of transition in the dynamics. We simulated 400 independent
trajectories of the traffic flow dynamics starting from the mean
density of ρ0 progressively increased toward the critical value
ρc1 , and constructed the composite index for all possible
combinations of indicators to compare the performance of
single indicators and composite indicators in anticipating the
risk of an impending instability (i.e., a traffic jam). Thus,
in total we tested seven different metrics composed of every
unique combination of one to three indicators. For each case,
we computed the fraction of the cases where the signal
passes the 2σ threshold and stays above the threshold for
five consecutive time steps, selected based on the constructed
receiver operating characteristic (ROC) curve for the parame-
ters selected in this simulation (Fig. 3). Note that this number
is obtained for simulation parameters and might need to be
adjusted for empirical applications. The results of this analysis
are shown in Fig. 4. Interestingly, we found that composite
warning signals composed of some or all metrics outperform
the accuracy of any individual warning signal. An elaborately
selected composite index would provide more accurate and
significant warning signal of traffic instability compared to an
individual indicator (Fig. 4). Based on the results presented
in Figs. 3 and 4, the accuracy of predicting an upcoming traffic
congestion is close to 90% if a composite warning signal is
selected considering the defined 2σ criteria.

In addition to evaluating the risk of a transition, early
warning signals are a potential tool to evaluate changes in the
dynamics of the system caused by any known/unknown source.
Particularly, the signals can be employed also as a tool to eval-
uate the effects of adopted traffic management strategies on the
traffic stability. We demonstrate this by investigating the effect

Fig. 6. Early warning signals of traffic instability in a highway with an
on-ramp. (a) Spatiotemporal pattern of the traffic flow velocity under the
change of the inflow to the road. The traffic inflow is stationary for the first
simulated two hours and increases linearly afterward to reach its critical value.
(b) Early warning signals of loss of the traffic stability and resilience obtained
from stochastic fluctuations in the measured mean velocity of cars at selected
road segments (schematically shown with a horizontal box in the figure). The
vertical red line shows the time at which the traffic instability is observed.

of changes in the maximum speed limit on the stability of the
traffic flow dynamics. To this aim, we set the initial mean car
density of the road ρ0 and the maximum driver velocity vmax

so that the traffic is at a close distance to the tipping point.
Keeping the mean road density fixed, the maximum allowed
speed for vehicles was gradually increased. Changes in the
maximum driving speed can resemble a policy defined for the
system by traffic managers, or a consequence of any changes
in the system affecting driving strategies (e.g., time of the
day, weather). For such a simulation, results reveal a clear
and marked change (decrease) in the system stability after
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Fig. 7. Early warning signals of traffic congestions for US-101 highway. (a) Spatio-temporal evolution of density and velocity of vehicles on the road for
the first 30 minutes of the recordings. The measurements used to extract early warning signals is depicted by a dashed box on the plots. (b) Early warning
signals obtained from density measurements. (c) Early warning signals obtained from velocity measurements. Vertical red line shows the time at which the
traffic instability is observed. (d) Composite early warning index comprising all three indicators extracted from velocity measurements (left) and density
measurements (right) in the empirical US-101 highway case study.

the change in the maximum allowed speed starts (Fig. 5).
Hence, monitoring early warning signals shows how and if
the stability of the system has changed significantly as a
result of a change in the system parameters. A similar study
was performed by gradually decreasing the maximum possible
driving speed, meaning that the drivers progressively tend to
drive slower compared to their initial assigned value (Fig. 5).
The measured warning signals in this case exhibit a decrease,
representing an increased stability and resilience of the traffic
as a result of this change in the driving strategy.

As a second study, we next performed an analysis of the
macroscopic model of an open freeway with an on-ramp. The
stability of this system is a function of both the variation in
the inflow at the upstream freeway boundary (Qup) and at the
ramp (Qramp) [45]. The upstream traffic can lose its resilience
and approach an instability by increasing either or both of
these parameters. Here, we assume both the upstream and
ramp inflows increase progressively over time starting from an
initial value. The simulated freeway has a length of 15 km and
a ramp located at x = 10 km. In line with the previous exam-
ple, we monitor the mean vehicle speeds recorded at selected
road segments of length 500 m located upstream of the ramp.

The stability of the traffic is evaluated using the introduced
early warning statistics (i.e. variance, lag-1 autocorrelation,
spectral density ratio) over time as the inflow to the road
is gradually increased. Figure 6 shows the sensitivity of the
introduced early warning indicators to the changes in the
stability of traffic dynamics on this highway. All the introduced

indicators respond to a change in the traffic inflow into the
highway, which implies a reduction in the system stability
and resilience to perturbations. A significant increase in the
warning signals is observed when the system is close to the
instability compared to the baseline values corresponding to
the stationary phase of the dynamics.

B. Results of a Study Using Empirical Data
To test the performance of the prediction/detection algo-

rithm, we carried out a study using empirical time series
collected by the Next Generation Simulation Program from
the United States Federal Highway Administration [46]. Here,
we study the data recorded on the southbound of freeway
US-101 in Los Angeles in 2005 since it exhibits a traffic
instability after a period of initial free flow regime. A total
of 45 minutes of data in morning rush hours is available which
includes both free flow and traffic jam propagation states.
To capture the steady and patterns and to avoid inactive cells in
spatiotemporal profiles, the first and last 100s in the temporal
dimension and 100 f t in the spatial dimension were removed
from the analysis. The data from the auxiliary lane and ramps
were eliminated from the analysis because the normal traffic
in these lanes differ from that found in the other lanes.

Figure 7 shows the spatio-temporal profile of traffic flow
constructed from the recorded data. The plot is obtained by
partitioning the road in space and time neglecting the effect
of lane changing and the microscopic dynamics of vehicles.
Analyzing the dataset shows that although a stop-and-go traffic
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Fig. 8. Composite early warning index comprising all three indicators
extracted from velocity measurements (left) and density measurements (right)
in the empirical US-101 highway case study.

exists in the first 400 m of the road from the beginning of the
measurements, the traffic is stable in the last 200 m of the
road for the first 15 minutes of the recordings. As a result,
we focus on the last 200 m of the road to search for signs of an
upcoming instability using early warning signals. To identify
EWSs of traffic instability, both the spatial-mean velocity of
vehicles and the mean density of the vehicles on the monitored
road segment over time are measured. We focus on the initial
part of the data up to the emergence of the first instability on
the road (i.e., t ≈ 12.8 min) to evaluate the performance
of the introduced warning signals. The extracted warning
indicators are depicted in Fig. 7, showing a measurable rise
in the amplitudes of the warning indicators before the onset
of the instability on the road. Among the measured indicators,
the variance provides a more robust warning signal. Using the
approximated warning signals, we constructed the composite
early warning index comprising all three indicators to assess
the performance of composite indicator in this empirical study.
Results show that the composite indicator passes the 2σ
threshold, and warns of an impending transition measuring
either the velocity or the density fluctuations (Fig. 8). It is
observed that the composite indicator fluctuates around the 2σ
boundary for several minutes prior to the onset of instability
and maximum three consecutive signals are detected above the
threshold.

IV. DISCUSSION AND CONCLUSION

We approach the problem of data-driven traffic jam pre-
diction and evaluation from complex dynamical systems and
critical transitions point of view. We suggest that generic early
warning indicators developed based on dynamical systems
theory offer a potential solution to the formidable challenge
of traffic stability and resilience evaluation. Due to the com-
putational efficiency of early warning signals, they provide
a feasible tool for online stability analysis of transportation
systems. We demonstrated that early warning signals can
successfully alarm approaching a traffic instability in both
numerical and empirical case studies. Although each of the
indicators independently showed evidence of approaching the
transition, we found that a composite early warning index
comprising all or some of the single indicators could be more
efficient in detecting slowing down and potential transitions,
leading to an increased sensitivity and reliability of predictions
and a reduced chance of a false alarm. In addition to warning
impending instabilities, early warning metrics were shown to
be capable of detecting changes in the underlying system

parameters and the degree they affect the stability of the flow,
which is a formidable challenge in the absence of a detailed
and calibrated model of system components and interactions.
The proposed approach is model-free and requires relatively
little data or understanding of the underlying structure of a
system. Of course, warning signals are beneficial for systems
that might be at risk of instabilities and critical transitions.
The potential for instabilities could come from observations
of the history of the system dynamics or from simplified and
low-fidelity models. However, once the system is identified
to be at risk of critical transitions, the introduced warning
signals can be applied to evaluate the system stability and
resilience regardless of availability of detailed information
about underlying system parameters and equations. This fea-
ture addresses one of the significant obstacles in complex
transportation systems, which is the reliance on highly para-
meterized models that are prone to mis-specification and may
give little or no indication of qualitative changes in system
dynamics [10], [11].

The empirical case study supports the potential applicability
of introduced warning indicators to assess changes in the
stability and resilience of real-world transportation systems.
It should be noted that the time series used for the empir-
ical case study (and more likely other real-world data) are
shorter than the scenarios presented in the simulations and
contain more uncertainties from unknown sources. As a result,
the extracted warning signals are more susceptible to data
processing steps [47], [48]. Therefore, an initial study on the
optimal data processing steps might be required in real-world
scenarios.

Despite the advantages of the early warning signals and
critical slowing down based indicators, there are limitations
associated with such methods that need to be taken into con-
sideration while interpreting the results. First, early warning
signals are applicable only to systems that exhibit certain
types of instabilities in their dynamics. Mathematically, for
continuous time systems these instabilities are observed when
the real part of dominant eigenvalue of the dynamics gradu-
ally approaches zero. The underlying mechanism causing an
instability, particularly traffic jam in this study, is required
to satisfy this assumption for early warning signals to work.
Second, some systems do not exhibit slowing down in their
dynamics until they are in a narrow neighborhood of the
instability. As a result, although observing a sign of slowing
down means the system is losing stability, failure to detect
slowing down does not necessarily imply the stationarity of
the system dynamics. Third, strong environmental noise may
erase signatures of critical slowing down. Particularly when the
system is bistable, strong noise or perturbations can force a
system to another state far before it reaches the tipping point
and experiences a slowing down in its dynamics [49], [50].
In addition, early warning indicators predict approaching an
instability, but do not provide a quantitative measure of how
close (in time or control parameter) the system is to the
instability. Such an approximation depends on many system
specific factors, e.g. the rate of change in the control parameter,
system dynamics parameters, which are not considered in this
study.
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Although the slowing down phenomenon and the resulting
increase in early warning indicators sound the alarm regarding
the risk of loss in stability and resilience, one should note that
early warning indicators are a direct measure of changes in
the stability but not necessarily the resilience. By definition,
stability represents the ability of a system to return to its
equilibrium state after a temporary disturbance [26], [51].
The more rapidly the system returns to its equilibrium, the
more stable it is. In contrast, resilience is a measure of
the magnitude of disturbance that can be absorbed before
the system switches to another equilibrium state [43], [51].
Early warning indicators are developed based on the slow-
ing down phenomenon, i.e. decreased rate of recovery from
perturbations as it approaches an instability. As a result,
they are directly related to the system stability. Although an
increase in the trend of the indicators implicitly raises the
alarm for a potential loss of the resilience, it does not identify
how and whether the resilience is decreased. For instance,
the system might approach a supercritical type of bifurcation at
which the system approaches an instability, but it can recover
from perturbations of any amplitude and the resilience is
retained before the tipping point. In subcritical bifurcations
(Fig. 1(a)), however, loss of stability and resilience are related
when the system is in the bistable region of the dynamics.
In this case, resilience becomes an important factor since the
system might experience instability even before the tipping
point. Subcriticality and bistability are widely observed in the
literature of transportation systems, particularly for highway
traffic where large perturbations in the dynamics result in the
emergence of a traffic jam whilst the traffic has not reached its
linear stability boundary [45], [52], [53]. Hence, once a rise
in the early warning indicators of a transportation system is
observed, one should expect the loss of both the stability and
resilience to remain on the safe side, implying that the system
has become more vulnerable to jumping to a congestion state
earlier than expected if a large disturbance occurs on the road.

The concepts and methods introduced in this study were
applied to the traffic congestion scenario on highways. The
introduced metrics, however, are generalizable, as they make
limited assumptions about the underlying complex dynam-
ics, infrastructure and environmental parameters affecting the
system. The approaches and ideas can be used as a basis
for further development to address challenges related to the
complexity of traffic dynamics.

APPENDIX

A. Linear Stability Analysis of the Equations

Consider the traffic flow model governed by the following
equations [18]

δρ

δt
+ δq

δx
= g (x, t) , (3a)

δv

δt
+ v

δv

δx
= Ve(ρ) − v

T
+ c0

δv

δx
. (3b)

Assume ρs and vs = Ve(ρs) to be the uniform flow solution
of these equations for g (x, t) = 0. The equilibrium state of
a dynamical system is a state that a system returns to it after
a small temporary disturbance. Assuming periodic boundary

Fig. 9. Schematic of (a) the fundamental velocity function (Ve) and (b) the
resulting stability boundaries obtained in Eq. (5). The stable region is marked
with green color.

conditions, we define the perturbed solutions of the equations
around the uniform flow equilibrium solution as ρ (x, t) =
ρs + ρ̃γ exp(iγ x +σγ t) and v (x, t) = vs + ṽγ exp(iγ x +σγ t).
Substituting these solutions into Eqs. (3a) and (3b), taking a
Taylor series expansion of the nonlinear terms, and neglecting
higher order terms one obtains

(
σγ + iγ vs

)2 +
(

1

T
− iγ c0

) (
σγ + iγ vs

)

+ 1

T
(iγρs) V ′

e (ρs) = 0. (4)

where V ′
e (ρs) = dVe

dρ (ρs). Substituting σγ = α + iβ into
Eq. (4), separating real and imaginary parts of the result-
ing equations and performing some straightforward algebra,
one reaches the following stability condition corresponding
to α = 0:

−c0 ≤ ρs V ′
e (ρs) ≤ 0. (5)

Therefore, the uniform traffic becomes unstable and the
system exhibits a traffic congestion when either ρs V ′

e (ρs) +
c0 = 0 or V ′

e (ρs) = 0. For the common velocity function
considered in the literature and in this study [9], [54] (see
Methods), Ve is a monotonically decreasing function of ρ, and
the condition V ′

e (ρs) = 0 corresponds to the extreme limits
of the dynamics (ρs = 0 or ρs → ∞). Thus, our focus is on
the instability caused by the ρs V ′

e (ρs) + c0 = 0 criteria. This
stability criteria corresponds to two critical values of density,
namely ρc1 and ρc2, where ρc1 < ρc2 (Fig. 9). The analyses
performed in the main text focused on the critical density of
ρc1 which is a more common type of instability on roads,
but one can obtain similar results by evaluating the proposed
methods for the critical transition at ρc2.

B. Variance Analysis

We derived an analytical expression for the variance of the
measured mean velocity and density of the cars on road to
analyze their trend as the traffic approaches an instability.
Starting from the following equations

δρ

δt
+ δq

δx
= g (x, t) ,

δv

δt
+ v

δv

δx
= Ve(ρ) − v

T
+ c0

δv

δx
+ ξ (x, t) , (6)

where ξ (x, t) is additive spatiotemporal Gaussian noise with
zero mean, white in space and time, and correlation given by
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〈
ξ(x, t)ξ

(
x ′, t ′

)〉 = r2δ
(
x − x ′) δ(t − t ′) where r is the noise

intensity. Assuming g (x, t) = 0, and ρs and vs = Ve(ρs) to be
the steady state solutions of the above equations, we define the
perturbed solutions of the equations around the uniform flow
equilibrium solution as ρ (x, t) = ρs + k(x, t) and v (x, t) =
vs + u(x, t). Substituting the perturbed solutions into Eq. (6),
taking Taylor series expansions of the perturbed equations at
ρs and vs, and neglecting higher order terms, we obtain the
following linearized equations:

δk

δt
+ vs

δk

δx
+ ρs

δu

δx
= 0,

δu

δt
+ vs

δu

δx
= V ′

e(ρs)k − u

T
+ c0

δu

δx
+ ξ(x, t), (7)

where V ′
e (ρs) = dVe

dρ (ρs). Assuming periodic boundary condi-
tions, we can consider the solution to Eq. (7) in the following
form:

u (x, t) =
∑

γ eiγ x uγ (t),

k (x, t) =
∑

γ eiγ x kγ (t). (8)

Taking the Fourier transform of the linearized Eq. (7) and
separating real and imaginary functions, four independent
coupled ordinary differential equations are obtained as follows:

K̇γ R − γ vs Kγ I − γρsUI = 0,

K̇γ I + γ vs Kγ R + γρsUR = 0,

U̇γ R − γ vsUγ I = 1

T

[
V ′

e (ρs) Kγ R − Uγ R
]

−c0γ Uγ I + ξγ (t),

U̇γ I + γ vsUγ R = 1

T

[
V ′

e (ρs) Kγ I − Uγ I
] + c0γ Uγ R, (9)

where uγ (t) = Uγ R + iUγ I and kγ (t) = Kγ R + i Kγ I . ξγ (t)
is the noise term obtained by taking the Fourier transform of
ξ(x, t) and is Gaussian, white in time, independent for distinct
wavenumbers γ , with amplitude β(γ ) determined by spatial
power spectral density. Equation (9) can be written in matrix
form as

dx4×1 = A4×4x4×1dt + L4×1dw(t), (10)

where x = [
Kγ R, Kγ I , Uγ R, Uγ I

]T , and w(t) denotes the
standard Brownian motions, and L = [0, 0, β, 0]T with β
being a constant. The equations for the covariance matrix of
the Eq. (10) is

Ṗ = AP + P AT + L LT . (11)

The steady state solution of Eq. (11) (i.e., Ṗ = 0) provides
the covariance matrix of the equations where its diagonal
and off-diagonal elements are the variances and covariances
of the state vector x, respectively. To solve this equation,
we employed a matrix Kronecker product approach [55] to
transform the equation into the equivalent system of lin-
ear equations and found the elements of covariance matrix
P by solving the resulting equations symbolically using
Mathematica®[56]. Following this procedure, one can find the

Fig. 10. Trends of the functions appeared in Eq. (12) computed for the model
parameters described in Methods and varying ρ as the control parameter.

expressions for the variances

var
(
Kγ R

)

= ρsβ f 1
(
γ, c0, T, ρs , vs , V ′

e (ρs)
)

V ′
e (ρs)×

(
c0+ρs V ′

e (ρs)
)×g1

(
β, γ, c0, T, ρs , vs , V ′

e (ρs)
) ,

var
(
Kγ I

)

= ρsβ f2
(
γ, c0, T, ρs , vs , V ′

e (ρs)
)

V ′
e (ρs)×

(
c0+ρs V ′

e (ρs)
)×g1

(
β, γ, c0, T, ρs , vs , V ′

e (ρs)
) ,

var
(
Uγ R

)

= β f3
(
γ, c0, T, ρs , vs , V ′

e (ρs)
)

(
c0+ρs V ′

e (ρs)
)×g1

(
β, γ, c0, T, ρs , vs , V ′

e (ρs)
) ,

var
(
Uγ R

)

= β f4
(
γ, c0, T, ρs , vs , V ′

e (ρs)
)

(
c0+ρs V ′

e (ρs)
)×g1

(
β, γ, c0, T, ρs , vs , V ′

e (ρs)
) . (12)

The expressions derived in Eq. (12) provide an insight into
the expected trend of the early warning signals obtained by
monitoring the mean velocity and density of cars on the road.
Recall from the stability analysis that the traffic exhibits an
instability when c0 + ρs V ′

e (ρs) = 0, which results into the
slowing down of the dynamics as the system loses its stability.
This term exists in the denominator of the variances extracted
from both velocity and density measurements, pointing to the
fact that the variances grow indefinitely when the system is
extremely close to the instability. Trends of the functions
fi , i = 1, 2, 3, 4, and g1 in Eq. (12) are demonstrated
in Fig. 10 highlighting that the term c0 +ρs V ′

e (ρs) dominates
the equations for densities sufficiently close to the ρcrit ical .

C. Early Warning Signals

Consider a dynamical system

ż = f (μ, z) + ση, (13)

where f is a nonlinear function, μ is the control (varying)
parameter, z is the state variable, and η(t) represents stochastic
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white noise with variance σ 2. Assuming the system is at its
equilibrium state (i.e., z∗), one can expand Eq. (13) to the first
order to obtain

˙̃z = λ(μ)z̃ + ση, (14)

where z̃ = z − z∗ and d f (μ,z)
dz

∣∣∣
z∗ = λ(μ). The system is stable

when λ (μ) < 0 and becomes unstable when λ (μ) > 0. The
parameter μ = μc at which λ (μc) = 0 is the critical parameter
value, also referred to as the tipping point of the system.

The variance for the time series z̃(t), is < z̃2 >, where 〈·〉
denotes statistical mean. From Eq. (14), one can show that

< z̃2 >= σ 2

2λ(μ)
. (15)

The autocorrelation function of time series z̃(t) is
c (�t) =< z̃(t)z̃(t + �t) >, where �t represents time
lag. From Eq. (14), a closed form expression of normalized
autocorrelation function can be derived as

K = c (�t)

< z̃2 >
= exp(λ(μ)|�t|). (16)

The coefficient K = exp(λ(μ)|�t|) where �t = t j+1 − t j

and j is the sample index represents the autocorrelation at
lag-1. Assuming that there is a repeated disturbance of the
state variable after each period �t (i.e., the additive noise),
the return to equilibrium is approximately exp(λ(μ)|�t|).

Assuming that a system is initially at a sable state with
λ (μ) < 0 and it gradually loses its stability, i.e. λ (μ) → 0−,
Eq. (15) shows that the variance of the time series increases
and approaches to infinity when λ (μc) = 0. In addition,
Eq. (16) shows that K approaches 1 exponentially when
λ (μ) → 0−. As a result, monitoring the variance and
lag-1 autocorrelation of the time series may be selected as
indicators of approaching an instability. Beside these two
indicators, other statistical metrics based on slowing down
phenomena have been introduced also as potential warning
signals. In particular, the spectral density ratio was shown to
increase while the system approaches the critical threshold
since low frequency directional movement begins to dominate
the high frequency noise-induced fluctuations [49]. In this
study, we analyze the stability and resilience of traffic flow
system using the variance, lag-1 autocorrelation, and spectral
density ratio of the measured time series.
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