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Over the past two decades, multiple countries with high vaccine coverage have
experienced resurgent outbreaks of mumps. Worryingly, in these countries, a high
proportion of cases have been among those who have completed the recommended
vaccination schedule, raising alarm about the effectiveness of existing vaccines. Two
putative mechanisms of vaccine failure have been proposed as driving observed trends:
1) gradual waning of vaccine-derived immunity (necessitating additional booster doses)
and 2) the introduction of novel viral genotypes capable of evading vaccinal immunity.
Focusing on the United States, we conduct statistical likelihood-based hypothesis
testing using a mechanistic transmission model on age-structured epidemiological,
demographic, and vaccine uptake time series data. We find that the data are most
consistent with the waning hypothesis and estimate that 32.8% (32%, 33.5%) of
individuals lose vaccine-derived immunity by age 18 y. Furthermore, we show using
our transmission model how waning vaccine immunity reproduces qualitative and
quantitatively consistent features of epidemiological data, namely 1) the shift in mumps
incidence toward older individuals, 2) the recent recurrence of mumps outbreaks, and
3) the high proportion of mumps cases among previously vaccinated individuals.
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The sustained reemergence of mumps in multiple high-vaccine coverage countries,
including the United States (1), Canada (2), England (3, 4), South Korea (5), and
Denmark (6), over the last two decades is puzzling from a population biological
perspective and has raised concerns about the adequacy of current vaccines (7). Mumps
is an infectious disease caused by an RNA virus of the family Paramyxoviridae (8).
While infection in school-aged children is typically mild, with symptoms including
inflammation in the salivary glands and fever (8), in postpubescent individuals, infection
can cause severe disease, including encephalitis (9), deafness (10), and infertility (11, 12).
Prior to routine infant immunization, infection with mumps was viewed as a childhood
rite of passage (13), with serological studies from the prevaccination era suggesting that
by 14 to 15 y of age, 90% of the population were typically seropositive to mumps
antibodies (14, 15). In countries like the United States, routine immunization has been
highly successful at substantially reducing mumps incidence by over 99.9% compared
to the prevaccine era incidence (7), and it was once considered a candidate for global
elimination (15). However, the recent resurgence of mumps in some highly vaccinated
populations has cast doubt on the feasibility of this goal (16).

The exact nature of vaccine failure underlying this recent reemergence remains
contested (17–19). The two leading hypotheses are that 1) vaccinal immunity against
mumps transmission wanes over time (18, 19) and 2) genetic mismatch between vaccine
strains and presently circulating viruses has reduced vaccine efficacy (17, 20). There is
empirical evidence in support of both hypotheses (21, 22), and given the contrasting
policy implications associated with each mechanism, it remains important to pin down
the underlying cause of mumps resurgence. With waning vaccine effectiveness, periodic
booster immunizations are necessary (18, 23). For a mismatched vaccine, on the other
hand, boosters with the same vaccine are typically ineffective and updated vaccines are
required (24–27).

In support of the waning hypothesis, longitudinal serological studies have shown that
vaccine-derived antibodies decay over time (28); however, there is uncertainty about how
this maps onto waning of protective immunity at the population level since serological
correlates of protection have not been identified (18). Epidemiological factors consistent
with waning immunity include a shift in the age distribution of reported cases to the
older age groups (typically 18 to 25 y) (1). Waning of vaccine efficacy can diminish
the population-level immune protection thereby increasing the chances of pathogen
reestablishment (29–31).
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In addition, vaccination might be providing incomplete
protection referred to as “leaky” protection (30) against present
circulating strains. Mumps viruses exhibit substantial phyloge-
netic diversity, with 13 known genotypic variants identified
globally (32). Historical vaccines (such as the original Jeryl
Lynn vaccine developed in the United States) are typically
derived from prior circulating genotype A viruses. However, the
recent resurgent epidemics in the United Kingdom, Canada,
and the United States have all been caused by genotype G
viruses, indicative of genotype replacement (19). Furthermore,
immunological assays suggest reduced cross-neutralization ability
of vaccine-derived (genotype A) antibodies against genotype G
viruses compared with genotype A (17).

Using the reemergence of mumps in the United States as
a case study, in this paper, we aim to determine the putative
mechanism of vaccine failure underlying national-level mumps
reemergence by performing likelihood-based statistical inference
using dynamical transmission models. Transmission models have
proven useful in drawing ecological inferences about reemergence
of numerous vaccine-preventable childhood infections including
measles (33, 34), pertussis (35), influenza (36), and dipthe-
ria (37). Here, we construct an age-structured SEIR mechanistic
model informed by demographic and vaccine uptake data to
test the competing hypotheses regarding vaccine failure. We
conduct formal hypothesis testing using age-structured time series
of national-level US mumps incidence between the years of 1977
and 2018 sourced from the Centers for Disease Control and
Prevention (38, 39). We find that the model with waning vaccine
immunity best explains the dynamics in the observed data. Our
model is effectively able to reproduce crucial characteristics such
as the timing of recent epidemics and the gradual increasing trend
in the age distribution of cases to the older age groups.

Results

After the roll-out of infant vaccination (SI Appendix, Fig. S3C ),
the United States experienced a pronounced decline in mumps
incidence, down to a nadir of 10% of prevaccination levels
in 1984 (Fig. 1A). However, this decline was interrupted in
the mid-1980s, when the United States experienced resurgent
outbreaks, with cases concentrated in the 5 to 15 age group
(Fig. 1B and C ) (1) with a geographic concentration centered
around the mid-western states (Fig. 1D) (40). In response, a
nationwide vaccine booster campaign was initiated in 1989 (SI
Appendix, Fig. S3D for estimated vaccine uptake data), targeting
4-y-old individuals (13). Subsequently, mumps incidence further
declined until a second large outbreak in 2006, which has been
followed by sustained transmission ever since (Fig. 1A). The
majority of post-2006 cases have been aged over 15 y (Fig. 1C ),
and the midwest has again been a geographic focus (Fig. 1E).
Of potential concern is the observation that most cases have
occurred in individuals who have completed the recommended
two-dose vaccine schedule (41), leading to speculation about
vaccine effectiveness.

Formal Hypothesis Testing. As outlined above, two distinct
mechanisms of vaccine failure have been proposed to explain
the resurgence of mumps in highly vaccinated countries: 1)
transient vaccinal protection (the “waning” hypothesis) and 2)
imperfect immunity against genotype G (the “leaky” hypothesis).
To formally arbitrate among these putative drivers of mumps
reemergence, we formulated an age-structured, two-genotype
transmission model that captures each mechanism of vaccine
failure (Materials and Methods, SI Appendix, Eqs. S13–S22).

A

B

C

D E

Fig. 1. Mumps distribution in the United States. (A) Total reported mumps
cases per 105. (B) Age-stratified case reports across 5 age cohorts (purple
gradient). (C) Age distribution of mumps case reports (purple gradient); (D
and E) Spatial distribution of average mumps case reports per 105 during the
two reemergence eras, 1985 to 1989 (panel D) and 2006 to 2012 (panel E).

We further investigated three models of immune waning. In
the first, the duration of vaccinal immunity was assumed to
be exponentially distributed (i.e., with no characteristic age at
which immunity is lost). In the second and third, motivated by
the observation that recent cases were primarily 15 to 25 y old,
we modeled the duration of vaccinal immunity using an Erlang
distribution, which permits a modal age at which immunity is
lost. All hypotheses were compared to a “no-loss” model which
assumed perfect, permanent vaccine-derived immunity. Where
possible, parameter estimates were obtained from the literature,
with unknown epidemiological and immunological parameters
were estimated via trajectory matching executed using likelihood-
based statistical inference (Materials and Methods, for details).
Finally, due to missing vaccine uptake data in the period covering
the roll-out of booster doses (1989 to 2000), for each model, we
compared four qualitatively distinct shapes of booster uptake
(constant, sigmoid, convex, and concave; SI Appendix for full
details).

Among the competing models, we found the exponential
waning model provided the best explanation for the observed
data, as quantified using the Akaike information criterion (AIC)
(Table 1). For this model, we estimated a basic reproductive
number, R0 of 14 (95% CI: 12.6, 15.5), consistent with previous
estimates (42). On average, vaccine-derived protection lasts for
111 y (95% CI: 93 y, 144 y). Of the booster uptake shapes,
the sigmoidal trajectory provided the best fit to the data (lowest
AIC). To compare the performance of vaccination across models,

2 of 10 https://doi.org/10.1073/pnas.2207595120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
 O

F 
G

E
O

R
G

IA
 L

IB
R

A
R

IE
S 

SC
IE

N
C

E
 P

E
R

IO
D

IC
A

L
S 

24
55

 o
n 

Ja
nu

ar
y 

9,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
8.

13
7.

20
.3

5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2207595120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207595120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207595120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207595120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207595120#supplementary-materials


Table 1. Table of parameter maximum likelihood estimates and derived quantities
Model

Parameter/quantity No loss Waning (exponential) Waning (Erlang, N = 2) Waning (Erlang, N = 3) Leaky

1AIC 207.3 0 17.8 26.9 10.9
1log

(
L(2)

)
22.3 127.0 118.1 113.6 122.6

R0 42.4 14.0 19.1 31.4 22.2
Rp 0.5 5.7 11.8 18.7 0.8
� 0.99 0.59 0.38 0.4 0.97
�1 0.18 0.04 0.64 0.34 0.74
�−1 (d) 12.0 25.0 25.0 16.9 25.0
�−1 (y) – 111.5 54.5 56.5 –
" – – – – 0.03
tintro – – – – 2000
Booster shape Constant Sigmoid Sigmoid Sigmoid Constant

The symbols in the first column represent the basic reproductive number (R0), the effective reproductive number calculated at the mean vaccine coverage p (Rp), the population-level
vaccine impact �, the amplitude of seasonality (�1), the mean duration of latency (�−1), vaccine-derived immune duration (�−1), vaccine leakiness ("), and the year of genotype G
introduction (tintro). Confidence intervals for MLEs are presented in SI Appendix, Table S4 and section B.

given the different mechanisms of failure, we followed McLean
and Blower (30) and Magpantay et al. (35, 43) and derived a
quantification of the vaccine impact (ξ ), defined as the reduction
in population-level virus transmissibility in the presence of the
vaccine. For the exponential waning model and vaccination
coverage fixed at the average for 2008 to 2018 (91.7% and 91.6%
for the neonatal and the booster, respectively), ξ was estimated
to be 59% (95% CI: 54%, 67%).

The remaining model and booster shape combinations were
ranked based on the difference in AIC relative to the exponential
waning model with sigmoidal booster uptake (1AIC). The next
best performing model was the leaky model, with1AIC = 10.9.
Compared with the waning model, we estimated a higher value
of R0 for the leaky hypothesis (22; 95% CI: 21, 24). This model
explains the mumps resurgence in the early 2000s as a result
of the introduction of a new genotype in 2000 that caused the
erosion of herd immunity. Due to the limited size of the outbreak
relative to prevaccination levels, our estimates of vaccine leakiness
were highly constrained, ε = 3% (95% CI: 2.9%, 3.1%).
Consequently, the leaky model predicts that the vaccine retained
a high population-level vaccine impact, ξ = 96.6% (95% CI:
96.5%, 96.6%). Crucially, while the leaky hypothesis correctly
predicts disease resurgence from 2006 onward, the predicted age
profile of cases lacks the peak in 15- to 25-y-old individuals found
in recent data. Instead, cases are more evenly distributed across
age groups (SI Appendix, Figs. S7 and S8). The remaining two
models (Erlang waning and no loss) both performed substantially
worse with 1AIC = 26.9 and 207.3, respectively.

The Waning Model Provides a Good Explanation of Recent
Mumps Epidemiology. In addition to having the lowest AIC
score, time series simulated from the exponential waning model
are able to reproduce key epidemiological features of mumps data,
including 1) the initial vaccine era decline, 2) a resurgence in the
1980s, and 3) a second resurgence in the mid-2000s (Fig. 2A).
Two dynamical features that this model struggles to capture
are 1) the peak and duration of the mid-80s reemergence and
2) the distinct outbreaks in 2006 and 2010, which the model
combines into a single multiyear outbreak. Predictive accuracy
was limited during the first reemergence era (Fig. 2A). This was
likely due to overdispersion in the reporting errors as suggested
by our parameter estimates (SI Appendix, Fig. S9C ). To validate
our fitted model, we withheld the final five years of the time

series (2013 to 2018). Strikingly, our model accurately captures
the multiannual dynamic signature and correctly predicts the
epidemic in 2017.

We quantified the predictive performance of the exponential
waning model using the coefficient of determination (R2). To
isolate predictive characters of the model across the six age-specific
time series, we estimated R2 independently for each age cohort
(Fig. 2B). We found that the model best captures the dynamics
associated with the unstructured cases (those with missing age
information) (R2 = 93%). We observed the lowest R2 in the
[25, 40) y age cohort where the model explained 39% of observed
variation. In other age classes, we report relatively high values of
R2, we report relatively high values of R2 with 67%, 77%, 59%,
and 41% for [0,5) y, [5,15) y, [15,25) y, and>40 y respectively.
Surprisingly, for the majority of age groups, the prediction in the
out-of-sample epoch outperforms the prediction in the training
data (Fig. 2B). This improved performance is less surprising than
it may at first appear and is probably an artifact of the small
out-of-fit sample (SI Appendix, Fig. S6).

In addition to exploring the performance of the model at
recapitulating the time series for each individual age group,
we also examined how well our model captures the age pro-
file of cases. A salient recurring feature common to the majority
of the recent epidemics is the upward shift in the mean age
of infection in the reported cases relative to the prevaccine or
early vaccination era (38, 44, 45). We find that our model
accurately tracks observed trends in the mean age of infection
calculated (Fig. 3A). To further explore how well our fitted model
reproduces the full age distribution of cases, we compared the
dynamics of the estimated true age distribution to the model
simulated age distribution (Fig. 3B). The waning model was able
to reproduce the dynamics in the age distribution with strikingly
good overall accuracy. To quantify relative agreement between
the observed and the expected age distributions, we calculated
the Kullback–Leibler Divergence (DKL, Fig. 3C ). We observed an
increase in the bootstrap variance of the DKL over time, which we
ascribe to two factors: a secular increase in years when incidence
was declining (approximately 1992 to 2005; likely due to the
increased impact of demographic stochasticity during eras of low
prevalence) and then punctuated increases (likely determined by
factors not captured by the model, e.g., individual outbreaks
which affected specific subpopulations).
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Fig. 2. Model-data agreement. (A) Age-specific qualitative model fits to
within-sample time series (1977 to 2012, seagreen) and the corresponding
5-y out-of-sample prediction (2013 to 2018, orange) for the waning hypothe-
sis. Ribbons represent 80% prediction intervals for the two prediction epochs.
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coefficient of variation (R2, reported inset) for the two prediction epochs. Year
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Long-Term Trends in Population Immunity Explain the US
Mumps Resurgence. The results of our statistical inference allow
us to reconstruct changes in the immune profile of the US
population after the introduction of vaccines (Fig. 4). Using the
fitted model, we estimated a long average duration of vaccine-
derived immune protection of 111 y (95% CI: 93 y, 144 y).
While this is longer than the typical human lifespan, our results
favor an exponential distribution for the duration of immunity.
Consequently, an average duration of 111 y implies that 80%
of individuals remain immune for at least 20 y after their
last dose and that less than 50% remain immune after 80 y.
Importantly, our results show that herd immunity is not possible
using the existing vaccine, as the fraction of vaccinated individuals
who remain immune drops below 93% (the approximate herd
immunity threshold calculated via 1 − 1/R0) within 8 y of the
last administered vaccine dose. These findings clearly identify a
role for age-specific boosting schemes.

By incorporating vaccine uptake and demographic data, our
model is also able to reconstruct the proportion of the population
with vaccine immune protection by age cohort through time
(Fig. 4B) and the number of individuals who lose immunity
each week (Fig. 4E). Our results suggest that the proportion
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Fig. 3. Relative age distribution of mumps true incidence. (A) Expected
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the observed incidence per 105 age distribution (purple gradient). Simulated
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Quantitative agreement between the observed and expected age distribution
of incidence using the Kullback–Leibler divergence (KLD, Left y-axis) through
time. Boxplots represent bootstrapped distribution of KLD calculated by
comparing observed age distribution to 1,000 synthetically generated time
series under the estimated observation noise. The area plot represents an
estimate of age-aggregated mumps incidence per 105 (Right, y-axis).

of the US population over 25 y who are susceptible to mumps
(composed of individuals whose immunity has waned or have
not received the full two-dose schedule vaccine) has gradually
risen over time reaching around 16% by 2,000 (Fig. 4D).
From our reconstructed susceptible profile, we can calculate
the effective reproductive number over time (Fig. 4C ), finding
that the effective reproductive number remained just above 1
(characteristic of an endemic disease) until the 1985 resurgence,
after which it remained below 1 until the late 90s when it entered
an oscillatory phase driven by susceptible build-up punctuated
by recurrent outbreaks (Fig. 4F ).

Sensitivity of the Relative Prevalence to the Duration of
Immunity. To evaluate the sensitivity of our results, we per-
formed a simulation study to investigate how the frequency of
breakthrough infections relative to naive infections is affected by
the duration of vaccine protection. Due to the difficulty in in-
terpreting the average immune duration when it is exponentially
distributed, we instead quantify vaccine protection in terms of the
proportion of the vaccinated population who have lost immunity
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Percent of the population with vaccine immune protection by age cohorts over time. (C) Dynamics in the effective reproductive number highlighting epidemic
transitions between supercritical and subcritical (red solid) with 95% confidence intervals (red ribbons) (Left, y-axis). Annual vaccination rates of neonatal (light
gray) and booster (dark gray) doses (Right, y-axis). (D) Time series of age-specific susceptibility profiles. (E) Number of individuals who lose immunity each week
per 105. (F ) Weekly mumps prevalence per 105 individuals in each age cohort (105

∗ Ia/Na).

by age 18 y, which we denote P18. Complementing the results
shown in Fig. 4A, we find that P18 exceeds 6% even when the
average immune duration is 200 y.

Our model allowed us to assess the impact of waning immunity
on the individual level and quantify the ratio of infections in
individuals whose vaccine immunity has waned (IW ) to those
in unvaccinated individuals (including nonvaccinated and those
with primary vaccine failure) (IS), which we refer to as the relative
prevalence ratio (RPR). We calculate the RPR separately for each
age cohort based on the time since the last vaccine dose received
by vaccinated individuals.

Apart from the [0, 5) cohort, the RPR was always greater than
1, implying more infections in previously vaccinated individuals
than the unvaccinated (Fig. 5A). For the younger age groups(
[0, 5) y and [5, 15) y

)
, increasing the average duration of

immunity (i.e., decreasing P18) always resulted in a drop in
the RPR. For long-lasting immunity, there was a general trend
that as the population aged, RPR rose due to waning immunity
providing a mechanism for susceptible recruitment unavailable
to the unvaccinated compartment. Interestingly, unlike in the
case of the younger age classes, we observed a nonmonotonic
effect of waning intensity on the RPR of the older age groups(
>15 y

)
. For these older age cohorts, under a rapid waning

scenario, the RPR was comparable to a low waning intensity.
This, we posit, is a consequence of contesting flows of waning

and aging among the individuals in the population. For the
scenario with long-lasting immunity (Fig. 5A, purple region),
most of the vaccinated individuals remained protected against
infection during their life time. Conversely, with a vaccine-
derived immunity that was short-lived (Fig. 5A, orange region),
individuals rapidly lost protection and were soon infected. The
aging in relation to the transmission process in this scenario
occurs at a substantially lower rate. Susceptible individuals who
have lost their immunity become infected and have recovered
from the infection by the time they graduate from an age
class. This effect was exacerbated with the wider age cohorts,
generating a greater overlap of the RPR for a vaccine with longer
immune duration compared with a scenario where the immunity
wanes rapidly. Highest values of RPR for these older age classes
were therefore produced at intermediate values of immune loss
probability. This phenomenon has also been documented in the
case of other disease systems like pertussis (35) and in the recent
and ongoing pandemic of the novel SARS-CoV-2 (46).

It is important to note that since we are considering the ratio of
IW /IS , and not taking into account the fraction of the population
who received the vaccine, the RPR can exceed 1, indicating that
more infections are taking place in individuals whose immunity
has waned than were unvaccinated. Indeed, the RPR for P18 = 1
(which corresponds to a completely ineffective vaccine) reflects
the vaccine uptake.

PNAS 2023 Vol. 120 No. 0 e2207595120 https://doi.org/10.1073/pnas.2207595120 5 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
 O

F 
G

E
O

R
G

IA
 L

IB
R

A
R

IE
S 

SC
IE

N
C

E
 P

E
R

IO
D

IC
A

L
S 

24
55

 o
n 

Ja
nu

ar
y 

9,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
8.

13
7.

20
.3

5.



[0,5) [5,15) [15,25) [25,40) >40

0 1 2 3 4 0 2 4 6 8 10 12 14 16 18 20 25 30 40 50 60 70

10−1

100

101

102

Years Since Last Dose

R
el

at
iv

e 
P

re
va

le
nc

e 
R

at
io

A

0

25

50

75

0

5

10

15

0.10.40.71.0

P(Immune Loss By Age 18)

V
ac

ci
ne

 Im
pa

ct
 (
�,

 %
)

R
eproductive

N
um

ber�R
p �

B

0.00 0.25 0.50 0.75 1.00

P(Immune Loss By Age 18)

Dose Type
Neonatal Booster

Quantity

� Rp

Age Cohort
[0,5)
[5,15)

[15,25)
[25,40)

>40

0

30

60

90

120

0

10

20

30

40

0.10.40.71.0

P(Immune Loss By Age 18)

E
qu

ili
br

iu
m

P
re

va
le

nc
e

pe
r

10
5 S

urvivalA
djusted

Im
m

une
D

uration
�Y

ears�

C

Fig. 5. Age-specific immunity post vaccination (A) Relative prevalence ratio
(
Iwi (t)/Isi (t)

)
of infection after vaccination across the five age cohorts (facet columns),

as a function of varying probability of immunity loss by the age of 18 y (color gradient). Estimated MLE of immune duration was converted to probability of
immune loss (indigo); time underwent a reset to 0 y after administration of neonatal dose (gray background) and booster dose (black background). (B)
Population-level vaccine impact (solid lines) and reproductive number (dashed lines) calculated at 91.7% and 91.6% neonatal and booster vaccine coverage
respectively (fixed at an average for 2008 to 2018) as a response and (C) stable-state prevalence distribution across five age cohorts as a function of varying
probability of immune loss by age 18 y. Relationship between survival-adjusted duration of immunity (SI Appendix, section A.8) and probability of immune loss
by age 18 y are represented on the secondary axis (dot-dashed lines). Covariate values were fixed at the last known value in the year 2018. Dynamics were
simulated for 300 y, and final values in the infectious compartments values were taken to be prevalence per 105.

Clinically, the observation of infections predominantly among
previously vaccinated individuals can be misconstrued to im-
ply that vaccines are ineffective at controlling transmissible
pathogens. To rebut this claim, we calculated the population-
level vaccine impact as a function of varying waning intensities.
Overall, we observed that a decrease in the waning intensity
substantially decreases infection prevalence (Fig. 5C ), confirming
that vaccines which impart long-lasting immunity are indeed
impactful in the control of pathogens like mumps, and that
having a larger proportion of infections represented in the
vaccinated subpopulation is merely an expected artifact of the
waning immunity at a population level. For our system, however,
we estimated a relatively modest vaccine impact (59.1%) at the
population level. We speculate that this might be a joint outcome
of high viral transmissibility (R0 = 14) and a substantial primary
vaccine failure probability (α = 0.054).

Discussion

The recent reemergence and continued persistence of mumps
in countries with high estimated vaccine coverage has been
perplexing, casting doubt on global health goals (47). A major
obstacle in this context is the absence of serological correlates

of protection against mumps. Indeed, it still remains unclear
what components of the host immune system are adaptively
immunogenic against subsequent infections and what constitutes
an infectious dose for a successful transmission event for entry
and establishment of an infection (48).

In the absence of straightforward immunological indicators of
protection, we attempted to disentangle the putative mechanisms
underlying the reemergence of mumps in the United States
by statistically contending compartmental models describing
mechanisms for vaccine failure and their effect on the circulation
of the mumps virus. Among the models contested, we found
that the exponential waning model is most consistent with the
observed data.

Importantly, our exponential waning model reconciles
population-level immunological trends with seemingly contra-
dictory individual-level clinical observations. Specifically, while a
long average immune duration of immunity is estimated and
around 50% of individuals retain immunity for their entire
lives, we estimate that 11.77% (95% CI: 0.1%, 11.81%) of
vaccinated individuals lose immunity by the age of 18 y. Given
persistent high coverage, this explains the paradoxical clinical
observation that most infections occur in vaccinated individuals.
Furthermore, our results explain the resurgent dynamics and the
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shift in the age profile of cases. As the immune profile shifts
from being mostly due to natural infection (which we take to
be lifelong, consistent with a lack of documented reinfections)
to vaccine-derived, the impact of waning immunity rises. This
leads to a growing pool of older susceptible individuals with
waned vaccinal immunity (who in the prevaccine era would likely
have natural immunity) among which the virus can spread. Such
multidecadal trends can result in the initial achievement of herd
immunity (when only younger individuals have received vaccines
and most older individuals possess natural immunity) before it is
lost (as the vaccinated individuals age and their immunity wanes).

We found that the leaky scenario is not consistent with
the available epidemiological data. While a small but nonzero
leakiness parameter was able to generate outbreaks matching
the timing and size of post-2006 resurgence, our results show
that if leakiness is the mechanism of reemergence, then the
rise in incidence should be approximately uniformly realized
across all age classes. Assuming a constant contact structure
and an imported genotype with transmissibility identical to the
previously circulating genetic variant, these dynamics should
stabilize to the prevaccine age distribution of cases. Instead, we
documented a gradual increase in the mean age of first infection
in the observed mumps dynamics. This pattern is consistent with
the waning hypothesis. The limited spread and the age profile of
cases during recent resurgences place constraints on the possible
role of immune mismatch.

Although our exponential waning model successfully explains
the long-term trends in mumps epidemiology in the United
States, it fails to capture some of the finer, temporally resolved
characteristics of the data in the two resurgence eras (1985 to
1989 and 2000 to 2012). Particularly, the average simulated
dynamics 1) underestimate the peak and overestimate the
duration of the mid-80s reemergence and 2) they combine
outbreaks in 2006 and 2010 into a single multiyear outbreak.
In both scenarios, we believe that model-data disagreements are
the result of spatial heterogeneity and stochasticity in the disease
transmission process when incidence is very low (49), which our
deterministic and spatially aggregated model is not designed to
capture. In both the resurgent eras (1985 to 1989 and 2006
to 2012), mumps incidence in mid-western states surrounding
Illinois and Iowa, respectively, contribute disproportionately to
overall cases observed (Fig. 1D and E). Another model limitation
is our parsimonious assumption that vaccine leakiness (i.e., the
probability that a mismatched virus can infect a vaccinated
individual) does not depend on age. Given that the leaky model
is outperformed by the exponential waning model, it would be
interesting to examine whether its performance improves if the
impact of immune evasion depends on either age or the time
since the last vaccine dose.

Our findings are consistent with those presented in two recent
studies exploring drivers of reemergence of mumps in the United
States during the vaccine era. The phylogenetic analysis of Wohl
et al. (19) found no evidence in support of immune evasion
among the mumps genotypes that dominate circulation in the
northern US and concluded that waning vaccine immunity is
the plausible explanation for mumps resurgence. The study by
Lewnard and Grad successfully reproduced the age distribution
of observed cases in the 2006 mumps epidemic using a model
of waning efficacy fitted to vaccine trial data (18). Their meta-
analysis of estimates from vaccine efficacy trials arrived at a mean
duration of immunity of 27.4 y (95% CI, 16.7 to 51.1 y). To
compare directly their estimated duration of immunity with our
fitted estimate, we need to calculate the expected time to loss

of immunity (TL) conditioned on the survival of an individual
(i.e., TL < TD, where TD is the time to death). As we show in
SI Appendix, section A.8, assuming a constant lifespan of duration
τ , this quantity is given by

E[TL|TL < TD] =
1
δ
−

τ e−δτ

1− e−δτ
. [1]

Given our estimate of δ = 1/111.5 y−1 and assumed lifespan
τ = 80 y, we find that E[TL|TL < TD] ≈ 35.3 y, consistent
with the estimate of Lewnard and Grad. Thus, by doing the
careful book-keeping of susceptible recruitment dynamics at the
national level, we arrive at a similar conclusion to prior studies.
Our results bolster the confidence that the waning hypothesis is
indeed the most plausible driver of the ongoing resurgence of
mumps. Our study, like the previous ones, supports in principle,
the roll-out of a third booster dose of the mumps vaccine (50, 51)
and suggests the utility of periodic targeted immune boosting of
immunity among college going adults (52).

For computational reasons, we excluded the effects of de-
mographic stochasticity from our analysis. Models that include
these effects have demonstrated improved statistical perfor-
mance (35, 53) and can shrink nonsystematic prediction er-
rors (54). However, to justify the use of a mean-field model in this
analysis, we performed a simulation study to verify the sensitivity
of point estimates to effects of demographic stochasticity. We
found comparable fits and parameter MLEs of a deterministic
model when fit to synthetic time series simulated with and
without the inclusion of process noise (SI Appendix, Fig. S10 and
Table S5). In addition, our analyses of incidence records relied
on point-value estimates for two parameters from the literature,
namely the mean infectious period and the primary vaccine
failure probability. Both parameters are fairly well constrained
by previous studies e.g., the primary vaccine failure probability
is estimated to be 0.066, 95% CI:(0.046-0.092) (55), and we do
not expect the values used to drastically alter our conclusions.
That said, the use of point estimates can also inflate confidence
in statistical analyses (see e.g., ref. 56), and propagating the
uncertainty in these parameters (e.g., by using a Bayesian analysis)
might produce more reliable confidence intervals.

In summary, our analyses indicate that waning immunity
provides a parsimonious explanation for the resurgence of mumps
in the United States. We found that, due to the combination
of waning immunity and primary vaccine failure, robust herd
immunity cannot be achieved with the present vaccine and
immunization schedule. Indeed, our results support, in principle,
the administration of regular booster doses to achieve and
maintain herd immunity. An area of priority for future research
is the use of empirically validated models such as ours to identify
economically cost-effective and epidemiologically efficient age-
targeted vaccination schemes with the view to control and
eventually eliminate mumps circulation in the United States.

Materials and Methods

Case Reports and Covariate Data. We acquired mumps incidence data from
two separate sources. Annual tables on the age-specific case reports of mumps
were acquired from the Morbidity and Mortality Weekly Reports (MMWR)
published by the Centers of Disease Control (CDC) (38). Initially, MMWR
pdf tables were digitized to a computer-readable format. Further, the age-
specific case reports were aggregated to generate six time series with uniform
widths during 1977 to 2018 (Fig. 1 A–C). Weekly aggregated case reports were
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downloaded from the Project Tycho database (39). These data were spatially
grouped to generate a high-frequency time series of national-level mumps case
reports during 1967 to 1985 (SI Appendix, Fig. S2B). We temporally aggregated
data from the weekly time series to generate the average spatial distribution
of mumps in the United States during the two major epidemics in the vaccine
era (Fig. 1 D and E).

Data on demographic covariates were downloaded from the US census
website (57). We processed the demographic time series to generate 1) age-
specific estimates of national-level population sizes consistent with the age
groupings of the reported mumps cases, 2) estimates of age-specific migration
rates (SI Appendix for details Fig. 1 A–C), and 3) national-level estimates of the
annual birth rates for the United States (SI Appendix, Fig. S3 B, D, and E). To
account for the associative mixing among the various age-based subpopulations,
we used the contact matrix reported in the POLYMOD study (58) for the
United Kingdom. This allowed us to include a social contact structure that is
closely comparable to the United States in our analysis. This contact matrix
was transformed to correct for reciprocity, such that the total daily contact
rates had a symmetric structure, and to match age distribution for the United
States (SI Appendix, Fig. S1, for details). National-level coverage estimates of
mumps vaccines, for the neonatal and booster schedule, were downloaded from
the World Health Organization (WHO) website (59). Ideally, the estimates on
vaccine rates would have been extracted from the MMWR. However, coverage
data during the last two decades as reported by the MMWR are incomplete
with several years of missing records. Moreover, unlike WHO, MMWR does not
explicitly publish neonatal and booster dose coverage. The two data sources
however were in good agreement with one another (SI Appendix, Fig. S11).
Thus, vaccine coverage as reported by WHO was used in this analysis. Finally,
missing early coverage for these time series was interpolated for both doses
(SI Appendix, Fig. S2 C and D; for details).

Models of Mumps Reemergence. To investigate the potential mechanism
of vaccine failure in explaining the reemergence of the mumps virus, we
formulated an age-structured Susceptible-Exposed-Infectious-Recovered (SEIR)
transmission model (49). The population, with total size N(t), was divided into
six compartments. Individuals enter the first vaccinated compartment (V1) at the
rate (1− α)p(t)ν(t), where p(t) is the annual infant immunization coverage
in the year t, α is the probability of primary vaccine failure, and ν(t) is the per
capita birth rate. The remainder of the newborns are assumed to be susceptible
(S) who can become infected with either mumps genotypes at rate λn, where
λn is the force of infection of mumps genotype n (n ∈ {A, G}). Following
infection, individuals move into the corresponding exposed compartments, En,
remaining latently infected for a period of 1

σ days before moving to the infectious
compartments, In. Ultimately, the infection is cleared following a mean duration
of 1
γ days, and individuals acquire long-term immunity, as they enter the

recovered (R) compartment. Vaccine-derived immune protection in this system
lasts for a total duration of 1/δ years after which individuals reenter the S class
(Eqs. 3–6). Here, we considered a model with variable (specifically 1, 2, and
3) subclasses for the vaccinated subpopulation in order to generate a gamma-
distributed waiting time with shape parameter x (49, 60, 61). When x = 1, we
recover the exponential distribution, and asx increases, the distribution becomes
increasing peaked about (1/δ) with the variance declining according to 1

xδ2 .
Vaccinated individuals are also capable of acquiring the infection with a force
of infection reduced by a genotype-specific factor εn, which is typically referred
to as the vaccine leakiness (29, 43). The model accounts for the importations of
infectious individuals of genotype n at the rate ιn per year. SI Appendix, Fig. S4
describes the vaccine imperfection model skeleton.

The genotype-specific force of infection is proportional to the number of
individuals in the In compartment and the seasonality of transmission,

λn(t) = qC
[

1− β1|DGsin
(

2π t
T

)]
In(t)
N(t)

. [2]

Here, q, C, and β1 are the probability of infection given contact, the average
daily contact rate, and the amplitude of seasonality respectively, and T is the
period of seasonality (assumed to be 1 y). The model dynamics are represented
using the following system of differential equations

dS
dt

=

(
1− (1− α)p(t)

)
ν(t)N(t) + 3δV3

−

(∑
n
λn(t) + µ(t)

)
S, [3]

dV1

dt
=(1− α)p(t)ν(t)N(t)−

(
3δ +

∑
n
εnλn + µ(t)

)
V1, [4]

dV2

dt
=3δV1

−

(
3δ +

∑
n
εnλn + µ(t)

)
V2, [5]

dV3

dt
=3δV2

−

(
3δ +

∑
n
εnλn + µ(t)

)
V3, [6]

dEn

dt
=λn(t)

(
S + εnV

)
−

(
σ + µ(t)

)
En + ιn, [7]

dIn

dt
=σ En −

(
γ + µ(t)

)
In, [8]

dR
dt

=γ
∑
n

In − µ(t)R. [9]

Here, εn = ε when n = G, and 0 otherwise; ιn = ι when n = G
and t = tintro, 0 otherwise. The aforementioned model (Eqs. 3–9) distills the
essential reactions representing various imperfection traits. For complete details
on the full age-structured model, compartments, and parameter definitions and
SI Appendix, Tables S1 and S2.

For statistical inference with the case data, we kept track of new cases
generated by the model. This was achieved by calculating a piece-wise integral
over a time period equal to the observed data (1 y), with the expression for new
cases over the annual interval [t − 1, t) given by

Ct =

∫ t

t−1
γ
∑
n

In(s)ds. [10]

The model was implemented in R package “pomp” (62).

Reproductive Numbers and Vaccine Impact. We derived an expression for
the basic reproductive number (R0) for the age-structured transmission model
using the next-generation method (NGM) (63) (SI Appendix for details). As
R0 quantifies pathogen transmissibility in a fully susceptible population (i.e.,
without vaccination), we derived an analogous measure of transmissibility in
the presence of the vaccine, which we denote Rp. Using these two reproductive
numbers, we further derived an expression for the population-level vaccine
impact, ξ , defined as the decrease of transmissibility of the virus in the presence
of the vaccine (P > 0) relative to the transmission in absence of the vaccine
(P = 0) (43),

ξ = 1−
Rp
R0
. [11]

Parameter Estimation and Hypothesis Testing. We used age-stratified
time series of annual mumps case reports (Fig. 1B) to perform maximum-
likelihood estimation of model parameters to ascertain relative support among
five qualitatively distinct hypotheses. These were as follows: 1) The “no loss”
hypothesis assumes that the vaccine is perfect (ε = 0, δ = 0); 2) the
“exponential waning” hypothesis assumes that the vaccine-derived immune
protectionwanesovertimewithexponentiallydistributeddurationandthat there
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is no vaccine leakiness (ε = 0); 3) the “Erlang waning” hypothesis is the same as
the exponential waning hypothesis but assumes that the duration of immunity
is Erlang-distributed with shape parameter x = 2; 4) similarly, an Erlang-
distributed immune duration model with shape parameter x = 3 (see above);
5) the “leaky” hypothesis assumes that at time t = tintro, a novel genotype is
introduced to the population against which the vaccine provides leaky immunity
(ε > 0) . For the leaky hypothesis, we also analyzed the impact of introducing the
novel genotype to differing age classes. Moreover, for each hypothesis, we also
investigated the effect of four different shapes of booster uptake immediately
following its roll-out. A formal comparison of all these models was conducted as
described below.

Trajectory matching was employed to find maximum-likelihood estimates of
the unknown model parameters. As the data included cases without recorded
age (“unstructured cases”) as well as age-structured cases, we constructed a
reporting model capable of fitting to both data types by including a time-varying
probability of age being recorded, ηt , calculated from the proportion of case
reports that were age-structured (SI Appendix, Fig. S3A). We assumed that the
observation errors in both age-structured and unstructured annual case data
followed a normal distribution allowing for overdispersion in the reporting
process (64). Specifically, for age-structured data, the mean and variance in
the number of reported cases at time t in age group i that depend on the
age-specific reporting probability, ρi, and overdispersion parameter, ψi, are
given by

µi,t = ρiηtCi,t , [12]

σ 2
i,t = µi,t(1− ρiηt + ψ2

i Ci,t), [13]

for i ∈ {[0, 5), [5, 15), [15, 25), [25, 40),≥ 40}. The unstructured data are
distributed similarly, with mean and variance

µu,t = ρu(1− ηt)
∑
i

Ci,t , [14]

σ 2
u,t = µu,t

1− ρu(1− ηt) + ψ2
u
∑
i

Ci,t

 , [15]

where ρu and ψu are the reporting probability and overdispersion parameter
for unstructured cases. The likelihood function for the observed age-structured
dataDi,t and unstructured dataDu,t , conditioned on the model parameter vector
2, was given as

L(2) =
∏
t

f (Du,t;µu,t , σ 2
u,t

)∏
i

f
(
Di,t;µi,t , σ

2
i,t

) , [16]

where f
(
x;µ, σ 2

)
is the probability density function of a normally distributed

random variable with meanµ and variance σ 2.
Maximization of the likelihood function (Eq. 16) was carried out using a

differential evolutionary (DE) algorithm. It is a stochastic optimization approach
that is known to provide an efficient convergence to the global optimum for
real-valued objective functions (SI Appendix for details). DE was implemented
using the R package DEoptim (65). The latent state variables were initialized near
an endemic equilibrium. The first 100 y were discarded as transient dynamics,
and subsequent 36 y (1977 to 2012) were used in the calculation of likelihood.
To compare the relative goodness of fit among the four competing hypotheses,
we used the Akaike information criterion (AIC), defined as

AIC = 2p− 2log
(
L(2)

)
, [17]

where p is the number of free model parameters. Confidence intervals on
parameter estimates at a 5% level of significance were calculated for each of the
four models using a likelihood-ratio test (equivalent in this instance to finding

regions of parameter space with an AIC within 1.92 of the minimum for the
given model).

Uncertainty Estimation. We used parametric bootstrapping to estimate
confidence intervals for MLEs. This involved the following: 1) For each
model, MLEs obtained in the preceding section were used to simulate
5,000 synthetic time series. 2) Starting at the MLE, a local search with a
Nelder–Mead optimizer (66) was conducted and the parameters estimated
for every time series. 3) This results in a bootstrapped distribution of parameter
estimates. Estimate sets corresponding to 2.5th and 97.5th percentiles of this
distribution were taken to be as the 95% confidence bounds of the model
MLEs.

Model Performance. A subset of the case-reports data (6 y, 2013 to 2018)
was reserved to test the performance of the model by conducting out-of-
sample prediction. Model performance was quantified using the coefficient
of determination (67), R2, between the observed case records (D) and the
log-transformed median simulated reported cases (M),

R2 =

[
CoV(D, M)√
V(D)V(M)

]2
, [18]

where CoV(D, M) , V(D), and V(M) are covariance between D and M, variance
ofD, and variance ofM, respectively. We computed values ofR2 for each separate
age group during both the within-sample (pre-2013) and out-of-sample infection
prediction epochs.

We also compared how the resulting age distribution of the observed case
data compared with the simulated cases from the best fitting model using the
Kullback–Leibler divergence (68). For this analysis, we ignored the unstructured
subset of reported cases due to their diminishing presence in the recent
epidemics (Fig. 1B). Age distributions for observed and simulated cases were
constructed by normalizing the data for each week, i.e., ADi,t = Di,t/

∑
i Di,t and

AMi,t = Mi,t/
∑

i Mi,t . The Kullback–Leibler divergence for each time point was
then given by

D
KL
t =

1
2

[∑
i

ADi,t log
(ADi,t
AMi,t

)
+
∑
i

AMi,t log
(AMi,t
ADi,t

)]
. [19]

We quantified uncertainty in our estimate of D
KL
t using bootstrap sampling. We

sampled 1,000 simulated replicates from our reporting model and calculated

D
KL
t for each replicate by replacing ADi,t in Eq. 19 with the simulated data.

Data, Materials, and Software Availability. Source code and data
underlying this article are available in the zenodo repository
https://doi.org/10.5281/zenodo.7434784, and can be accessed with the url
https://doi.org/10.5281/zenodo.7434784.
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