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Abstract

National responses to the Covid-19 pandemic varied markedly across countries, from
business-as-usual to complete shutdowns. Policies aimed at disrupting the viral
transmission cycle and preventing the overwhelming of healthcare systems inevitably
exact an economic toll. We developed an intervention policy model that comprised the
relative human, implementation and healthcare costs of non-pharmaceutical epidemic
interventions and identified the optimal strategy using a neuroevolution algorithm. The
proposed model finds the minimum required reduction in transmission rates to maintain
the burden on the healthcare system below the maximum capacity. We find that such a
policy renders a sharp increase in the control strength during the early stages of the
epidemic, followed by a steady increase in the subsequent ten weeks as the epidemic
approaches its peak, and finally the control strength is gradually decreased as the
population moves towards herd immunity. We have also shown how such a model can
provide an efficient adaptive intervention policy at different stages of the epidemic
without having access to the entire history of its progression in the population. This
work emphasizes the importance of imposing intervention measures early and provides
insights into adaptive intervention policies to minimize the economic impacts of the
epidemic without putting an extra burden on the healthcare system.

Introduction1

On March 11, 2020 the World Health Organization (WHO) announced that Covid-19,2

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], ”can be3

characterized as a pandemic” [2]. Within a month, most countries around the world had4

taken public health measures to contain the spread of the novel virus [3]. However, the5
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type and severity of implemented measures and their subsequent success in minimizing6

the public health impacts of the outbreak varied greatly by country [4]. This variation7

in policies and their effectiveness reflects the complexity of finding the balance between8

two often competing policy objectives: protecting the public’s health versus minimizing9

the economic impact of intervention measures [5].10

Initially, without access to pharmaceuticals, studies focused on two distinct control11

approaches: mitigation and suppression [6–8]. The mitigation strategy aims to reduce12

transmission such that healthcare systems are not overwhelmed, while aiming to13

maintain the chain of transmission in order to achieve herd immunity. In contrast, the14

suppression strategy is aimed at virus elimination. In hindsight, countries that acted15

early to suppress the disease have excelled at minimizing both the public health and16

economic impact of the epidemic [9–11]. While early suppression measures appear to17

outperform the mitigation strategy both in terms of public health goals and economic18

costs, such policies would not necessarily be successful in countries where citizens are19

more averse to government-enforced control and surveillance measures [12]. Moreover,20

suppression measures would only be successful if implemented in the early stages of the21

epidemic and sufficiently strictly as to curtail transmission effectively. In a number of22

settings, however, suppression has been implemented in a piece-meal manner, leading to23

periods of drastic interventions including lockdowns punctuated by relaxation of social24

distancing measures and subsequent uptick in transmission [13,14]. This prompted us25

to examine the optimal mitigation strategy, which aims to manage or mitigate the26

healthcare impacts of the epidemic while population approaches herd immunity.27

Characterizing immediate and long-term economic, social and human burden of28

Covid-19 epidemic is challenging and has led to several research efforts to examine the29

optimal intervention policy from various perspectives. It is unfeasible to review30

comprehensively this body of work, so we confine ourselves to a number of the key31

studies. Rowthorn and Maciejowski [15] investigated the optimal uniform lockdown in32

an SIR model assuming a variety of parameterizations [15]. Their objective function33

assigned monetary values to costs arising from infection, lockdown, and value of life.34

Their main finding was that in the medium term, a policy that maintains effective35

reproduction number value close to 1 provides the best path. Bethune and Korinek [16]36

contrasted the decisions made by rational, individual agents with the choices made by a37

social planner who is able to coordinate the choices of individuals [16]. They found that38

rational agents generate large externalities because they fail to internalize the effects of39

their economic and social activities on others’ risk of infection. Alvarez et al. formalized40

the social planner’s dynamic control using an SIR epidemiological model and a linear41

economy. The best strategy starts with a severe lockdown two weeks after the epidemic,42

covers 60% of the population after a month, and progressively decreases to 20% of the43

population after three months. More recently, a number of studies have broadened this44

exploration to identify age-specific optimal control strategies [17,18].45

Inspired by [19–21], we sought to use a neuroevolution strategy to finding the46

optimal policy function which would dynamically determine the minimal required47

reduction in transmission rates at each time instant, deemed as control strength48

hereafter. Reductions in transmission may result from lower contacts (due to49

isolation-in-place ordinances, movement restrictions, or lockdown policies), or the50

adoption of personal protective measures that serve to curtail transmission upon contact51

(such as the use of face masks and PPE), with varying societal impact. The fitness52

function is expressed such that a strategy is rewarded for allowing the epidemic to53

remove individuals from the susceptible pool without overwhelming the healthcare54

capacity. The proposed neuroevolution strategy begins by initializing a population of55

random policy functions. The generated policy functions are then used to simulate the56

trajectory of the epidemic. The fitness of each function is then evaluated based on the57
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specified reward function. The most elite policy functions are then perturbed (mutated)58

to generate the next generation (offspring). The new population is then evaluated and59

this process is repeated for a pre-defined number of iterations. We also derived the60

optimal control solution via Pontryagin’s maximum principle (PMP) [22] and compared61

the results with the optimal neuroevolution policy.62

We have chosen the United Kingdom as our target population to implement the63

proposed approach. The choice of the UK as our target population was largely64

motivated by the frequent changes in the government’s strategy to contain the65

epidemic [23], as summarized in Figure 1. The UK’s initial response was a mitigation66

policy, majorly inspired by the response to the flu pandemic, with an emphasis on67

protecting the most vulnerable to avoid overburdening the healthcare system in an68

effort to achieve herd immunity [9]. This initial policy later changed to a suppression69

policy by implementing lock-downs and imposing face mask-wearing requirements.70

Looking back at the early days of the epidemic, this study aims to understand how an71

effective mitigation policy could have been implemented (see [9] for a comparison of72

initial responses to Covid-19 by different countries including United Kingdom).73

Our study explores mechanisms for ”flattening the curve” – it is motivated by the74

COVID-19 pandemic but need not be restricted to precise courses of action undertaken75

in the response to this pandemic event. Our findings are intended to be informative for76

future epidemic control, particularly at the early stages of an epidemic when there may77

be no effective pharmaceuticals in sight.78
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Fig 1. Number of Covid-19 patients in intensive care (ICU) and timeline of
lockdowns in the UK.

We find that the ideal intervention policy results in a rapid increase in control79

strength early in the epidemic, followed by a sustained increase over the next ten weeks80

as the epidemic reaches its peak, and ultimately a progressive drop in control strength81

as the population achieves herd immunity. We have also shown how, without having82

access to the complete history of the epidemic’s growth in the population, such a model83

may give an effective adaptive intervention policy at various stages of the epidemic.84

This study highlights the significance of implementing control measures as promptly as85
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possible and offers insights into adaptive intervention strategies aimed at reducing the86

economic effect of epidemics while avoiding undue strain on the healthcare system.87

Materials and methods88

Model structure89

We used a deterministic, time-varying90

Susceptible-Exposed-Infectious-Recovered-Hospitalized in ICU (SEIRH) model [24] to91

characterize the transmission dynamics in the UK as described in Eqs. 1–5:92

Ṡ =
dS

dt
= −(1− c(t))

βSI

N
(1)

Ė =
dE

dt
= (1− c(t))

βSI

N
− ρE (2)

İ =
dI

dt
= ρE − γI − PDetectionσICUγICUDelayI (3)

Ṙ =
dR

dt
= γI + γICUStayH (4)

Ḣ =
dH

dt
= PDetectionσICUγICUDelayI − γICUStayH (5)

where β is the transmission rate, 1/ρ and 1/γ give the mean latent and infectious93

periods, respectively and c(t) ∈ [0, 1] is the reduction in transmission (such that c(t) = 194

signifies complete cessation of transmission). The state variable H(t) denotes the95

number of occupied ICU beds and is determined by the probability that an infection is96

detected (PDetection), the fraction of cases that require ICU treatment (σICU) and the rate97

of admission to the ICU (γICUDelay). The mean duration of stay in the ICU is determined98

by 1/γICUStay. Model parameters and chosen values are presented in Table 1.99

In our analyses, we examine changes in optimal intervention policy assuming policies100

are implemented starting at different points during the epidemic, T0. To identify the101

appropriate initial conditions at these different starting points, we used a particle102

filter [25] to estimate the effective retrospective daily c(t) (where t = 0, . . . , T0), thus103

yield the epidemiological state of the population at different stages of the epidemic. The104

agreement between our fitted SEIRH model and data is shown in Figure S2.105

The Reward function106

As discussed by [35], there is precedent for integrating modeling methodologies and107

health economic analyses to inform public health intervention decisions based on a108

willingness to pay for each Quality-Adjusted Life Year (QALY) saved [21,36,37]. Such109

an approach allows for allocating explicit monetary values to each term in the reward110

function [21]. While some cost-benefit analysis via this approach has been carried out in111

relation to Covid-19 [35], the pandemic’s enormous scope renders traditional economic112

measurements largely impractical. As a result, a health-economic approach is not the113

main emphasis of this study. Instead, in order to capture the general societal impacts of114

pandemic mitigation efforts, we have employed a simple relative economic cost to115

formulate the reward function.116

We first introduce the following multi-objective reward function to account for three117

opposing goals: i) Sustain viral transmission to achieve herd immunity, ii) Keep the ICU118

occupancy below the maximum capacity, and iii) Impose the minimum possible control:119
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Table 1. Parameters of SEIRH model

Parameter Definition Value Source

N Total population size 66,436,000 [26]
R0 Basic reproduction number 2.3 [27,28]
1/γ Mean infectious period (days) 2.9 [27,28]
1/ρ Mean latent period (days) 3.4 [29]
β Mean transmission rate (1/day) 0.793 Estimated
PDetection Ratio of confirmed cases to total infec-

tions
0.3 [30]

σICU Proportion of confirmed cases that end
up in ICU

0.05 [31]

1/γICUDelay Median time from symptoms onset to
ICU admission (days)

10 [32]

1/γICUStay Mean ICU stay period (days) 9 [33]
Hmax Number of ICU beds 4074 [34]

The table presents the parameters of SEIRH model used to model the dynamics of
Covid-19 transmission in the population of UK.

r1(t) = α1r1(t)Herd Immunity − α2r1(t)Exceedance − α3c(t)
2

= α1E(t)/N − α2(H(t)−Hmax)/Hmax − α3 ∗ c(t)2.
(6)

We defined r1(t) for the sake of mathematical simplicity in deriving PMP solution120

and it is only used to compare the optimal NPI policies obtained from neuroevolution121

and PMP methods. For the remainder of this study, we use a slightly different objective122

function, r2(t), defined as follows:123

r(t) = α1rHerd Immunity(t) + α2rExc(t) + α3rControl(t),

= α1(R(t)/N)− α2Relu((H(t)−Hmax)/N)− α3 ∗ c(t).
(7)

In both reward functions (equations (6) & (7)), the terms α1, α2 and α3 modulate124

the relative importance of herd immunity, healthcare burden and societal costs,125

respectively. The goal, therefore, is to identify the optimal intervention function c(t)126

that maximizes the sum of rewards, J , during the course of the epidemic:127

max
c(t)

J =

∫
ri(t)dt, i ∈ 1, 2. (8)

Pontryagin’s maximum principle (PMP)128

In this section we first derive the necessary conditions for optimal control via129

Pontryagin’s maximum principle, and describe the iterative numerical algorithm (the130

forward-backward sweep method) used to find the optimal solution. First, we form the131

following Hamiltonian function:132

H(t, s(t), c(t), λs(t)) = r(t) + λS(t)Ṡ + λE(t)Ė + λI(t)İ + λR(t)Ṙ+ λH(t)Ḣ. (9)

Here, λs(t) are adjoint functions satisfying the adjoin system:133
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λ̇s(t) = −∂H(t, s∗(t), c∗(t), λ∗
s(t))

∂s
, s ∈ {S,E, I,R,H}, (10)

λs(T ) = 0 (Transversality condition). (11)

Expanding equation 10 yields:

λ̇S(t) = −∂H/∂S(t) =(λS − λE)
(1− c)βI

N
(12)

λ̇E(t) = −∂H/∂E(t) =(λE − λI)ρ−
α1

N
(13)

λ̇I(t) = −∂H/∂I(t) =(λE − λS)
(1− c)βSI

N
+ (λI − λR)γ+

(λI − λH)γICUDelayPDetectionσICU (14)

λ̇R(t) = −∂H/∂R(t) =0 (15)

λ̇H(t) = −∂H/∂H(t) =(λH − λR)γICUStay +
α2

Hmax
. (16)

The necessary conditions for the optimal control is obtained by maximizing the134

Hamiltonian (equation 9) with respect to c(t):135

∂H
∂c

= 0 at c∗t→ c∗(t) = (λS − λE)
βI

2α3N
, c∗(t) ∈ [0, 1] (17)

The state equations (equations 1-5) and adjoint equations (equations 10-16) together136

with state initial conditions and transversality conditions (equation 11) form the137

Optimality system. The explicit solution can not be analytically derived. Thus we138

turned to an iterative numerical method, Forward-backward Sweep, to solve the139

Optimality system.140

Neuroevolution algorithm141

The optimal policy function, πθ, is a feed forward neural network, parameterized by θ142

which takes the state of the system at current time t, {S(t), E(t), I(t), R(t)} as input143

and returns the control strength, c(t). The neuroevolution strategy aims to find the144

optimal policy function, PG
Most elite, with highest fitness score. Fitness score of policy145

function j in generation i, f i
j , is equal to the sum of rewards, J (equation 8) and is146

obtained by running the SEIRH model with the corresponding policy function. First,147

M policy functions (P1
j ) are randomly initialized. For each policy function, a trajectory148

is rolled out and fitness score is calculated at the end of simulation, as shown in figure 2.149

The L policy functions with the highest fitness scores are mutated to generate the next150

generation of policy functions. Mutation is implemented by adding a random Gaussian151

noise, scaled by the mutation rate, σ, to θ parameters of elite policy functions. The new152

offspring policy functions served as the parents of next generation. This process153

continues to find a policy function with a sufficiently high fitness score, PG
Most elite. We154

used a fully-connected feed-forward network with 3 16-unit hidden layers and one tanh155

output layer to model the policy function. Pseudocode for the neuroevolution algorithm156

used in this study is provided in Algorithm 1.157

Results158

Which optimization algorithm?159

We compared the optimal intervention policies obtained from PMP and neuroevolution160

policies (Fig S1). The policies are obtained using the r1 reward function (equation 6)161
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Algorithm 1 Neuroevolution algorithm

Require: Population size M , Number of generations G, Elite population size L, Muta-
tion rate σ
Initialize M policy functions, P1

j , with random initial weights θ1j
for i do=1 to G. # Iterate G generations

for j do=1 to M
fj ← Roll out a trajectory by running the model using Pi

i # Fitness score
end for
Sort θij by fj in descending order

θiElite = {θij |j < L} ∪ θi−1
Most elite

for j do=1 to M
Draw sample t ∼ U(1, L) # Select a parent
Draw sample ϵ ∼ N (0, 1) # Gaussian noise
θi+1
j = θit + σϵ # Mutate

end for
end for
return PG

Most elite

Fig 2. Schematic representation of policy function Pg
i , represents the policy

function i of generation g. The L most elite policy functions of each generation are
mutated to generate the M policy functions of next generation.

with α2 = 1e− 1, α3 = 5e− 3 and same initial conditions. We found the optimal162

policies obtained from both methods to be very similar. In simpler problems where an163

analytic solution can be obtained for the optimality system, the PMP method can164

provide more insights about the optimal control solution and the dynamics of the165

system. Otherwise, a neuroevolutionary approach is computationally advantageous since166

the resulting policy function provides an optimal strategy for a broad range of initial167

conditions at a substantially smaller computations cost. That is, the PMP optimal168

intervention for a given initial condition is obtained by solving the boundary-value169

problem formulated in equations (1-5) and (10-16). For a new boundary condition, the170

numerical solution must be repeated to solve the new boundary-value problem. In the171

remainder of the paper, our optimal solutions are obtained via the neuroevolutionary172

approach.173
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Reward function exploration174

The relative economic burden of different objectives in the reward function is175

determined by the weights, {α1, α2, α3}. Thus, we examined the effects of variation in176

these parameters on the resulting optimal policy (see Figure S3). We constrained α1 to177

be 1 and changed the values of α2 and α3 over a logarithmic grid. For each parameter178

set, we trained the neuroevolution algorithm for 2000 generations with a population size179

of 256. The resulting policy functions (purple lines) and corresponding ICU occupancy180

trajectories of the 10 best-performing agents for each parameter set are depicted in181

Figure S3. We found the reward function to be consistently robust to variation in the182

values of α2. That is, the tested range of α2 values makes the cost of ICU overflow183

sufficiently prohibitive, leading to high-fitness strategies ensuring ICU maximum184

capacity is not exceeded (note that the ICU overflow reward is equal to 0 while the ICU185

occupancy is below the maximum capacity and negative otherwise). Evidently, making186

α2 smaller would eventually deprioritize the goal of maintaining the ICU occupancy187

below the limit. Without loss of generality, we will use α2 = 1e9 in the remainder of188

this paper. In contrast, we found the reward function to be highly sensitive to variation189

in α3. For α3 > 10−4, the relative cost (negative reward) of imposing control becomes190

prohibitive and leads to one of the extreme intervention strategies: Suppression policy191

to end the endogenous transmission at the earliest possible time and avoid imposing192

lengthy control measures; or a no-intervention policy which plainly leads to the193

minimum relative control cost. In practice, the inclination for a specific intervention194

strategy depends on the policy maker’s priorities. We observed pronounced variation in195

the optimal policies and resulting ICU occupancy trajectories for smaller values of α3196

(compare the first and third columns, Fig. S3). In Figure S4, we demonstrate this197

variation for each parameter set and across the values of α3. As shown in Fig. S4A,198

values of α3 smaller than 10−4 result in greater Cumulative herd immunity reward.199

Thus, when the relative cost of control is modest, the optimal policy function will tend200

to maximize the reward by increasing the number of individuals removed from the201

susceptible pool, which in turn leads to greater Cumulative control reward (Fig. S4B)202

and longer epidemic duration (Fig. S4C). Therefore, among the tested values,203

α3 = 1e− 4 represents the middle ground between prolonged intervention and204

suppression policies, and is the value that we have used in the rest of this paper.205

No-intervention policy, uniform intervention policy and optimal206

policy207

Figure 3 presents a comparison between the optimal intervention policy identified via208

our neuroevolution algorithm, a uniform intervention policy and no-intervention policy.209

The uniform intervention policy is implemented by imposing a constant reduction in210

transmission throughout the epidemic, c(t) = cu. The value of control strength, cu, is211

estimated such that the peak ICU occupancy tangents the maximum capacity. Figure212

3A depicts the ICU occupancy trajectories of these three policies. As expected, the213

no-intervention policy leads to ICU burdens well beyond the threshold capacity for more214

than two months (67 days). The other notable observation is the difference between the215

optimal and uniform policies in managing the ICU burden: the optimal policy216

maintains the ICU occupancy near the maximum capacity throughout the epidemic, but217

not beyond it. Figure 3B depicts the implemented control strength in time for optimal218

and uniform policies. Except for a period of time less than 10 weeks at the onset of the219

epidemic, the control strength of the optimal policy is below the uniform intervention220

policy. The difference in the imposed control between two policies is better illustrated221

by Figure 3C, where a widening gap between the cumulative imposed control of the222

two policies emerges after day 200. In Figure 3D, we present the recovered individuals223
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for each policy. Unlike the optimal policy, the final fraction of recovered individuals in224

the uniform intervention policy case is well below the theoretical herd immunity225

threshold. This suggests that the any reduction in the control strength, could lead to226

another epidemic wave given the large fraction of susceptible individuals.227
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Fig 3. No-intervention policy, Uniform intervention policy and optimal
policy The figure presents the (A) ICU occupancy (B) Control strength (C)
Cumulative imposed control and (D) recovered individuals for three different policies:
No-intervention policy, Uniform intervention policy and optimal policy.

The sooner the better228

We have estimated the optimal intervention policy initiated at different stages of the229

epidemic, as shown in Figure 4. Each scenario corresponds to a particular start date for230

the roll out of the optimal intervention policy. Figure 4A depicts the scenario in which231

optimal intervention policy starts on March 1st, which coincides with a surge in cases in232

the UK. The optimal intervention policy starts with c(t) = 0.33 (a 33% reduction in233

transmission rates) and is gradually increased to c(t) = 0.54 by mid-May. The control234

strength tapers off to 0 by June 2021. This scenario leads to two peaks in ICU235

occupancy, in November 2020 and June 2021. Figures 4B-E depict the optimal236

intervention policy starting at intermediate stages of the epidemic. As mentioned above,237

we estimated the initial conditions for each scenario by fitting our SIER model to238

fatality data using particle filtering, a Monte Carlo likelihood estimation algorithm for239

hidden state-space dynamical systems [38]. Comparing the optimal intervention policy240

curves in different scenarios depicts how implementing transmission reduction measures241

at earlier stages of the epidemic will eventually shorten the epidemic: The termination242
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of optimal intervention policy is delayed from June 2021 (in Figure 4A) to February243

2022 (in Figure 4D). The only exception is Figure 4E, in which the optimal intervention244

policy terminates slightly sooner than in Figure 4D. This is most likely due to the245

emergence of new variants with higher transmissibility [39] which gave rise to a faster246

depletion of the susceptible pool than accounted for in our model.247

To better illustrate the importance of implementing early control measures, we have248

demonstrated the Total duration of intervention policy implementation and Cumulative249

imposed control for different scenarios in Figure 5. The Total duration of intervention250

policy implementation represents the time period between March 1st 2020 and the251

termination date of intervention policy for each scenario. The Cumulative imposed252

control is obtained by summing the daily implemented control strength (c(t)), divided253

by total number of days with c(t) > 0 for each scenario. As shown in Figure 5A, the254

Total duration of intervention policy implementation increases from 442 days in the first255

columns to 700 days in the last one. Figure 5B also confirms the fact that implementing256

the optimal intervention policy from earlier stages of epidemic would reduce the overall257

required control measures. Note that depicted Cumulative imposed control values do not258

include the actual imposed control strength (c(t)) before the start of optimal259

intervention policy and adding those values would only widen their differences. Also,260

the Cumulative imposed control is a linear measure of overall imposed control, however,261

the actual economic cost would not necessarily change linearly with duration and262

strength of imposed intervention policy.263

Finding the balance264

Figure 6 paints an overall picture of how the optimal policy fine tunes the transmission265

rates to sustain endogenous transmission in the population without overburdening the266

ICU capacity. Figure 6A demonstrates the variation of effective reproductive ratio267

(Reff ) throughout the epidemic (black line), the control strength is also shown (blue268

dashed line). At the onset of the epidemic, Reff is instantly reduced to 1.52 from 2.3 by269

imposing a 0.33 reduction in contact rates (c(t) = 0.33) and further decreased to270

Reff ≈ 1 by mid-may (point i) to stall the epidemic growth. From point i to point ii,271

The Reff is maintained close to 1 to maintain the ICU occupancy close to the maximum272

capacity. At this point, c(t) is slightly increased which leads to a sharp decrease of Reff273

to 0.89 in point iii. This is followed by a steep decrease in c(t) to bring the Reff above 1274

to sustain the transmission. To summarize, the optimal mitigation policy is achieved by275

finding the balance between two extreme scenarios: Suppression policy which aims to276

stall the endogenous transmission in the population, and ”No-intervention” which leads277

to exponential epidemic growth and the overburdening of healthcare capacity.278

Discussion279

More than eighteen months into the SARS-CoV-2 pandemic, it is becoming increasingly280

clear that countries that implemented suppression strategies early on experienced281

greater success in managing both the public health and economic burden of the282

epidemic [9–11]. However, such strategies work best when employed early in the283

epidemic, when number of cases is relatively small. Moreover, in countries where284

government-imposed restrictions are not well received by the public, implementation of285

such policies will be challenging. Looking back at the early stages of the epidemic, our286

work provides a dynamic mitigation strategy that sustains the community transmission287

without overwhelming the healthcare capacity.288

A number of previous studies on optimal non-pharmaceutical interventions have289

used quadratic cost expressions for the control term in the cost function [18,40,41].290
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Fig 4. Optimal intervention policy at different stages of epidemic The figure
depicts the optimal intervention policy starting at different stages of epidemic. For each
scenario, the number of susceptible, exposed, infectious and recovered individuals is
estimated from a SEIRH model fitted to the UK fatality data and used as initial
condition to derive the optimal intervention policy.
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Fig 5. Implementing the optimal intervention policy will reduce the overall
impact of control measures the Total duration of intervention policy implementation
and Cumulative imposed control for different scenarios. The Total duration of
intervention policy implementation represents the time period between March 1st 2020
and termination date of intervention policy for each scenario. The Cumulative imposed
control is obtained by adding up the implemented control strength (c(t)) in each day,
divided by total number of days with c(t) > 0 for each scenario.

This is mainly because when the cost function is quadratic with respect to the control,291

the differential equations arising from the necessary conditions for an optimal control292

have a known solution. Other functional forms frequently provide difficult-to-solve293

systems of differential equations. To circumvent this, we employed a neuroevolution294

algorithm which enabled us also to explore non-quadratic functions. The neuroevolution295

algorithm was used to train a policy function that takes the epidemiological state of296

population (the numbers of susceptible, exposed, infectious and recovered individuals)297

on each time day and provides the corresponding control strength. We defined a298

multi-objective reward function to account for three conflicting goals: Sustain the299

transmission to achieve herd immunity when suppression is not feasible, maintaining the300

ICU occupancy below the maximum capacity and imposing minimum possible control301

measures to reduce the contact rates. A relative weighting parameter was assigned to302

corresponding terms of each of these objectives in the reward function. The sensitivity303

analysis indicated that the resulting policy function is highly sensitive relative weighting304

of the control term and found a optimal range of of values for it. We chose United305

Kingdom as our target population and fitted an SEIRH model to fatality data to306

estimate the initial conditions at different stages of the epidemic.307

The optimal intervention policy confirmed the importance of early interventions to308
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Fig 6. The optimal intervention policy maintains the effective reproductive
ratio (Reff) close to 1: The figure displays the changes in effective reproductive ratio
when implementing the optimal intervention policy. The control strength (c(t)) is
sharply increased at early stages of epidemic to stall the epidemic growth and keep
healthcare capacity from being overwhelmed. The Reff is maintained close to 1 by
gradually reducing the c(t) as the size of susceptible pool shrinks. Once the value of
Reff reaches below 0.9, c(t) is increased to sustain the transmission in the population,
while keeping the occupied ICU beds below the maximum capacity.

reduce the contact rates in the population, as highlighted in the previous studies [15,41].309

An initial 34% reduction in transmission at the onset of the epidemic, gradually310

increasing to 50% in the next 10 weeks is required to bring the Reff near 1. After that,311

the restrictions are constantly decreased as the the size of susceptible pool diminishes.312

The association between the control strength and the size of the susceptible pool313

(except the first initial 10 weeks) highlights the importance of reliable and widespread314

serosurveys in order to inform policy decision making.315

Our study highlights the neuroevolution algorithm, a gradient-free approach, as an316

efficient alternative to traditional PMP method for finding the optimal317

non-pharmaceutical intervention policy in dynamical disease transmission system. Past318

studies have demonstrated that in many challenging reinforcement learning tasks319

neuroevolution algorithm rivals (or even outperforms in some domains) state-of-the art320

gradient-based methods such as Q-learning and A3C [20]. Interestingly, the321

forward-backward sweep technique that we used obtain the optimal solution via PMP322

closely resembles the backpropagation, the algorithm used to train the gradient-based323

reinforcement learning methods [42]. Ultimately, we found the neuroevolution algorithm324

to be be computationally advantageous to the PMP method as the former algorithm325

provides the optimal intervention policy for a broad range of initial values after initial326

training (as shown in Fig. 4) while the numerical solution to obtain the optimal control327

via PMP must be repeated for a new initial condition.328

A key component of our neuroevolution algorithm is the assumption that the full329

epidemiological state of the population is observable at each time step. In reality,330

however, the observable data provide an incomplete and potentially biased picture of331
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epidemiology since they are based on reported incidence, hospitalization and fatality332

data in addition to seroprevalence surveys. Besides assuming complete epidemiological333

information, our approach also assumed that the optimal intervention policy is334

implemented in deterministically; that is, the output action is perfectly implemented at335

each time instant and the resulting new state given the corresponding action is always336

the same - something that is not practical. An important next step in this area would337

be to extend our novel framework to identify the optimal intervention strategies with338

hidden states in a stochastic setting. Furthermore, while this study addresses the339

optimal reduction in the contact rates over time, the economic cost and effectiveness of340

various non-pharmaceutical intervention mechanisms [43,44] to achieve the optimal341

policy reduction requirements must also be examined.342
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