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Timely forecasts of the emergence, re-emergence and elimination of human
infectious diseases allow for proactive, rather than reactive, decisions that
save lives. Recent theory suggests that a generic feature of dynamical sys-
tems approaching a tipping point—early warning signals (EWS) due to
critical slowing down (CSD)—can anticipate disease emergence and elimin-
ation. Empirical studies documenting CSD in observed disease dynamics are
scarce, but such demonstration of concept is essential to the further develop-
ment of model-independent outbreak detection systems. Here, we use fitted,
mechanistic models of measles transmission in four cities in Niger to detect
CSD through statistical EWS. We find that several EWS accurately anticipate
measles re-emergence and elimination, suggesting that CSD should be
detectable before disease transmission systems cross key tipping points.
These findings support the idea that statistical signals based on CSD,
coupled with decision-support algorithms and expert judgement, could
provide the basis for early warning systems of disease outbreaks.

1. Introduction
Forecasts of the emergence and re-emergence of infectious diseases have
the potential to save lives, money and human productivity by allowing for
proactive, rather than reactive, preparedness measures [1]. Similarly, indicators
of the elimination of infectious diseases can measure the effectiveness of ‘end
game’ strategies aimed at disease eradication [2]. Predicting (re-)emergence
and elimination is possible with parametric mathematical models of disease
transmission, but their success relies on detailed understanding of the under-
lying transmission dynamics and adequate data [3]. We often do not have
enough information (or time) to parametrize such models. An alternative
approach is to use model-independent statistical signals that portend infectious
disease (re-)emergence and elimination by detecting critical slowing down
(CSD) as the system approaches a critical transition [4,5].

Emergence and elimination of an infectious disease both involve a critical
transition, often reflected in deterministic models by a transcritical bifurcation,
that occurs at the critical point where the effective reproduction number
(Re, corresponding to the number of secondary cases that arise from a
single infected case in a population) is equal to one [6]. Thus, subcritical
(Re , 1) and supercritical (Re . 1) systems represent alternative dynamical
regimes [4,7,8].
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Critical transitions in stochastic systems, such as systems
of disease transmission, are often accompanied by CSD, a
reduction in the resilience of a system to perturbations
[9,10]. CSD can be measured by changes in the statistical
properties of the system, often referred to as early warning
signals (EWS), such as an increase in the variance and auto-
correlation [7,11]. Recent theoretical work suggests that CSD
occurs as disease dynamics approach Re ¼ 1 from below
(emergence) [4,12] and from above (elimination) [2,4,13],
and that several EWS can anticipate the critical transition
[14–16]. These findings suggest that such model-independent
statistical signals could be operationalized as part of early
warning systems for disease emergence and elimination, or
re-emergence and outbreaks of endemic diseases.

Operationalizing such EWS, however, and deploying
early warning systems based on them, face many challenges
[1,17]. For example, using EWS in an ‘online mode’ requires
choosing temporal windows over which EWS are calculated.
These moving windows should be long enough to provide
reliable statistics, but short enough to forget the past so as
to not overwhelm information contained in new observa-
tions. Such fine-tuning is especially important for diseases
that fluctuate seasonally, where EWS might always increase
and then decrease over the course of the year, requiring com-
putations to be reset each season [16]. Another challenge is
defining thresholds for detection of an upcoming tipping
point. Detection thresholds can be based on the absolute
value of an EWS (e.g. warning if variance exceeds some
value), the trend in an EWS over time (e.g. warning if the
correlation of variance with time exceeds some value), or an
algorithmic combination of many factors (e.g. variance and
autocorrelation increases above some value several obser-
vation periods in a row). Brett & Rohani [18] pioneered the
approach of developing algorithms for combining EWS,
their values and their trends to best detect disease emergence
and elimination, but much work remains to be done.

An important step in operationalizing EWS based on CSD
is to stress test the performance of EWS in anticipating
critical transitions. One way to stress test EWS is through
empirical case studies: do EWS anticipate re-emergence and
elimination in observed time series of disease incidence
[19]? However, uncritical application of EWS to observed
data could lead to researchers getting the right answer for
the wrong reasons. EWS might perform well for a given
time series, but for reasons having nothing to do with CSD
[20–22]. Critical transitions may also occur in the absence of
EWS [23]. Without knowing the critical point (i.e. when
ReðtÞ ¼ 1), it is impossible to know if EWS are in fact sending
us the signal we think they are.

Another option is to use fitted models of disease trans-
mission to test EWS. This offers several advantages. First,
using a model to simulate time series of cases means one
also has access to a time series of ReðtÞ, essential for knowing
the time at which the critical transition occurs. This means we
know whether we are getting the right answer for the right
reason. Second, one can simulate replicate time series to
account for the inherent stochasticity of disease transmission,
so that conclusions are not based on one-off events that might
result in confirmation bias [24]. Third, we can specifically
simulate re-emergence and elimination events to separate
the stress testing of EWS from the research necessary to oper-
ationalize EWS. In short, a simulation approach to stress
testing provides the flexibility of a theoretical model, but
remains tethered to reality because the model parameters
are fitted to real data. We believe this is the first study to
take this step towards operationalizing EWS as part of
infectious disease early warning systems.

Here, we report on a study using simulations from fitted
models of measles transmission in an outbreak-prone popu-
lation to test whether CSD anticipates critical transitions in
realist situations. We focus on two scenarios: the re-emergence
of measles following a large outbreak, a situation typical of
measles dynamics in the Sahel [25], and the elimination of
measles by gradually increasing routine vaccination. We
seek to answer two related questions. First, can CSD dis-
tinguish between time series of disease incidence when the
underlying dynamics are far from versus near to a critical
transition? Second, can CSD anticipate disease re-emergence
and elimination?

To answer these questions, we fit mechanistic models to
time series of measles incidence in four cities in Niger
[25,26]. We then use the fitted models to perform simulation
experiments designed to test the performance of several
EWS that are characteristic of CSDwith respect to anticipating
re-emergence and elimination. Our results confirm the theory
concerning several EWS. In particular, we show that slowing
down before a critical transition is detectable by several EWS
in realistic scenarios. However, our study also highlights the
limitations of EWS in situations where disease re-emergence
and elimination occur rapidly. Finally, we also find that EWS
perform better at anticipating re-emergence than elimination.
2. Material and methods
2.1. Data
We used weekly measles case report data (incidence) from four
Nigerien cities: Agadez, Maradi, Niamey and Zinder (figure 1a).
The data were collected over an 11-year period from 1995 to 2005
(figure 1b). These data are ideal for testing the theory of CSD in dis-
ease dynamics because each city has a different population size
(with means ranging from about 150 000 to 750 000 during this
time period), different dynamics in terms of outbreak sizes (maxi-
mum weekly incidence ranging from 60 to 1845 cases) and length
of inter-epidemic periods (2–5 years), and has different amounts of
demographic stochasticity due to differences in population size.
Such differences provide an interesting test case for EWS because
different levels of demographic stochasticity due to population
sizes and environmental stochasticity due to potential differences
in transmission dynamics can influence CSD [27–30]. We also
used data on district population sizes and national-level birth
rates (electronic supplementary material, figure S1). Measles inci-
dence data and district-level population data were obtained from
the Niger Ministry of Health [31]. National-level birth rate data
were downloaded from the FRED database (https://fred.
stlouisfed.org/series/SPDYNCBRTINNER).

2.2. Stochastic susceptible-exposed-infected-recovered
model

The model is a discrete-time approximation to the continuous-
time susceptible-exposed-infected-recovered (SEIR) model with
demography, specified as a set of difference equations,

StþDt � St ¼ n0S,t � nSE,t � nS0,t, ð2:1Þ
EtþDt � Et ¼ nSE,t � nEI,t � nE0,t, ð2:2Þ

ItþDt � It ¼ nEI,t þ n0I,t � nIR,t � nI0,t ð2:3Þ
and RtþDt � Rt ¼ n0R,t þ nIR,t � nR0,t, ð2:4Þ

https://fred.stlouisfed.org/series/SPDYNCBRTINNER
https://fred.stlouisfed.org/series/SPDYNCBRTINNER
https://fred.stlouisfed.org/series/SPDYNCBRTINNER
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Figure 1. Locations of data sources and observed and predicted measles dynamics. (a) Locations and 1995–2005 population-size ranges (in parentheses) of our four
focal cities in Niger. (b) Time series of weekly reported cases (incidence data; yellow solid lines) and the 68% prediction intervals (black ribbons) for one-week-ahead
predictions from our fitted susceptible-exposed-infected-recovered (SEIR) models for each city.

Table 1. Transitions in the simulating model.

random
variable transition

(ΔS, ΔE, ΔI,
ΔR)

n0S births into the S compartment, not

vaccinated

(1, 0, 0, 0)

nSE number of people transitioning

from S to E

(−1, 1, 0, 0)

nS0 number of deaths leaving S (−1, 0, 0, 0)
nEI number of people transitioning

from E to I

(0, −1, 1, 0)

nE0 number of deaths leaving E (0, −1, 0, 0)
n0I number of imported infections (0, 0, 1, 0)

nIR number of people transitioning

from I to R

(0, 0, −1, 1)

nI0 number of deaths leaving I (0, 0, −1, 0)
n0R births into the R compartment,

vaccinated

(0, 0, 0, 1)

nR0 number of deaths leaving R (0, 0, 0, −1)
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where nt are random variables representing the number of
individuals transitioning into or out of each class at each
update t→ t + Δt. Transition definitions are in table 1.

The stochastic random variables are specified as follows:

n0S,t � Poisson ðð1� ptÞmN � DtÞ, ð2:5Þ

ðnSE,t, nS0,tÞ � EulerMultinomial ðSt, ðbtIt=N, nÞ, DtÞ, ð2:6Þ

ðnEI,t, nE0,tÞ � EulerMultinomial ðEt, ðh, nÞ, DtÞ, ð2:7Þ

ðnIR,t, nI0,tÞ � EulerMultinomial ðIt, ðg, nÞ, DtÞ, ð2:8Þ

nI0,t � Poisson ðc� DtÞ, ð2:9Þ

n0R,t � Poisson ðptmN � DtÞ ð2:10Þ

and nR0,t � EulerMultinomial ðRt, ðnÞ, DtÞ, ð2:11Þ

where pt is the vaccination probability, μ is the per capita birth
rate at time t, N is population size at time t, ∼EulerMultinomial
(T, ri, Δt) specifies that the variables on the left of ∼ follow a Euler
multinomial distribution for T individuals with hazard rates ri
and step size Δt, βt is a time-varying rate of transmission, η is a
time-invariant rate of transfer from the exposed class to the infec-
tious class, γ is a time-invariant recovery rate, ν is the per capita
death rate, and ψ is the rate of imported infections (estimated
by the model). The Euler multinomial distribution corresponds
to a multinomial distribution where the event probabilities Pi

are determined by the Euler time step Δt and the hazard rates
ri, according to,

P0 ¼ exp �
X
i

riDt

 !
ð2:12Þ

and

Pi ¼ ð1� P0Þri
ðPi riÞ

for i . 0: ð2:13Þ
Event zero is the event that an individual stays in its initial
compartment and does not contribute to the vector nt. To provide
a specific example, equation (2.7) corresponds to,

ðEt � nEI,t � nE0,t, nEI,t, nE0,tÞ

� Multinomial(Et; P0,
ð1� P0Þh
ðhþ nÞ ,

ð1� P0Þn
ðhþ nÞ ), ð2:14Þ

where P0 = exp (− (η + ν)Δt). We used a daily time step of Δt =
year/365.



Table 2. Model parameters, definitions and indicator as to whether they
were fitted or fixed. Sources for fixed values are cited in the main text.

parameter

symbol definition fitted or fixed

β minimum transmission rate within

the season

fitted

qi seasonal transmission spline

parameters (i [ 1, 2, 3, . . ., 6)

fitted

S(t=0)/Nt=0 initial susceptible fraction fitted

E(t=0)/Nt=0 initial exposed fraction fitted

I(t=0)/Nt=0 initial infected fraction fitted

ψ importation rate fitted

ρ reporting fraction fitted

σ gamma white-noise intensity fitted

τ negative binomial dispersion fitted

1/η incubation period fixed (8 days)

1/γ infectious period fixed (5 days)

pt vaccination probability fixed (0.7)

mut per capita birth rate fixed

Nt population size fixed
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We modelled the rate of transmission as

bt ¼ b 1þ exp
X6
i¼1

qijit

 ! !
Gt: ð2:15Þ

where β is the minimum transmission rate over the season and the
term

P6
i¼1 qijit is a B-spline to model seasonality in transmission.

The B-spline bases (jit ) are periodic with a 1-year period. The
transmission rate (βt) is also subject to stochastic process noise at
each time step, Gt, which we model as gamma-distributed white
(temporally uncorrelated) noise with mean 1 and intensity σ2

[32]. In this model, the effective reproduction number at time t
may be approximated as: ReðtÞ � ðbt=gÞðSt=NtÞ. The effect of
vaccination on ReðtÞ is implicitly included through the size
of the St compartment.

Observed case reports (yt) were drawn from a negative
binomial distribution subject to a constant reporting fraction (ρ)
and dispersion parameter τ,

yt � Negative Binomial (rxt, t), ð2:16Þ
where xt are the accumulated cases that transition from the
infected class to the recovered class in a one-week period.
In this parametrization of the negative binomial, the mean is
equal to ρxt and the variance is equal to ρxt + (ρxt)

2τ.

2.3. Model fitting and inference
The model described above was fit to the time series of case
reports (incidence data) from each city using maximization by
iterated particle filtering (MIF) [33]. We estimated 14 parameters
(table 2). To improve parameter identifiability, mean incubation
period was fixed to 1=h ¼ 8 days and the mean infectious
period was set to 1=g ¼ 5 days [34]. The vaccination probability
(pt) was set to 70% for all times t, consistent with reported
vaccination coverage [25].

For model fitting, we made simplifying assumptions to make
the estimation procudure more tractable. First, we used known
population size (Nt) for each city in each year. Second, death
(ν) was not included in the model when fitting because the rate
of infection is much faster than the rate of death and because
we used known population size at each time step. Excluding
deaths means we can avoid making further assumptions about
demography. This means we ignored the R compartment entirely
for model fitting.

MIF relies on particle filtering, which estimates the likelihood
of fixed parameters by integrating state variables of a stochastic
system. To identify the maximum-likelihood estimates (MLEs),
MIF lets parameters take a random walk during the filtering
process and selectively propagates forward parameter sets (i.e.
particles) with the highest likelihood. The variance of the
random walk decreases at each iteration of MIF, where a MIF
iteration means one filtering pass through the time series. This
procedure converges toward the MLEs.

We used the iterated filtering 2 (IF2) algorithm [33]
implemented in the R [35] package pomp v. 1.18 [36,37] to con-
duct MIF. To initialize MIF, we generated 5000 parameter sets
using Latin hypercube sampling over large ranges of the par-
ameters. We then performed two rounds of MIF, each for 100
iterations, with 10 000 particles, using geometric cooling. For
the first round of MIF, we set cooling:factor ¼ 1. For the
second round, which was initialized using the collection of
parameter sets from the end of the first round, we set
cooling:factor ¼ 0:9. We computed the log-likelihood of
5000 final MIF parameter sets (i.e. parameter sets collected
after 200 MIF iterations) as the log of the mean likelihoods of
50 replicate particle filters with 10 000 particles each. At this
stage, we took the parameter set with highest log-likelihood to
be the MLE.

We used the parametric bootstrap to estimate approximate
95% confidence intervals for all parameters, conducted for each
city independently, as follows. First, we simulated 100 realiz-
ations from the fitted model using the MLE parameters.
Second, we fitted the SEIR model to each of the 100 bootstrap
simulations using the same MIF procedure described above,
except we initiated the parameter search from 50 parameter
sets rather then 5000. We reduced the number of parameter
sets due to the excessive computing time required to fit 100 simu-
lated datasets for each of the four cities. Third, we identified the
MLE parameter set for each of the 100 bootstrap simulations
from among the 50 MIF parameter sets. Last, we calculated sum-
mary statistics (mean, median, quantiles) from the distribution of
100 MLE parameters.
2.4. Model assessment
We used the MLE parameter sets to make one-week-ahead predic-
tions and compared observed and expected case counts. To make
one-week-ahead predictions, we used particle filtering with 50 000
particles and retained the mean and standard deviation of all latent
states across all particles before they were filtered at each time step.
We used the mean predictions (EðcasestÞ) to assess model fit
using a generalized coefficient of determination, calculated as:
R2 ¼ 1�ðPt½EðcasestÞ�casest�2=

P
t½mean( cases) � casest�2Þ [38].

In addition to comparing model expectations with in-sample
observed data, we also compared our fitted SEIR models with
two benchmarks: a negative binomial sampling model that
assumes independent and identically distributed observations
and a seasonal autoregressive moving average (SARIMA)
model. Doing so allows us to gain some intuition as to whether
accounting for mechanism (i.e. transmission dynamics) improves
model fit and inference. The SARIMA is a seasonal autoregressive
moving average model (an ARIMA ð2, 0, 2Þð1, 0, 1Þ52 model) that
can account for data dependencies and annual periodicity. Out-
performing the SARIMA is a harder test than outperforming the
negative binomial sampling model. We fitted both models to the
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weekly case count observations for each city usingmaximum like-
lihood. After fitting, we calculated Akaike’s information criterion
for each model as: AIC = 2k− 2ln(L), where k is the number of esti-
mated parameters in the model and L is the model’s likelihood
[39]. The negative binomial sampling model has two parameters,
the SARIMAmodel has eight parameters, and the SEIRmodel has
14 parameters.

2.5. Model simulations
To fit the SEIR model, we used known population size interp-
olated between years. This meant we were able to ignore
certain demographic processes. For example, deaths from the
susceptible pool were ignored under the assumption that
the infection rate was much faster than the death rate. We also
ignored the recovered class because their dynamics, outside of
the contribution to population size (which was assumed
known), do not impact the S, E or I compartments. However,
births and deaths from all compartments, including R, were
needed when simulating the model over arbitrarily long time
periods that do not necessarily represent real times for which
we would have information on population size. For long-run
simulations, we set μ = ν = 0.05, which is the per capita rate
reported for 2005, rounded to the nearest 0.01. Setting birth
rate equal to death rate achieved an equilibrium population
size for long-run simulations.

2.5.1. Simulating re-emergence
To simulate re-emergence of measles, we manipulated the initial
size of the susceptible pool to represent an increase from low
ReðtÞ to high ReðtÞ. Doing so allowed us to test whether EWS
can distinguish between windows of time when ReðtÞ is far
from a critical transition and when ReðtÞ is near a critical tran-
sition. We reduced the initial fraction of susceptible individuals
by multiplying the MLE for S(t=0) by six depletion factors: 1 ×
10−4, 0.1, 0.2, 0.3, 0.4 and 0.5. These depletion factors represent
situations of susceptible depletion after outs of various size.
After defining S(t=0) based on the depletion factor, we then set
the initial number of recovered individuals to R(t=0) =N(t=0)− S(t=
0) and set the initial number of exposed and infected individuals
to zero. Initial population size for simulation scenarios, N(t=0),
was set to the mean population size for each city over the 1995–
2005 time period. We then simulated the model forward for 40
years using the mean birth rate for the entire country (μ = 0.05)
and setting the death rate equal to the birth rate (μ = ν = 0.05) to
achieve a constant average total population size over the course
of the simulation (total population size does vary, though, because
of stochasticity in the model). Forty years was long enough for
ReðtÞ to reach or exceed 1 for each simulation replicate. Several
outs are seen within 11 years in the data (figure 1b), though
time-to-outbreak was larger in scenarios where the susceptible
population was initialized to be much smaller than ever observed
in reality. Because themodel is stochastic, we repeated these simu-
lations 500 times for each city–susceptible-depletion combination.

Next, we split each simulated time series into null and test
intervals. Fixed-size windows before (null) and after (test) the
known critical transition were used because our focus was on test-
ing EWS using empirically based models, rather than attempting
to identify optimal methods for operationalizing EWS. To define
the null and test intervals for our simulations of re-emergence
and elimination, we need to know when the critical transition
between alternativemodes of fluctuation occurs. For re-emergence,
we defined the critical year as the year in which the effective repro-
duction number (Re) reaches or exceeds the critical value of
1. When determining the critical year, we eliminated the variation
in Re that arises from the gamma white noise factor and thus cal-
culated the expected value of ReðtÞ over the set of all simulation
replicates at time t. From a window ranging from the beginning
of the simulation to the end of the critical year, we defined the
null interval as the first half of the window (far from Re ¼ 1)
and the test interval as the second half of the window (near
Re ¼ 1). We did this for each city and for each level of susceptible
depletion, and calculated EWS over all null and test intervals
separately.
2.5.2. Simulating elimination
To simulate elimination, we simulated an improvement in rou-
tine vaccination in which the vaccination probability increased
linearly with respect to time to eventually reach 100%, i.e. eradi-
cation (electronic supplementary material, figure S3). Vaccination
probablity started at baseline vaccine coverage reported for Niger
of 70%, pt = 0.7 [25] and simulations were initialized at the MLE
for S(t=0).

We defined the critical time as the year in which the
vaccination probability reaches the threshold needed for herd
immunity. This vaccination threshold is defined as
p� ¼ 1� 1=R0. Because our transmission function is seasonal,
we first approximated time-specific R0 as: R0ðtÞ ¼ hbt

ðhþnÞðgþnÞ,
where 1/η is the incubation period, 1/γ is the infectious period,
βt is the time-specific rate of transmission, and ν is the death
rate. We took a conservative approach for calculating the vacci-
nation threshold by using the maximum value of R0ðtÞ out of
the range of values in its seasonal variation. That is, we used
p� ¼ 1� 1=maxðR0ðtÞÞ as the threshold value. We set the time at
which the vaccination probability is equal to this threshold
value as the endpoint for the EWS analysis. All elimination simu-
lations had vaccination improvements that started at year 50.
Therefore, we defined the test interval as the times between the
beginning of year 50 and the time at which the vaccination prob-
ability is equal to p*. We then defined the null interval as a
window with length equal to the test interval and ending at the
end of year 49. EWS were then calculated for each interval.
2.6. Calculating early warning signals
We considered eight candidate EWS based on previous work
[4,13–15,18] (table 3). We used the spaero::get_stats()
function [40] in R [35] to calculate EWS according to the formulae
in table 3. All EWS except the coefficient of variation are expected
to increase as ReðtÞ approaches 1 from below [4,13,14]. We are
not aware of theoretical results for the behaviour of these EWS
as ReðtÞ approaches 1 from above that are applicable to our
fitted model’s dynamics, which are highly nonlinear (electronic
supplementary material, figure S3). But a natural expectation is
that the mean should decrease as the endemic equilibrium of
our model’s deterministic skeleton moves towards zero.

For each simulation of re-emergence and elimination, we cal-
culated EWS for the time series of expected cases in the null and
test intervals. This yielded a distribution of EWS over the 500
null and test intervals. We assessed the performance of each
EWS using the area under the curve (AUC) statistic. Specifically,
we used AUC to calculate the amount of overlap between the
distributions of each EWS from the null and test intervals [15].
Values of AUC far from 0.5 (i.e. close to 0 or 1) indicate a greater
degree of separation and thus better performance of a particular
EWS in terms of classifying whether ReðtÞ is close to a critical
transition. We calculated AUC as: AUC = [rtest− ntest (ntest + 1)/
2]/(ntestnnull) where rtest is the sum of the ranks of test set EWS
statistics in a combined set of null and test statistics (lower num-
bers have lower ranks), ntest is the number of test of statistics and
nnull is the number of null statistics [15,41]. The AUC of an EWS
is the probability that a randomly chosen EWS value from the
test set is higher than an EWS value randomly chosen from the
null set [42]. Therefore, AUC should be high (closer to 1) when
an EWS is expected to increase as a critical transition is



Table 3. List of candidate early warning signals and their estimating
equations. See [15] for details.
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Figure 2. Accuracy of the fitted SEIR models and estimated seasonality. (a) Comparison of in-sample model predictions and observations for each city. Expected
cases are one-week-ahead predictions from the fitted models. The dashed line shows 1 : 1. Coefficients of determination (R2) were calculated as the reduction in the
sum-of-squared errors from model predictions relative to a null model of the mean number of cases (Material and methods). (b) The estimated seasonality of the
basic reproductive ratio (R0) for each city. R0 was approximated as: ηβt/((η + ν)(γ + ν)), where 1/η is the incubation period, 1/γ is the infectious period, βt is
the time-specific rate of transmission, and ν is the death rate. Only βt is estimated by our model. We set 1=h ¼ 8 days, 1=g ¼ 5 days, and ν = 0.05 for
calculating R0 as shown in this figure. The white line is R0 calculated using the MLE parameters; shaded regions are the bootstrapped 95% confidence intervals.
The dashed horizontal lines show the common range of measles R0 : 12 to 18.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220123

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 A

ug
us

t 2
02

2 
approached, whereas AUC should be low (closer to 0) when an
EWS is expected to decrease.
3. Results
The fitted models adequately reproduce observed dynamics
(figure1b),with in-sampleR2s fromone-week-aheadpredictions
ranging from 0.55 for Agadez to 0.89 for Maradi (figure 2a).
The fitted models also had lower AIC values than two bench-
marking models (table 4). The estimated seasonality is
consistent with previously estimated patterns, including the
decline in seasonality amplitude as population size decreases
(figure 2b) [25]. Our estimates of R0 do not all perfectly overlap
with the often-cited range of 12–18 (figure 2b) [43], but more
recent reviews suggest that measles’ R0 is much more variable
and is context-specific [44].

Our model for Agadez performed poorly relative to the
other cities, but still did better than non-mechanistic models
(table 4). MLE and bootstrapped 95% confidence intervals
for all parameters are in the electronic supplementary
material, tables S1–S4. Parameter correlations were generally
weak (electronic supplementary material, S3), but the corre-
lation between initial susceptible population size (St=0/Nt=0)
and transmission rate (β) was negative and larger than −0.5
for all cities. Overall, weak parameter correlations indicated
high parameter identifiability in the model.

The EWS generally performed as predicted by theory
with respect to the approach to re-emergence. Most EWS
increased as the critical transition was approached, resulting
in AUC values above 0.5 and often near 1 (figure 3). Skew-
ness, kurtosis and coefficient of variation performed poorly
across all levels of susceptible depletion in all cities.

Variance, mean, index of dispersion, autocovariance
and autocorrelation all performed equally well at predict-
ing re-emergence (figure 3c). Their performance declined
as the size of the susceptible pool increased (i.e. a larger
susceptible depletion factor). This is expected because a
larger susceptible pool results in more rapid returns to
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Figure 3. Performance of early warning signals (EWS) over fixed windows on the approach to emergence. (a) A typical example of an emergence simulation for
Maradi. The two vertical blue lines indicate the start (left-most line) and end (line for critical year) of the full window. The black line demarcates the division
between the equal-length null and test intervals, in which we show the calculated variance. (b) Empirical densities of variance in the null and test intervals
across 500 simulations and the associated area under the curve (AUC) statistic. (c) Heatmap of AUC statistics for each EWS at each level of susceptible depletion
factor. AUC values closer to 0 or 1 indicate higher ability to distinguish among time series near and far from a critical transition. See electronic supplementary
material, figure S8 for a visualization of how susceptible depletion factor maps to number of weeks in the null and test intervals.

Table 4. AIC values for the benchmarking and SEIR models.

city neg. binomial SARIMA SEIR

Agadez 2463 2010 1949

Maradi 4618 3547 3521

Niamey 4112 3185 2937

Zinder 3958 2902 2859
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ReðtÞ ¼ 1, which, in turn, results in shorter null and test inter-
vals, making estimates of EWS less precise [14]. Thus, re-
emergence may prove difficult to anticipate in ‘fast’ trans-
mission systems, as observed in simulations in [14] and
seen here when susceptible depletion was relatively small
(figure 3c).

The EWS performed less well when anticipating elimin-
ation, relative to emergence (figure 4). Only three metrics
were reliable: mean, autocovariance and variance. All three
metrics decreased as ReðtÞ approached the critical transition
(electronic supplementary material, figure S6). As in the
case of anticipating elimination, AUC values moved closer
to 0.5 as the rate of vaccination increased (figure 4c).
4. Discussion
The ability to detect early warnings of outbreaks of poten-
tially fatal diseases such as measles during non-epidemic
periods of unpredictable duration may facilitate planning
such as enhanced surveillance to expedite outbreak detection,
implementation of serological surveys to identify immunity
gaps, and initiation of targeted supplemental vaccination
[45,46]. Further, it has been argued that measles eradication
requires consideration of local demographic factors [47] and
that regional outbreak response vaccination can be effective
when initiated early, even if coverage is suboptimal [45]. Con-
sequently indicators that a location or a region is on a path to
outbreak or elimination can help to prioritize the timing and
distribution of limited resources. Using empirically based
transmission models, we found that generic indicators of
CSD were informative regarding simulated re-emergence
and elimination of measles. Our conclusions are, of course,
dependent on the modelling choices we made, but using
empirically based models represents a step in the progression
from theory to simulations to applied science. This work
fills the important gap between data-free simulations and
application of EWS as part of a decision-support toolkit.

Overall, generic indicators performed better in scenarios
of re-emergence compared with elimination. Moreover,
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indicators behaved as expected based on simple one-dimen-
sional models of fluctuations around an equilibrium with
gradually declining stability—the prototypical model of
CSD. This is because the autocorrelation and variance
increased on the approach to Re ¼ 1 (figure 3c). If, alterna-
tively, the variance had increased but the autocorrelation
had not, a better-supported model would be an equilibrium
with fixed stability but subject to increasing intensity of per-
turbations. From a model selection point of view, our
simulations of re-emergence support the prototypical model
of CSD. Since our simulations were fit to measles data and
had relatively high one-step-ahead predictive accuracy on
average, it suggests that the prototypical model of CSD
may be supported by datasets similar to the ones we fit
and can provide predictive value for them. The definitive
test of this approach, or course, would be to record forecasts
of re-emergence based on indicators of CSD and evaluate
their accuracy as data are accumulated. A recent study
using a different method for detecting critical transitions
found that elimination was easier to detect than re-emer-
gence, contrary to our findings [48]. This suggests different
approaches could be considered for different applications.

Kurtosis and skewness did not perform well (AUC far
from 0 and 1). This may be because higher moment-based
indicators may need longer time series and higher amounts
of stochasticity to detect critical transitions. Thus, while
kurtosis and skewness were not strong indicators of the tran-
sition to re-emergence in our system, they may still prove
useful in other systems.

We found lag-1 autocorrelation not to be a strong indi-
cator of the transition to elimination (figure 4c). Thus,
the prototypical model of CSD appears less useful in this
scenario. Other EWS (variance, autocovariance and mean)
did show altered behaviour as the transition to elimina-
tion was approached, but these EWS were less sensitive
under elimination scenarios compared with re-emergence
scenarios. These results suggest that although distributio-
nal changes in indicators occur prior to disease elimination,
interpreting these changes as the loss of stability of an
endemic equilibrium, or declining Re, requires a model
which accounts for complicating system features such as
seasonality, nonlinearity, damped oscillations and local
extinction. We also found that EWS in smaller cities perfor-
med worse relative to larger cities at predicting elimination
(figure 4c). Our hypothesis is that stochastic effects are stron-
ger in smaller populations, which introduces more variation
into our EWS and makes trends more difficult to identify.
Spatial replication across small populations, which should
reduce stochasticity, could prove important for developing
practical EWS.
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A potential limitation of our findings is that the suscep-
tible depletion factors in our simulation study (figure 3c)
might be smaller than the factors that occur in reality.
A small depletion factor corresponds to a large level of sus-
ceptible depletion. To check the relevance of this concern,
we calculated the level of susceptible depletion after out-
breaks (defined as years where the total number of cases
reached 80% of the maximum observed) across 100 replicate
simulations (electronic supplementary material). We found
that susceptible depletion was less than 0.5, the smallest sus-
ceptible depletion level we tested, for 0.9% of outbreaks in
Agadez, 21% of outbreaks in Maradi, 100% of outbreaks in
Niamey and 26% of outbreaks in Zinder. These statistics do
not detract from our main finding of CSD in measles
dynamics, but do suggest that EWS might be less useful in
some cases than in others. For example, AUC values for
emergence at the 0.5 level of susceptible depletion were
already low for most cities (figure 3c). Thus, our methods
may not be practical for cities that rarely experience levels
of susceptible depletion below 0.5 (e.g. Agadez).

Another potential limitation is that the population of
Niger has increased substantially since the end of the time
series we analysed in 2005. This presents a limitation to our
work because we cannot definitively say whether our results
are robust to such large changes in population size. However,
our analysis across cities with different population sizes
suggests that EWS would remain a viable tool. Elimination
may be easier to detect, as demonstrated by our result that
EWS performed better in larger cities.

We focused on fixed windows for calculating EWS based
on the timing of the critical transition. Thus, our work also
does not represent how EWS would be operationalized in
online mode. The fixed windows were specifically designed
to test whether EWS could detect a known critical transition
and limit the additional complexity associated with choosing
a moving window size. Determining the optimal moving
window width is non-trivial [18] and is beyond the scope
of this article. Nonetheless, our analyses show that several
EWS can detect critical transitions in representatively noisy
SEIR dynamics. Providing this link from theory to appli-
cation through empirically based models represents an
important step towards operationalizing EWS. Further
applied work on optimal moving window widths and the
lead-time of different EWS appears to be worth the effort
given our encouraging results at the theoretical–applied
divide. This is especially true because fitting even relatively
simple models of disease transmission for a well-known dis-
ease such as measles is difficult. The ability to rely on model-
free indicators of critical transitions therefore remains an
important endeavour, especially for emerging pathogens.

Unpredictable, recurring outbreaks with seasonality in
transmission such as those observed for measles in Niger
during 1995–2005 are challenging settings for the application
of EWS in part because most theory regarding the behaviour
of EWS [14,30] is based on models that exhibit simpler
dynamics. Consequently, the development of robust, model-
independent early warning systems for infectious diseases
[1] probably will benefit from further study of the behaviour
of EWS in complex models. Also, although we have shown
that CSD precedes tipping points in stochastic models that
were fit to data with state-of-the-art methods, how to opera-
tionalize the phenomenon of CSD remains an open research
area [49]. Emerging technologies like artificial intelligence
might offer new ways to find optimal detection thresholds
for EWS [18]. Therefore, EWS, which provide timely insight
and are now accompanied with additional support, could
become a key part of a decision-support toolkit.
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