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Abstract
When modeling infectious diseases, it is common to assume that infection-derived
immunity is either (1) non-existent or (2) perfect and lifelong. However there are
many diseases in which infection-derived immunity is known to be present but imper-
fect. There are various ways in which infection-derived immunity can fail, which
can ultimately impact the probability that an individual be reinfected by the same
pathogen, as well as the long-run population-level prevalence of the pathogen. Here
we discuss seven different models of imperfect infection-derived immunity, including
waning, leaky and all-or-nothing immunity. For each model we derive the probability
that an infected individual becomes reinfected during their lifetime, given that the
system is at endemic equilibrium. This can be thought of as the impact that each of
these infection-derived immunity failures have on reinfection. This measure is useful
because it provides us with a way to compare different modes of failure of infection-
derived immunity.
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1 Introduction

The SE I S (Susceptible-Exposed-Infected-Susceptible) and SE I R (Susceptible-
Exposed-Infected-Recovered) models are two commonly used models in epidemiol-
ogy that embody different assumptions regarding immunity after infection (Anderson
and May 1991; Keeling and Rohani 2008). When we adopt the SE I R model, we
assume that infection-derived immunity is perfect and lasts for life. Thus, in this case
an individual who has recovered from an infection is assumed protected against the
same pathogen again. Examples of such infectious diseases would include historical
diseases of childhood including measles (Anderson and May 1991; Hethcote 2000)
and rubella (Anderson and May 1983), where infection confers lifelong sterilizing
immunity, with rare exceptions.

On the other hand, SE I Smodels reflect instanceswhen there is no infection-derived
immunity, so that once an individual recovers from an infection, they are immediately
susceptible to the samepathogenwith the same risk of infection as before. This assump-
tion is consistent with what we know about several sexually transmitted diseases
(STDs) such as herpes simplex A, gonorrhea, syphilis and chlamydia (Turner et al.
2006). It is also appropriate in infectious disease systems such as influenza (Dushoff
et al. 2004; Hay et al. 2001), or Streptococcus pneumoniae (Cobey and Lipsitch 2012)
where antigenic or serotype diversity mean that infection with one phenotype does
not affort protection to subsequent exposures. Finally, there are infectious disease sys-
tems where convalescent immunity is insufficient to protect against future infection.
For instance, clinical studies of respiratory syncytial virus (RSV) show that infections
create incomplete immunity and that the risk of being reinfected is reduced by about
70% for the 6 months following the initial infection (Hall et al. 1991; Pangesti et al.
2018; Ohuma et al. 2012).

Infection-derived immunity can thus fail in different ways and each mode of fail-
ure has distinct implications for the reinfection probability of previously infected
individuals and the overall dynamic behaviour of the disease system. There is a con-
tinuous and multidimensional space of models wherein the level of infection-derived
immunity lies somewhere in between the SE I S and the SE I R models. Imperfect
immunity in the form of lifelong partial immunity, as well as in the form of temporary
fully protective immunity, have both been considered for their role in the transmission
of a disease within a population (Gomes et al. 2004; Korobeinikov and Maini 2005;
Melesse and Gumel 2010; Trawicki 2017; Yang and Silveria 1998). Nevertheless,
there remain important knowledge gaps in our understanding of possible modes of
immunity failure as there are many other variations of imperfect immunity that have
yet to be considered. Here we consider seven models that contain different forms of
imperfect infection-derived immunity, all of which contain the SE I R and SE I Smod-
els as limiting cases. The models we consider are: (i) the exponential waning model,
(ii) the leaky model, (iii) the all-or-nothing model, (iv) the hyperexponential waning
model, (v) the gamma-distributed waning model, (vi) the boosting model and (vii) the
asymptomatic model. Some of these models have been studied previously (Bansal and
Meyers 2012; Gomes et al. 2004; Rodrigues et al. 2009; Yang and Silveria 1998). In
this paper we compare all seven models by deriving expressions for the probability
that an individual is reinfected by the same pathogen within their lifetime, under the
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different model assumptions. This is called the reinfection probability and we will
compare the expressions for reinfection probability across the seven models.

This paper is structured as follows: In Sect. 2 we describe and define the seven
different models that we are comparing. In Sect. 3 we prove the existence and unique-
ness of the a disease-free equilibrium and an endemic equilibrium for each model, and
derive expressions for the force of infection at each endemic equilibrium. In Sect. 4
we discuss the stability of these equilibria. In Sect. 5 we present expressions for the
reinfection probability of each model and compare these expressions. In Sect. 6 we
summarize the results and discuss some possible future directions.

2 Models

The seven different models of reinfection that we consider in this paper are illustrated
in Fig. 1. The first threemodels (exponential waning, all-or-nothing, and leaky) require
the standard four compartments: susceptible, exposed, infectious, and recovered. The
next threemodels (gamma-distributedwaning, hyperexponentialwaning andboosting)
require a second compartment for the recovered individuals to allow for both gamma-
distributed or hyperexponential waning, as well as for immune boosting. The last
model requires eight different compartments to allow for a different treatment of
primary infections and reinfections.

The model equations are given by (1)–(3) and descriptions of the parameters
involved for the different models are summarized in Table 1. For all models, we
set the compartments of the model to be given as proportions rather than numbers or
densities. We also fix a birth rate of μ equal to the per capita death rate in all com-
partments. Thus, as long as the system is initialized properly, all compartments will
remain nonnegative and the sum of all compartments will always equal 1. We assume
throughout that there is a transmission rate β between susceptible and infectious indi-
viduals, an incubation rate σ going from an exposed to infectious compartment, and
a recovery rate γ going from an infectious compartment to another compartments.

The first three models shown in Fig. 1 are the exponential waning model, leaky and
all-or-nothing immunity. The equations for these threemodels are given together in (1).
For these three models the parameters relevant to infection-derived immunity are: the
waning rate α for the exponential waning model, the probability of not receiving any
immunity after infection (also called primary vaccine failure) εA for the all-or-nothing
model, and the “leakiness” parameter εL for the leaky model. While it is possible to
have a combination of different modes of failure in infection-derived immunity (for
example, immunity that is both leaky and waning), in this paper we consider just one
of the methods of failure at a time, so only one of these parameters can be nonzero at
a time.

In the exponential waningmodel (often simply called the waningmodel, also called
the SE I RS model in the literature) we assume that immunity is perfect until it disap-
pears after an exponentially distributed amount of time.Thismodel has beenpreviously
used to explore the resonance effects of seasonal influenza (Dushoff et al. 2004) and to
quantify the evidence for loss of natural immunity to pertussis in Thailand (Blackwood
et al. 2013a).

123



   61 Page 4 of 23 A. Le et al.

S E I R
μ

μS μE μI μR

λS σE (1− εA)γI

αR

εAγI εLλR
Exponential waning

All-or-nothing

Leaky

S E I

R1

R2

μ

μS μE μI

μR1

μR2

λS σE

(1
− εH

)γ
I

2
α
G

R
1

2αGR2
ε
H γI

α1R1

α2R2
ξR

1

(1−
k)δλ

R
2

kδλR
2

αBR2

Gamma-distributed waning

Hyperexponential waning

Boosting

S1 E1 I1 R1

R2S2E2I2

μ

μS μE μI

μR1

μR2

λS σE γI

2
α
R

1

2αR2

μS2μE2μI2

λS2σE2

γI2

Asymptomatic, λ = β(I1 + θI2)

Fig. 1 Illustration of the models

In the all-or-nothing model, we assume that while the majority of infections lead
to life-long immunity, some individuals fail to develop long-term protection, as has
been observed in varicella infection (Chaves et al. 2007), for example. Here, a fraction
εA of recovering individuals return immediately to the susceptible class, while the
remaining 1 − εA gain complete and permanent immunity.

In the leaky model, infection-derived immunity is assumed to be permanent but
incompletely protective. In this model, individuals in the recovered class have a prob-
ability of infection upon exposure that is reduced by a factor εL relative to a fully
susceptible individual. This modeling assumption has been proposed in the study of
influenza antigenic evolution where infection with a virus from a previous season may
provide only partial immunity (Hill et al. 2019).

dS

dt
= μ + εAγ I + αR − (λ + μ)S,

dE

dt
= λS + εLλR − (σ + μ)E,

d I

dt
= σ E − (γ + μ)I ,
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dR

dt
= (1 − εA)γ I − (εLλ + α + μ)R,

λ = β I . (1)

The equations for the first three models are identical to those of the SE I R model
if εW = εL = α = 0. The equations become those for the SE I S model if we set
εA = 1 or εL = 1 or let α → ∞.

The next three models presented in Fig. 1 are the hyperexponential waning model
(which we often just simply call the hyperexponential model), gamma-distributed
waning model (which we often just simply call the gamma-distributed model) and
boosting models of infection-derived immunity. The equations for these are given
in Eq. (2). The key differences between the the more commonly used basic waning
model (exponential waning model, also called the SE I RS model) and the hyperex-
ponential and gamma-distributed models concerns the distribution of waiting time in
the immune class. The basic waning model has an exponentially distributed waning
time with mean of 1

α
and variance 1

α2 . The waning time in the gamma-distributed

model is gamma-distributed (Erlang) with shape parameter of 2 has a mean of 1
αG

and variance 1
2α2

G
. Hence, if α = αG this model offers a distribution with a reduced

variance and as the shape parameter is increased, there is a greater central tendancy
in the distribution (Keeling and Rohani 2008; Wearing et al. 2005). In contrast, the
hyperexponential model offers the possibility that variance in waning times may in
fact be larger than that generated by the exponential distribution. This is achieved by
incorporating two compartments with associated (exponential) waning rates α1 and
α2 through which fractions εH and 1 − εH , respectively, of recovered individuals
may regain susceptibility. Thus, a fraction εH of recovered individuals have immunity
waning at rate α1 and the remaining having immunity waning rate of α2, respectively.
This results in the mean and variance of the immune period given by εH

α1
+ 1−εH

α2
and

2εH
α2
1

+ 2(1−εH )

α2
2

− ( εH
α1

+ 1−εH
α2

)2, respectively. As far as we are aware, this model has

not previously been explored in epidemiology.
The boosting model comprises a substantially more complicated mechanism of

infection-derived immunity. In this model, it is assumed that previously infected indi-
viduals initially enter the R1 compartment where they are fully protected. However,
their immunity eventually wanes and they enter the R2 compartment where immunity
is partial with a proportion k of exposures in this class leading to re-infection. Partial
immunity reduces the hazard of infection by the parameter δ ∈ [0, 1). The remaining
proportion 1 − k of re-exposed individuals instead experience a boost in immunity
and return to R1. For individuals not re-exposed to the pathogen, immunity in R2
eventually wanes and individuals become fully susceptible once again. The concept
of immune boosting is further discussed in Wearing and Rohani (2009) and a models
incorporating this mechanism for both infection- and vaccine-derived immunity have
been fitted to pertussis time-series data in (Blackwood et al. 2013b; Lavine et al. 2013,
2011; Wearing and Rohani 2009).
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dS

dt
= μ + α1R1 + α2R2 + 2αG R2 + αB R2 − (λ + μ)S,

dE

dt
= λS + kδλR2 − (σ + μ)E,

d I

dt
= σ E − (γ + μ)I ,

dR1

dt
= (1 − εH )γ I + (1 − k)δλR2 − (α1 + 2αG + ξ + μ)R1,

dR2

dt
= εHγ I + 2αG R1 + ξ R1 − (α2 + 2αG + αB + δλ + μ)R2,

λ = β I .

(2)

The equations involved for the seventh and lastmodel (the asymptomaticmodel) are
given byEq. (3). Thismodel includes twoparameters that influence immune failure and
its epidemiological consequences: mean waning rate α and a relative infectiousness
parameter θ that is equal to the reduction in infectiousness of individuals previously
infected relative to naive infections. This model structure has been previously studied
to examine the epidemiological consequences of repeat infections in pertussis (Black-
wood et al. 2013b; Cellès et al. 2018; Wearing and Rohani 2009), rotavirus (Pitzer
et al. 2009) and COVID-19 (Saad-Roy et al. 2021).

dS1
dt

= μ − (λ + μ)S1,

dE1

dt
= λS1 − (σ + μ)E1,

d I1
dt

= σ E1 − (γ + μ)I1,

dR1

dt
= γ I1 + γ I2 − (2α + μ)R1,

dR2

dt
= 2αR1 − (2α + μ)R2

dS2
dt

= 2αR2 − (λ + μ)S2,

dE2

dt
= λS2 − (σ + μ)E2,

d I2
dt

= σ E2 − (γ + μ)I2,

λ = β(I1 + θ I2).

(3)

In the asymptomatic model, the S1 compartment contains individuals that have
never been infected before. If these individuals get exposed, they go through the first
exposed class E1 then first infectious class I1 and we assume that these infectious
individuals are symptomatic and infectious. Individuals that recover go to the R1 then
R2 classeswherewe assume immunity is gamma-distributed.Afterwards, they become
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susceptible again and thus can be infected again. However, if they are re-infected we
assume that they are asymptomatic, and possibly less infectious. For this reason, we
have to have the S2 class, which are susceptible individuals that have been infected
before. Individuals that are reinfected then go to E2 and I2 classes and we assume that
I2 is only a fraction θ , with θ ∈ [0, 1], times as infectious as I1 due to these individuals
being asymptomatic. Since thewaning period of immunity in (3) is gamma-distributed,
the gamma-distributed model can be derived as a special case of the asymptomatic
model with θ = 1.

All model parameters are defined in Table 1. In all of the models, secondary infec-
tions do not affect the basic reproduction number (Diekmann et al. 1990; van den
Driessche and Watmough 2008) of the systems. Thus for all of these models we still
have

R0 = β

γ + μ

σ

σ + μ
,

as in the SE I R and SE I Smodels. This is clear because the basic reproduction number
for systems like this is defined to be the spectral radius of the next-generation matrix
linearized at the disease-free equilibrium (Diekmann et al. 1990; van den Driessche
and Watmough 2008) and thus does not involve reinfections.

3 Existence and uniqueness of equilibria

3.1 Disease-free equilibrium

Disease-free equilibria are equilibria of each system of differential equations with the
infectious compartments (I in the first six models, I1 and I2 in the last model) set to
zero. Setting I = 0 in (1) easily yields that (S, E, I , R) = (1, 0, 0, 0) is the unique
disease-free equilibrium of the waning, all-or-nothing and leaky models. Similarly,
setting I = 0 in (2) yields that (S, E, I , R1, R2) = (1, 0, 0, 0, 0) is the unique disease-
free equilibrium of the gamma-distributed, hyperexponential and boosting models.
Finally, setting I1 = I2 = 0 in (3) yields that (S1, E1, I1, R1, R2, S2, E2, I2) =
(1, 0, 0, 0, 0, 0, 0, 0) is the unique disease-free equilibrium of the asymptomatic
model. The stability of each disease-free equilibrium depending on the values of the
parameters of the models is discussed in Sect. 4.

3.2 Endemic equilibrium

Here we prove the existence and uniqueness of the endemic equilibrium for each of
the different models by proving the existence and uniqueness of a positive “force of
infection” at equilibrium. The force of infection is the value denoted by λ for each
model. This is the rate at which susceptible individuals are infected and it depends on
the values of the infectious compartments. We denote its fixed value at an endemic
equilibrium by λ∗, solve the equilibrium equations of each model for λ∗ and show that
each system yields a unique positive solution.
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For some of the models it is easy to derive exact expressions for λ∗. To simplify
some of our calculations, we define the following quantity,

q = σ

σ + μ

γ

γ + μ
= probability of going from exposed to recovered (4)

3.2.1 Exact expressions for �∗

We first look at the expression for λ∗ for the SE I R model, which is a special case of
(1) with εL = εA = α = 0. The force of infection at the endemic equilibrium is,

λ∗ = β
[μ

β
(R0 − 1)

]
= μ(R0 − 1). (5)

The SE I S model is a special case of (1) with εA = 1 (or εL = 1 or α → ∞). The
force of infection at this equilibrium is given by,

λ∗ = β
[ (R0 − 1)(σ + μ)(γ + μ)

β(σ + γ + μ)

]

= μ(R0 − 1)
/[ μ(σ + γ + μ)

(σ + μ)(γ + μ)

]

= μ(R0 − 1)

1 − q
. (6)

For four of the seven models of imperfect immunity that we have considered, it is also
possible to derive a simple form for the force of infection using an “effective” failure
parameter εeff. These four models are the waning, all-or-nothing, gamma-distributed,
hyperexponential models and each εeff is defined in Table 2. Given this, the force of
infection at endemic equilibrium is given by,

λ∗ = μ(R0 − 1)

1 − qεeff
(7)

The definition of εeff = α
α+μ

for the exponential waning model has been used before
in Magpantay et al. (2014) for a model of vaccination, with a similar interpretation
(the probability of immunity waning within a lifetime). There do not appear to be a
simple εeff expressions for the leaky, boosting and asymptomatic models such that we
can write (7) for these models.

The endemic equilibrium force of infection for the leaky model is the positive
solution to the following quadratic equation in λ∗,

εL(1 − q)λ2∗ + μ
[
εL(1 − R0 − q) + 1]λ∗ − μ2(R0 − 1) = 0. (8)

For this model we know that there is only one positive equilibrium and it is given by,

λ∗ = μ
−(εL(1 − R0 − q) + 1) + √

(εL(1 − R0 − q) − 1)2 − 4εLqR0

2εL(1 − q)
. (9)
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Table 2 Table of values for εeff
for the SE I R, SE I S and four
others models so that the force
of infection can be calculated
using (7)

Model Expression for εeff

SE I R 0

SE I S 1

Waning
α

α + μ

All-or-nothing εA

Hyperexponential (1 − εH )
α1

α1 + μ
+ εH

α2

α2 + μ

Gamma-distributed
( 2α

2α + μ

)2

Similarly, the endemic equilibrium value of the force of infection for the boosting
model can be found by finding the positive root λ∗ to the following quadratic equation:

[
(1 − q)kξ + μ

]
δλ2∗

+[
(ξ + μ)(α + μ) − μ(R0 − 1)(kξ + μ)δ − (α + δkμ)qξ

]
λ∗

−μ(R0 − 1)(ξ + μ)(α + μ) = 0. (10)

The exact equilibrium value for the asymptomatic model can be found by finding the
positive root λ∗ to the following quadratic equation:

(1 − qε)λ2∗ + μ
[
1 − (R0 − 1)(1 − qε) − θqεR0

]
λ∗ − μ2(R0 − 1) = 0. (11)

We omit finding the explicit expressions for λ∗ in (10) and (11).

3.2.2 Properties of �∗ using auxiliary function f

The explicit expressions for the force of infection at endemic equilibrium of the boost-
ing and asymptomatic models (found by solving (10)–(11)) are long and it is not easy
to show that they are unique. However we can actually prove uniqueness and derive
properties of λ∗ for all the models indirectly. This is done by writing an expression
involving λ∗ with the following form:

λ = μ(R0 − 1) + f (λ). (12)

In Table 3 we present the forms that f takes for each of the different models. We omit
the derivation of these forms.

Let g(λ) = λ − μ(R0 − 1). From (12), the endemic equilibrium force of infection
λ∗ is a solution to g(λ) = f (λ). We next show that this equation always has one
unique solution on (0,∞) for all the models. Clearly the solution of the SE I R model
is λ = μ(R0 − 1). As for the other models, if the model parameters are all nonzero,
we can show that in all these cases, f (0) = 0 and f ′(λ) > 0 for all λ ≥ 0. It follows
from this that there is at most one positive solution to (12).
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Table 3 Expressions for the auxiliary function f (λ) in (12)

Model Auxiliary function f (λ)

SE I R 0

SE I S qλ

Waning εeffqλ

All-or-nothing εeffqλ

Leaky
εLqλ(λ + μ)

εLλ + μ

Hyperexponential εeffqλ

Gamma-distributed εeffqλ

Boosting
(α + δk(λ + μ))qλξ

(ξ + μ)(α + μ) + (kξ + μ)δλ

Asymptomatic
θqελR0μ

(1 − qε)λ + μ
, where ε =

(
2α

2α+μ

)2

Since g is a simple straight line with slope equal to one, we can show that if
f ′′(λ) ≥ 0 for all λ > 0 and f ′(∞) = limλ→∞ f ′(λ) < 1, then there is a unique
positive solution λ∗ to g(λ∗) = f (λ∗) and this solution satisfies

λ∗ ∈
[μ(R0 − 1)

1 − f ′(0)
,

μ(R0 − 1)

1 − f ′(∞)

]
(13)

For instance, the auxiliary functions for the waning, all-or-nothing, hyperexponen-
tial and gamma-distributed models all have f ′(λ) = qεeff < 1 and f ′′(λ) = 0.

Thus, the solution to g(λ∗) = f (λ∗) satisfies λ∗ ∈
[

μ(R0−1)
1−qεeff

,
μ(R0−1)
1−qεeff

]
. Hence,

λ∗ = μ(R0−1)
1−qεeff

in these cases, which is what we already found before in (7).
Expression (12) is useful to derive the range of values of the leaky model whose

auxiliary function is non-linear unlike in the previous models. The first and second
derivatives of the leaky model’s auxiliary function are given by

f ′(λ) = εLq(εLλ2 + 2μλ + μ2)

(εLλ + μ)2
, f ′′(λ) = 2εLqμ2(1 − εL)

(εLλ + μ)3

It follows that f ′(0) = qεL and f ′(∞) = q. Both the first and second derivatives
are strictly positive for all λ > 0. Therefore, the solution to g(λ∗) = f (λ∗) must be
unique and,

λ∗ ∈
(μ(R0 − 1)

1 − qεL
,
μ(R0 − 1)

1 − q

)
(14)

This shows that the force of infection of the leaky model is greater than
μ(R0−1)
1−qεL

which is the force of infection expression for waning/all-or-nothing/hyp-

erexponential/gamma-distributed models with εeff = εL , and less than
μ(R0−1)

1−q which
is the force of infection for the SE I S model.
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Fig. 2 Illustration of the solution
to g(λ∗) = f (λ∗) for the leaky
model. The lower bound for λ∗
is represented by the intersection
of the dotted orange line with
g(λ). The upper bound is then
represented by the intersection
of the dotted purple line with
g(λ). Dotted orange and purple
lines are f ′(0)λ and f ′(∞)λ

respectively (colour figure
online)

g(λ)

f(λ)

λ∗

λ

Figure 2 illustrates how we found the bounds (14) to the solution of g(λ∗) = f (λ∗)
for the leaky model. The intersection between the line g(λ) and the curve f (λ) is the
solution. The dotted orange line is f ′(0)λ and its intersection with g(λ) establishes the
lower bound in (14). Likewise, the dotted purple line is f ′(∞)λ and its intersection
with g(λ) establishes the upper bound in (14).

For the asymptomatic model, since f (∞) = limλ→∞ f (λ) = θqεR0μ
1−qε

< ∞, there
is a unique solution λ∗ that lies between the valuesμ(R0 −1) andμ(R0 −1)+ f (∞).
The first and second derivatives of the auxiliary function are given by

f ′(λ) = θqεμ2R0

((1 − qε)λ + μ)2
, f ′′(λ) = −2θqεμ2R0(1 − qε)

((1 − qε)λ + μ)3

It follows that f ′(0) = θqεR0 and f ′(∞) = 0. Additionally, the second derivative is
strictly negative for all λ ≥ 0. Therefore, if f ′(0) = θqεR0 < 1 then the solution to
g(λ∗) = f (λ∗) must satisfy

λ∗ ∈
( μ(R0 − 1)

1 − f ′(∞)
,
μ(R0 − 1)

1 − f ′(0)

)
⇐⇒ λ∗ ∈

(
μ(R0 − 1),

μ(R0 − 1)

1 − θqεR0

)
(15)

instead of expression (13) since f (λ) is concave down here.
Figure 3 below illustrates how we can find bounds to g(λ∗) = f (λ∗) for the

asymptomatic model. The dotted purple line is the line f ′(∞)λ and its intersection
with g(λ) establishes the lower bound for λ∗. The dotted orange line is the line f ′(0)λ
for f ′(0) < 1. Note that if f ′(0) ≥ 1 then there is no intersection between f ′(0)λ and
g(λ) at a positiveλ value. If f ′(0) ≥ 1, the upper bound ofλ∗ isλ = μ(R0−1)+ f (∞)

which is represented by the vertical light blue line. If f ′(0) < 1 then the upper bound

for λ∗ is min
{
μ(R0 − 1) + θqεμR0

1−qε
,

μ(R0−1)
1−θqεR0

}
.

Finally, we need to consider the boosting model separately because its auxiliary
function does not necessarily have a nonnegative secondderiviative. Thefirst derivative
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Fig. 3 Illustration of the solution
to g(λ∗) = f (λ∗) for the
asymptomatic model. The lower
bound for λ∗ is indicated by the
intersection of the purple dotted
line with g(λ). The vertical light
blue line indicates
λ = μ(R0 − 1) + f (∞). The
upper bound of λ∗ is either the
vertical light blue or the
intersection of the dotted orange
line with g(λ) if f ′(0) < 1.
Dotted orange and purple lines
are plots of the lines f ′(0)λ and
f ′(∞)λ respectively (colour
figure online)

g(λ)

f(λ)λ∗

λ

of its auxiliary function is given by

f ′(λ) = (ξ + μ)(α + μ)(αqξ + 2δkqλξ + δkμqξ) + (kξ + μ)δ2λ2kqξ

((ξ + μ)(α + μ) + (kξ + μ)δλ)2
. (16)

From this, we get f ′(0) = qξ(α+δkμ)
(ξ+μ)(α+μ)

< 1 and f ′(∞) = qξk
ξk+μ

< 1. The second
derivative is then given by

f ′′(λ) = 2μq(kμ(1 − δ) + (1 − δk)kξ − α(1 − k))(ξ + μ)ξ(α + μ)δ

((ξ + μ)(α + μ) + (kξ + μ)δλ)3
(17)

From this, we can see that f ′′(λ) > 0 if and only if α <
kμ(1−δ)+(1−δk)kξ

(1−k) . If

f ′′(λ) > 0 then λ∗ ∈
(

μ(R0−1)
1− f ′(0) ,

μ(R0−1)
1− f ′(∞)

)
like in the case of the leaky model. If

f ′′(λ) < 0 then λ∗ ∈
(

μ(R0−1)
1− f ′(∞)

,
μ(R0−1)
1− f ′(0)

)
like in the case of the asymptomatic

model.
The bounds on λ∗ that we found for the leaky, boosting and asymptomatic models

are summarized below in Table 4. The tightness of the bounds about the exact value of
λ∗ depends on the parameters of themodel. For all threemodels the difference between
the upper and lower bounds increase with increasing value of the basic reproduction
number R0. If μ, σ , γ and β are fixed (and therefore R0 and q are also fixed), this
difference still depends on the model-specific parameters. For the leaky model, the
difference increase as the value of the leakiness parameter εL increases. For the boost-
ing model, the ratio between the two bounds depends on the value of (α+δkμ)(ξk+μ)

(α+μ)(ξ+μ)k
(if this were equal to one then the interval for the endemic force of infection would
contain just a single point). For the asymptomatic model, the bounds depend on the
model-specific parameters θ and ε in a more complicated manner.
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Table 4 Interval which we can guarantee includes λ∗
Model Interval for λ∗

Leaky
(μ(R0 − 1)

1 − qεL
,
μ(R0 − 1)

1 − q

)

Boosting Between μ(R0−1)

1− qξ(α+δkμ)
(ξ+μ)(α+μ)

and μ(R0−1)

1− qξk
ξk+μ

Asymptomatic If θqεR0 > 1:
(
μ(R0 − 1), μ(R0 − 1) + θqεR0μ

1 − qε

)

If θqεR0 < 1:(
μ(R0 − 1),min

{
μ(R0−1)
1−θqεR0

, μ(R0 − 1) + θqεR0μ
1−qε

})

where ε =
(

2α
2α+μ

)2
.

4 Stability of equilibria

We use the notation R
n+ to denote the positive cone given by {(v1, . . . , vn) : v1 ≥

0, . . . vn ≥ 0}. Since all models were set up such that the overall birth rate equals
the per capita death rate from each compartment, solutions to (1) are invariant
in {(S, E, I , R) ∈ R

4+, S + E + I + R = 1}, solutions to (2) are invariant in
{(S, E, I , R1, R2) ∈ R

5+, S+ E + I + R1 + R2 = 1} and solutions to (3) are invariant
in {(S1, E1, I1, R1, R2, S2, E2, I2) ∈ R

8+, S1+E1+ I1+R1+R2+S2+E2+ I2 = 1}.
When we discuss global asymptotic stability of the systems, we only mean this in the
context of solutions initialized within each given invariant set.

4.1 Global asymptotic stability of the disease-free equilibrium

From the general theory of compartmental epidemiological models (van denDriessche
and Watmough 2002), we know that the unique endemic equilibrium of each model
is at least locally asymptotically stable if the basic reproduction number R0 < 1. To
prove global asymptotic stability we use LaSalle’s Invariance Principle (LaSalle 1976;
Muller and Kuttler 2015). For the waning, all-or-nothing and leaky models given by
(1), we define

L = E +
(μ + σ

σ

)
I .

The derivative of L along the trajectories of (1) is given by,

dL

dt
= λS + εLλR − (σ + μ)E +

(μ + σ

σ

)(
σ E − (γ + μ)I

)
,

= (μ + γ )(μ + σ)

σ

[ β

μ + γ

σ

μ + σ
(S + εL R) − 1

]
I
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= (μ + γ )(μ + σ)

σ

[
R0

(
S + εL R

) − 1
]
I .

In the set � = {(S, E, I , R) ∈ R
4+, S + E + I + R = 1}, we know that S + R ≤ 1

which means S + εL R ≤ 1. If R0 < 1 then dL
dt < 0 for as long as I > 0. We see that

dL
dt = 0 only on the subset of � where I = 0, and the largest invariant subset of this
is {(S, E, I , R) ∈ R

4+, E = I = 0, S + R = 1}. Thus all trajectories starting from �

tends towards E = I = 0, and using this in (1) we see that, for each model, all such
trajectories must approach its unique disease free equilibrium. This proves the global
asymptotic stability of the unique disease-free equilibrium corresponding to each of
the three models described by (1).

For the gamma-distributed, hyperexponential and boosting models given by (2),

we again define L = E +
(

μ+σ
σ

)
I . Taking the derivative of L along solutions to (2)

and simplifying yields,

dL

dt
= (μ + γ )(μ + σ)

σ

[
R0

(
S + kδR2

) − 1
]
I .

In the set {(S, E, I , R1, R2) ∈ R
5+, S + E + I + R1 + R2 = 1}, since k ∈ [0, 1),

δ ∈ [0, 1) we must have S + kδR2 ≤ 1. Thus, if R0 < 1 then dL
dt < 0 for as long as

I > 0. Following the same reasoning as before, we can prove the global asymptotic
stability of the disease-free equilibrium corresponding to each of the three models
described by (2).

Finally, for the asymptomatic model give by (3), we define

L = E1 +
(μ + σ

σ

)
I1.

Taking the derivative of L along solutions to (3) and simplifying yields,

dL

dt
= (μ + γ )(μ + σ)

σ

[
R0S1 − 1

]
I .

In the set � = {(S1, E1, I1, R1, R2, S2, E2, I2) ∈ R
8+, S1 + E1 + I1 + R1 + R2 +

S2 + E2 + I2 = 1} we must have S ≤ 1. Thus, if R0 < 1 then dL
dt < 0 for as long

as I1 > 0. We see that dL
dt = 0 only on the subset of � where I1 = 0, and the largest

invariant subset of this is {(S1, E1, I1, R1, R2, S2, E2, I2) ∈ R
8+, E1 = I1 = E2 =

I2 = 0, S1 + R1 + R2 + S2 = 1}. Thus all trajectories starting from � tend towards
E1 = I1 = E2 = I2 = 0, and using this in (3) we see that all such trajectories must
therefore approach the unique disease free equilibrium of the asymptomatic model.

4.2 Local asymptotic stability of the endemic equilibrium

From van den Driessche and Watmough (2002), we know that the unique endemic
equilibrium of each model is at least locally asymptotically stable if R0 > 1. Sample
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trajectories of these models suggest that as long as the models are initialized such
that the exposed and infectious compartments are not all zero, trajectories of all the
models do tend towards the endemic equilibrium if R0 > 1. Some references confirm
this “global stability” property for some special cases such as in the SE I R, SE I S
and SE I RS (waning) models (Li and Muldowney 1995; Li and Wang 2002). There
are some general methods using the LaSalle Invariance Principle and Volterra-type
functions to prove global stability of the endemic equilibria of vaccination models
(with imperfect vaccine-derived immunity but perfect infection-derived immunity) (Li
et al. 2011), however these did not work out for our systems of equation which had no
vaccination but imperfect infection-derived immunity.We do not prove global stability
of the endemic equilibrium of themodels in this paper, however this does not affect our
results. The reinfection probabilities that we derive in the next section are computed
at the endemic equilibrium which we know to at least be locally asymptotically stable.

5 Reinfection probability

One way to measure the impact of imperfect infection-derived immunity is to find
the probability of reinfection (the probability of returning to an exposed class within
the individual’s lifetime after leaving it for the first time). This probability changes
with the number of individuals infected. In this work, we evaluate this at the unique
endemic equilibrium of each model.

Definition 1 (Reinfection probability) Let r be the probability, at endemic equilibrium,
that an individual goes back to being in an exposed state a second time after being in
an exposed state the first time.

Since r is evaluated at endemic equilibrium, it depends on the value of λ∗. The value
of r for each model is given in Table 5.

The expressions for r can be derived by following an individual in the E compart-
ment and multiplying together the independent probabilities of traveling from each
compartment to the next until the individual reaches the E compartment once again.
For example, in the waning, all-or-nothing, hyperexponential and gamma-distributed
models, the probability of going from E to R is given by q. The probability of going
from R to S is given by εeff. Finally, the probability of going from S to E is given
by λ∗

λ∗+μ
. Thus, the reinfection probability expressions for these models are given by

r = qεeffλ∗
λ∗+μ

. The expressions for the SE I S and leaky models can be just as easily
derived.

The expression for the boosting model was found by simplifying the expression:

q
ξ

ξ + μ

[ ∞∑
n=0

( δ(1 − k)λ

δλ + α + μ

ξ

ξ + μ

)n][ α

δλ + α + μ

λ∗
λ∗ + μ

+ δkλ∗
δλ∗ + α + μ

]
.(18)

This expression accounts for all the ways that an individuals from the E class can go
back again to the E class in the boosting model.
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Table 5 Reinfection probability Model Reinfection probability, r

SE I R 0

SE I S
qλ∗

λ∗ + μ
= q

( R0 − 1

R0 − q

)

Waning
qεeffλ∗
λ∗ + μ

= qεeff

( R0 − 1

R0 − qεeff

)

All-or-nothing
qεeffλ∗
λ∗ + μ

= qεeff

( R0 − 1

R0 − qεeff

)

Leaky
qεLλ∗

εLλ∗ + μ

Hyperexponential
qεeffλ∗
λ∗ + μ

= qεeff

( R0 − 1

R0 − qεeff

)

Gamma-distributed
qεeffλ∗
λ∗ + μ

= qεeff

( R0 − 1

R0 − qεeff

)

Boosting
qλ∗ξ

(
α

λ∗+μ + δk
)

(kξ + μ)δλ∗ + (ξ + μ)(α + μ)

Asymptomatic
qελ∗

λ∗ + μ
where ε =

(
2α

2α+μ

)2

We note that the r values for all models except for the asymptomatic model have
the form f (λ∗)

λ∗+μ
, where f is auxiliary function given in Table 3. The asymptomatic

model does not have this form because in this case r is the probability of going from
E1 to E2 instead of returning to the same E class. Thus in this case the reinfection

probability is simply q times ε =
(

2α
2α+μ

)2
, which is the probability of going from

R1 to S2, then times λ∗
λ∗+μ

.
We also computed the reduction in reinfection probability relative to the SE I S

model. This is computed for each model by taking its r value and dividing it by the
r value for the SE I S model with the same R0. We plot the relative reduction in
reinfection probabilities in Figs. 4 and 5.

6 Summary and conclusions

Imperfect infection-derived immunity is a feature of many communicable diseases
such as influenza, tuberculosis and potentially even COVID-19 (Roy 2020). Infection-
derived immunity can wane over time, be only partially protective, completely fail in
some individuals or have more complicated interactions due to immune boosting. In
this study we reviewed seven compartmental disease models that feature one or more
of these immunity imperfections.

To assess the impact of each models’ respective immunity failure we defined the
“reinfection probability,” the probability that an individual in an exposed state goes
back to the exposed state again in the future, given that the system is at endemic
equilibrium. This gives a rigorous measure of how much infection-derived immunity
individuals get from infection. We note that the reinfection probability for the SE I R
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(a) Force of infection for (b) Probability of reinfection for R0 ≈
1.3
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(c) Force of infection for (d) Probability of reinfection for R0 ≈
4.4

Fig. 4 Equilibrium force of infection and relative reinfection probability of the different models at their
endemic equilibria. The green curves indicate the waning, all-or-nothing, hyperexponential and gamma-
distributed models. The blue curve is for the leaky model. The horizontal axis is εL for the leaky model
and εeff for all other models. The vertical dotted grey line in (b) and (d) is where ε = 1

R0
. Note that for the

SE I R model, λ∗ > 0 (but looks close to be zero in this scale) and r = 0. The SE I S model has r ∈ (0, 1).
The relative reinfection probabilities are the reinfection probabilities r of each model divided by the r for
the SE I S model. Values of μ, σ and γ are given by the default values listed in Table 1. We used β = 60
yr−1 corresponding to R0 ≈ 1.3 for (a, b), and β = 200 yr−1 (corresponding to R0 ≈ 4.4) for (c, d)
(colour figure online)
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(a) Boosting model force of infection (b) Boosting model relative probability of

(c) Asymptomatic model force of infec- (d) Asymptomatic model relative proba-
bility of reinfection

Fig. 5 Equilibrium force of infection and relative reinfection probability of the boosting and asymptomatic
models at their endemic equilibria. These are plotted as function of R0. Again, note that for the SE I R
model, λ∗ > 0 and r = 0. The relative reinfection probabilities are the reinfection probabilities r of each
model divided by the r for the SE I S model. The parameter β is varied to change the value of R0. Other
parameter values are given by the default values listed in Table 1
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model is zero and that of the SE I S system is between zero and one, depending on other
factors such as the basic reproduction number of the system. This risk of reinfection for
previously infected individuals can have implications for public health policies aimed
at reaching herd immunity, such as the rollout of mass vaccination once a vaccine
becomes available.

To derive the reinfection probability for each model, we first demonstrated the
uniqueness of the endemic equilibrium for each model, and derived expressions and
bounds for the forces of infection at the endemic equilibrium. We proved that, as
expected, the force of infection for the SE I R and SE I S models are respectively
the lower and upper bounds for the seven models’ force of infection. We see that
the waning, all-or-nothing, hyperexponential and gamma-distributed models have a
similar dynamics in which they all have an “effective failure” parameter. When these
effective failure parameters are equal to 1, these models become exactly the SE I S
model; when they are equal to 0, these models become exactly the SE I R model. From
this, it is clear that the force of infection for these particular models lie somewhere,
depending on the value of the effective failure parameter, between that of SE I R
model’s and that of the SE I S model’s.

The other three models (leaky, boosting and asymptomatic models) however, have
more complicated force of infection expressions that are difficult to directly compare
with the SE I S and SE I R models. We therefore derived auxiliary functions to help
find properties of the endemic equilibrium forces of infection for these models. These
auxiliary functions reflect how much greater each models’ force of infection is to
that of the SE I R model, where there is no possibility for reinfection. Additionally,
the auxiliary functions allow us to establish the bounds for the leaky, boosting and
asymptomatic models’ actual force of infection.

After deriving the endemic equilibrium forces of infection for all seven models,
whether in explicit form from (7) and Table 2 or through the use of the auxiliary
functions from Table 3, we derived the reinfection probability for each model. The
reinfection probabilities allow us to give a measure of the impact that different types of
immunity failures have on individuals. These are presented in Table 5, andwe compare
these to the reinfection probabilities of corresponding SE I R and SE I S models in
Figs. 4 and 5. The results in Tables 2, 3, 4 and 5 summarize how the different modes by
which infection-derived immunity can be lost would affect the reinfection probability
and overall disease dynamics (in terms of the long-run prevalence of the disease).
For example, even if the (exponential) waning and gamma-distributed waning models
have the samemean waning rate (α = αG), they would have different εeff (see Table 2)
and therefore different reinfection probabilities. Thus, even if we already know that
immunity is waning (as opposed to leaky or all-or-nothing) it is not enough to know
just the mean waning period of acquired immunity, we still need to know how waning
occurs.

This study opens many directions for future study. The different models with a
defined εeff (Table 2), if they are assumed to have the same basic reproduction number
will have the same endemic equilibrium disease prevalence values for the same εeff
values. This suggests that it may be difficult to distinguish between these models
if we are only looking at equilibria, however the models may have very different
transient dynamics that show signatures of the type of infection-derived immunity.
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Fig. 6 Sample trajectories of the
waning and all-or-nothing
models showing differences in
their transient dynamics before
they approach endemic
equilibrium. We set εA = 0.2
and α = 1

240 yr−1 so that
εeff = 0.2 for both models. The
values of μ, σ and γ are given by
the default values listed in Table
1, and we used β = 60 yr−1

corresponding to R0 ≈ 1.3.
With these values, the endemic
equilibrium for both models can
be found using (7) and is equal

to μ(R0−1)
β(1−qεeff)

≈ 1.09 × 10−4.
The models were initialized with
S(0) = 0.999, I (0) = 0.001 and
all other states being zero
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As an example, in Fig. 6 we present an illustration of the trajectories of the waning
and all-or-nothing models with the same initial conditions and same values of μ, γ , σ
(from Table 1), β = 200 (so that R0 ≈ 1.3) and εeff = 0.2. Thus, from our results we
know that these two models have the same unique endemic equilibrium which we can
find from the force of infection given using (7) and Table 2. Both trajectories show that
the trajectories show a peak in the infectious class before approaching the endemic
equilibrium, and the peak for the all-or-nothing model is higher and later than that of
the waning model.

It would also be interesting to study the leaky model further. This is the model
that provides the most homogeneous sort of infection-derived protection. We note
that the prevalence of infection in the leaky model is higher than the other models
with a defined εeff if εL = εeff (this is evident from Table 4). We also observe that
the leaky model seems to have a sudden transition from being SE I R-like to SE I S-
like as εL is increased. This transition appears to occur at the so-called “reinfection
threshold” (Gomes et al. 2004, 2005).
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