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A B S T R A C T

Routine vaccination with pertussis vaccines has been successful in driving down pertussis mortality and
morbidity globally. Despite high vaccination coverage, countries such as Australia, USA, and UK have
experienced increase in pertussis activity over the last few decades. This may be due to local pockets of
low vaccination coverage that result in persistence of pertussis in the population and occasionally lead to
large outbreaks. The objective of this study was to characterize the association between pertussis vaccination
coverage and sociodemographic factors and pertussis incidence at the school district level in King County,
Washington, USA. We used monthly pertussis incidence data for all ages reported to the Public Health Seattle
and King County between January 1, 2010 and December 31, 2017 to obtain school district level pertussis
incidence. We obtained immunization data from the Washington State Immunization Information System to
estimate school-district level vaccination coverage as proportion of 19–35 month old children fully vaccinated
with ≥4 doses of the Diphtheria-Tetanus-acellular-Pertussis (DTaP) vaccine in a school district. We used two
methods to quantify the effects of vaccination coverage on pertussis incidence: an ecological vaccine model
and an endemic–epidemic model. Even though the effect of vaccination is modeled differently in the two
approaches, both models can be used to estimate the association between vaccination coverage and pertussis
incidence. Using the ecological vaccine model, we estimated the vaccine effectiveness of 4 doses of Diphtheria-
Tetanus-acellular-Pertussis vaccine to be 83% (95% credible interval: 63%, 95%). In the endemic–epidemic
model, under-vaccination was statistically significantly associated with epidemic risk of pertussis (adjusted
Relative Risk, aRR: 2.76; 95% confidence interval: 1.44, 16.6). Household size and median income were
statistically significantly associated with endemic pertussis risk. The endemic–epidemic model suffers from
ecological bias, whereas the ecological vaccine model provides less biased and more interpretable estimates
of epidemiological parameters, such as DTaP vaccine effectiveness, for each school district.
1. Introduction

Pertussis is a highly transmissible infectious disease caused by
bacterium Bordetella pertussis (Hamborsky et al., 2015; Rohani and
Scarpino, 2019). There are currently two highly efficacious vaccines
used worldwide — the Diphtheria-Tetanus-whole-cell-Pertussis (DTwP)
and Diphtheria-Tetanus-acellular-Pertussis (DTaP) vaccines. A meta-
analysis of randomized controlled trials and observational studies es-
timated the overall vaccine efficacy of DTaP vaccines to be 84% (95%
confidence interval (CI): 81%, 87%) while that of DTwP to be 95%(95%
CI: 88%, 97%) (Fulton et al., 2016). Global average vaccination cov-
erage for the three-dose primary DTaP or DTwP vaccine series was
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90% in 2019 in 125 countries as reported by the WHO (World Health
Organization, 2020). However, despite high vaccination coverage with
an effective vaccine, several countries have experienced a resurgence
in pertussis (Pertussis Working group, 2014).

Aggregating estimates of vaccination coverage at the national or
state level may hide local pockets of low vaccination. Sub-optimal local
vaccination coverage could result in accumulation of susceptibles over
time, and an introduction of a pertussis case in these areas could then
result in an outbreak. Pockets of low vaccination coverage especially in
areas of high population density could result in pertussis persistence in
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these areas (Broutin et al., 2004). Socio-demographic factors have also
been important in shaping pertussis epidemiology. Even in high income
countries, individuals who experience social and economic deprivation
have lower access to community healthcare services resulting in de-
layed vaccination and poorer disease outcomes (Luman et al., 2005;
Grant et al., 2003; Gilbert et al., 2017). It is of public health interest
to investigate whether local disparities in vaccination coverage and
socioeconomic factors are driving pertussis incidence.

Previous studies of effects of pertussis vaccination on pertussis
incidence have shown heterogeneities in DTaP vaccination coverage at
the local level and a significant association between area-level vacci-
nation coverage and sociodemographic factors and area-level pertussis
incidence (Duffy and Shea, 2012; Iroh Tam et al., 2015; Huang et al.,
2017). However, these studies failed to account for the dependent na-
ture of pertussis cases, and its complex, non-linear dynamics (Wakefield
et al., 2019). Also, analysis of aggregated infectious disease data using
ecological regression methods results in ecological bias where inference
at the group level may not apply at the individual level (Richardson
and Monfort, 2000; Wakefield, 2008). In this paper, we use methods
that have been developed to analyze the association between area-
level vaccination coverage and infectious disease incidence that address
some of these issues using surveillance data marked in space and
time (Fisher and Wakefield, 2020; Meyer et al., 2016).

Understanding the impact of community-level heterogeneity in vac-
cination coverage and social determinants of health on pertussis trends
can help health authorities plan local interventions to prevent pertussis
outbreaks. With this goal, we explored the association of area-level
pertussis vaccination coverage with pertussis epidemicity and area-
level socio-demographic factors with pertussis endemicity using surveil-
lance, vaccination, and demographic data aggregated over school dis-
tricts within King County, Washington, USA. We assessed this using
an ecological vaccine model (Fisher and Wakefield, 2020) and an
endemic–epidemic model (Meyer et al., 2016). Both approaches use
multivariate time series of infectious disease data, can model occasional
large outbreaks beyond regular endemic behavior, and can incorporate
vaccination coverage as a covariate to study its effect on pertussis
outbreaks.

2. Methods

2.1. Pertussis cases

Pertussis case data was obtained from the Public Health Seattle
and King County (PHSKC) Department of Communicable Diseases and
Immunizations. Pertussis is a nationally notifiable disease and cases are
reported to PHSKC by primary care providers and diagnostic laborato-
ries within 24 h of detection. The clinical case definition of pertussis
used was a cough illness lasting 2 weeks or more with at least 1 of the
following: paroxysms of coughing or inspiratory ‘‘whoop’’, posttussive
vomiting, or apnea (with or without cyanosis) for infants up to 1 year
of age (CDC, 2014). Suspected, probable, and confirmed pertussis cases
of all ages diagnosed in King County between January 1, 2010, and
December 31, 2017 were included in this analysis. A confirmed case is
defined as a case of acute cough illness of any duration with isolation
of B. pertussis from a clinical specimen or polymerase chain reaction
(PCR) positive for B. pertussis. A probable case is defined as (in absence
f a more likely diagnosis) an illness meeting the clinical criteria, or
n illness with cough of any duration with at least one of the clinical
ymptoms and contact with a laboratory confirmed case (epidemiologic
ink). Suspected pertussis cases are cases with cough lasting ≥ 2 weeks

with no other symptoms, or cough of any duration with one of the case-
defining symptoms without lab confirmation or epidemiologic link,
or an epidemiologic link with cough of any duration and no other
symptoms and no lab confirmation, or PCR positive for B. pertussis but
no documentation of cough or case-defining symptoms (CDC, 2014;
Washington State Department of Health, 2016). Demographic data
(date of birth, gender, home address), date of diagnosis, vaccination
status, number of DTaP doses received, and date of last DTaP dose was
available for all reported cases.
2
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2.2. Geocoding and aggregating pertussis cases at school-district level

We used ArcGIS 10.1 for geocoding cases’ home addresses (ESRI,
2012) and aggregated pertussis cases at the school district level. When
the street address was missing or incorrect, we used zipcode for geocod-
ing. School district level population estimates for the census year 2010
were obtained from the National Historical Geographical Information
System (Appendix A Table 1) (Manson et al., 2017). A map of King
County school districts (N=18) is in Appendix B Fig 1.

2.3. Estimating vaccination coverage at school district level

We obtained DTaP immunization records for children 0–9 years old
born or living in King County, Washington between January 1, 2008,
and December 31, 2017, from the Washington State Immunization
Information System (WA-IIS). WA-IIS is a lifetime registry that tracks
immunization records for people of all ages in Washington State (Wash-
ington State Department of Health, 2015). Healthcare providers such
as primary care physicians, hospitals, and healthcare plans voluntarily
report patient immunizations to the WA-IIS. Additionally, birth cer-
tificates of children born in King County are loaded into the registry
fortnightly. The study cohort was restricted to children born in King
County after 2008 to ensure data completeness and accuracy. Ninety-
nine percent of children aged 4 months - 5 years have 2 or more
immunizations recorded in the WA-IIS (Washington State Department
of Health, 2015). Using WA-IIS data, we created a retrospective cohort
of 316,404 children aged 3 months to 9 years. Vaccine name and date
of receipt for all pediatric vaccines recommended from birth through
9 years of age was available for each child. Demographic information
included date of birth, sex, current residential address, residential
address at birth, county of residence, and insurance information. Home
addresses (or zip codes when home addresses were incorrect or not
available) of WA-IIS participants were geocoded by the WA Department
of Health staff. We spatially overlaid the geocoded home addresses of
WA-IIS participants onto a shapefile of King County school districts
to obtain school district of residence for each child. DTaP doses are
recommended at ages 2, 4, and 6 months of age, with booster doses
at ages 15–18 months and 4–6 years (Havers et al., 2020). We used
participants’ dates of birth and dates of DTaP vaccination to calculate
age-appropriate vaccination status for each DTaP dose for each child.
We estimated annual DTaP vaccination coverage at the school district
level as proportion of 19–35 month old children living in a school
district with ≥4 DTaP doses in a given year from 2011 to 2017 (the
2008 birth cohort turned 35 months old in 2011). We assumed that
vaccine coverage in 2010 was the same as in 2011. We obtained
school district level sociodemographic factors, namely, the proportion
of population in each school district that are foreign born, White, non-
citizens, speak a language other than English at home, proportion of
population over 16 years old that have not completed high school,
proportion of households with more than 4 people living in them, and
median income, from the 2010 US Census data (U.S. Census Bureau,
2010). This study was reviewed and approved by the Washington
State Institutional Review Board and PHSKC Research Administration
Review Committee.

2.4. Notation

Here we present some notation and assumptions common to the
ecological vaccine model and endemic–epidemic model. Let 𝑌𝑖𝑡 and 𝑁𝑖𝑡
be the number of cases and the total population in school-district 𝑖
at time 𝑡. Total population for King County summed over all school
districts is given by 𝑁 . Let 𝑥𝑖𝑡 be the time-varying vaccination coverage
estimated as proportion of 19–35 month old children vaccinated against
pertussis with ≥ 4 DTaP doses. Let 𝜆𝑖𝑡 be the force of infection, i.e., risk
of infection at time 𝑡 for an individual who was susceptible at time
𝑡−1. For our analysis, we assume a time step of four weeks or a month
ersity of Georgia Medical Partnership from ClinicalKey.com by 
 permission. Copyright ©2023. Elsevier Inc. All rights reserved.
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which is the approximate generation time for pertussis (Vynnycky and
White, 2010). Assuming a constant hazard rate between time steps, the
probability that a susceptible individual at time 𝑡 − 1 gets infected at
time 𝑡 is given by 𝜆𝑖𝑡. Assuming that time until infection is independent
or all susceptible individuals (Halloran et al., 2010), the number of
ew cases in area 𝑖 at time 𝑡 can be modeled as:

𝑌𝑖𝑡|𝜆𝑖𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑖,𝑡−1, 1 − 𝑒−𝜆𝑖𝑡 ) (1)

ssuming 𝜆𝑖𝑡 is small, 1 − 𝑒−𝜆𝑖𝑡 ≈ 𝜆𝑖𝑡. When the number of infections is
mall and the population is large, a Poisson distribution approximates
he Binomial distribution. Thus, eq. (1) can be written as 𝑌𝑖𝑡|𝜆𝑖𝑡 ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑖,𝑡−1𝜆𝑖𝑡). Let 𝜇𝑖𝑡 = 𝑆𝑖,𝑡−1𝜆𝑖𝑡, then a general form of eq. (1) is,

𝑖𝑡|𝜇𝑖𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑡) (2)

Both the endemic–epidemic and ecological vaccine models assume
hat the number of infections is negligible compared to the number of
usceptibles. Under this assumption, the number of susceptibles at time
, 𝑆𝑖𝑡, can be approximated by the initial number of susceptibles, thus
𝑖𝑡 ∼ 𝑁𝑖𝑡. We assume that the population in school districts remains
onstant over time, i.e. 𝑁𝑖𝑡 ∼ 𝑁𝑖. Because this is a partially vaccinated
opulation, the initial number of susceptibles is given by (1−𝑥𝑖𝑡)𝑁𝑖 for
he endemic–epidemic model and (1−𝜙𝑥𝑖𝑡)𝑁𝑖 for the ecological vaccine
odel, where 𝑥𝑖𝑡 is the vaccine coverage in school district 𝑖 at time 𝑡

and 𝜙 is the direct vaccine effectiveness on susceptibility (reduction
in individual’s risk of disease after vaccination). Thus, depletion of
susceptibles is not explicitly modeled in either model. In the context
of the ecological vaccine model, CI stands for credible intervals as this
model uses the Bayesian framework. For the endemic–epidemic models,
CI denotes confidence intervals.

2.5. The ecological vaccine model

Infectious disease surveillance data is often available aggregated
over space and time. Using ecological regression models for infectious
diseases data can be problematic because they do not account for
the dependent nature of infectious disease data and can introduce
ecological bias. The main feature of the ecological vaccine model
developed by Fisher and Wakefield (Fisher and Wakefield, 2020) is
that it reduces ecological bias when using area-level infectious disease
data and its primary goal is inference. The authors started with an
individual-level infectious disease model with vaccination as a param-
eter to model how vaccine reduces an individual’s risk of infection,
under two modes of vaccine action: leaky and all-or-none (Halloran
et al., 2010). In the leaky model, the individual’s risk of infection
is reduced by a constant proportion for all vaccination individuals
while in the all-or-none model (or primary vaccine failure), vaccinated
individuals are fully protected against infection but the vaccine fails
to take in some individuals. These individual-level vaccine models are
then aggregated to area level to give ecological vaccine models. Under
certain simplifying assumptions, the authors constructed an ecologi-
cally consistent model from an individual level model accounting for
vaccine coverage. The detailed derivation of the ecological vaccine
model can be found here (Fisher and Wakefield, 2020). The impact
of vaccination in this model is defined as the ability of the vaccine to
reduce susceptibility against infection. This ecological vaccine model
is fit using the Bayesian framework in R package rstan (Guo et al.,
2020) and provides posterior estimates and corresponding posterior
credible intervals of epidemiologically relevant parameters.

In a partially vaccinated population, let 𝜙 be the reduction in
a vaccine recipient’s risk of infection, which can be interpreted as
the vaccine effectiveness after ≥ 4 DTaP vaccine doses (Fisher and
Wakefield, 2020). Given that 𝑥𝑖𝑡 is the vaccine coverage in school
district 𝑖 at time 𝑡, the number of susceptibles in school district 𝑖
can be written as (1 − 𝜙𝑥𝑖𝑡)𝑁𝑖. Using the Bayesian framework, we
can incorporate prior knowledge about pertussis vaccine effectiveness
3

into the ecological vaccine model. Randomized controlled trials have
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estimated the vaccine efficacy of the DTaP vaccine to be ∼ 85% (95% CI:
81%, 87%) (Fulton et al., 2016). We fit the ecological vaccine model as:

𝑌𝑖,𝑡+1|𝜇𝑖𝑡, 𝜙 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(

𝑁𝑖(1 − 𝜙𝑥𝑖𝑡)
(

𝜆𝑖
𝑌𝑖𝑡
𝑁𝑖

+ 𝜈𝑖𝑡

))

, (3)

log 𝜆𝑖 = 𝛼𝐴𝑅 + 𝑎𝑖

log 𝜈𝑖𝑡 = 𝛼𝐸𝑁 + 𝑏𝑖 + 𝛾 sin(𝜔𝑡) + 𝛿 cos(𝜔𝑡) − log(𝑁)

𝑎𝑖 ∼ 𝑁(0, 𝜎2𝐴𝑅)

𝑏𝑖 ∼ 𝑁(0, 𝜎2𝐸𝑁 )

𝜙 ∼ Beta(𝑐, 𝑑)
where 𝜇𝑖𝑡 is the total risk (epidemic plus endemic risk) and 𝜈𝑖𝑡 and 𝜆𝑖
are the endemic and epidemic pertussis risk components. The school
district specific random effects 𝑎𝑖 and 𝑏𝑖 are assumed to be independent;
𝜔𝑡 =

2𝜋𝑡
13 ; an informative beta prior Beta (10, 2.5) was used for 𝜙 with

edian 0.78 and 90% of the mass between 0.66 and 0.99. We assumed
ormal priors with mean 0 and variance 5 for 𝛼𝐴𝑅 and 𝛼𝐸𝑁 and vari-
nce 10 for 𝛾 and 𝛿. We assumed frequency-dependent transmission in
he formulation of 𝜆𝑖 (Keeling and Rohani, 2008). Hamiltonian Monte
arlo sampling via R package rstan was used to fit this model (Guo
t al., 2020). We adapted code published previously for an ecological
accine model for measles data to include time-varying vaccination
overage (Fisher and Wakefield, 2020). As a sensitivity analysis, we fit
he same model with non-informative priors on 𝜙, with median 0.50
nd 90% of the mass is between 0.05 and 0.95, to check the influence
f priors on the estimate of vaccine effectiveness.

We also computed school-district specific time-varying autoregres-
ive components and their 95% credible intervals from the ecological
accine model. This parameter may be interpreted as the effective
eproductive number, 𝑅𝑒𝑓𝑓 , which is defined as the average number
f new cases per infectious case in a partially vaccinated popula-
ion (Fisher and Wakefield, 2020). The time-varying autoregressive
arameters were calculated as:

1 − �̂�𝑥𝑖𝑡) exp(𝛼𝐴𝑅 + �̂�𝑖) (4)

itted values were calculated as:

�̂�𝑡 = (1−�̂�𝑥𝑖𝑡)
[

exp(𝛼𝐴𝑅 + 𝑎𝑖)𝑌𝑖,𝑡−1 +
(

𝑁𝑖

𝑁

)

exp
(

𝛼𝐸𝑁 + 𝑏𝑖 + �̂�𝑠𝑖𝑛(𝜔𝑡) + 𝛿𝑐𝑜𝑠(𝜔𝑡)
)

]

,

(5)

where 𝑌𝑖,𝑡−1 was the observed number of cases in school 𝑖 and month
𝑡 − 1.

2.6. The endemic–epidemic model

The endemic–epidemic model is motivated by the Poisson branching
process with immigration. Total pertussis incidence 𝜇𝑖𝑡 is split into two
components: the endemic component with rate 𝜈𝑖𝑡 and the epidemic
component with rate 𝜆𝑖𝑡𝑌𝑖𝑡−1, such that 𝜇𝑖𝑡 = 𝜈𝑖𝑡 +𝜆𝑖𝑡𝑌𝑖𝑡−1, where 𝑌𝑖𝑡−1 is
the observed pertussis count in school district 𝑖 and month 𝑡 − 1 (Held
et al., 2005). The epidemic component can be further decomposed into
the autoregressive and neighborhood components. In a model with
spatial data, the autoregressive component models cases arising from
infected individuals from the same area, while the neighborhood com-
ponent captures cases arising from infected individuals in neighboring
areas. The endemic component represents the background number of
cases or remaining cases not explained by these two components. In
this analysis, the endemic component captures incidence in an area
related to sociodemographic factors. Each component can be mod-
eled with a log linear model with covariates and fixed or random
effects (Meyer et al., 2016). The model can be fit in the R surveil-

lance package (Höhle et al., 2011) and likelihood estimation is done

ersity of Georgia Medical Partnership from ClinicalKey.com by 
 permission. Copyright ©2023. Elsevier Inc. All rights reserved.
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using the quasi-Newton algorithm. When random effects are included,
penalized and marginal log-likelihoods are maximized alternately until
convergence (Meyer et al., 2016).

In the simple model (Model 1), the endemic component included
the population as an offset modeled as the fraction of the population
that live in school district 𝑖 denoted by 𝑒𝑖. To account for the temporal
variance in incidence, the endemic component included an overall
linear trend and a sinusoidal wave of frequency 𝜔𝑡 =

2𝜋𝑡
13 . The endemic

component is written as :

log(𝜈𝑖𝑡) = 𝛼𝐸𝑁 + 𝛽𝑡 + 𝛾 sin(𝜔𝑡) + 𝛿 cos(𝜔𝑡), (6)

where 𝜈𝑖𝑡 is the endemic risk of pertussis, 𝛼𝐸𝑁 is the endemic inter-
cept, assumed to be constant over the region, and 𝛽 is the parameter
associated with temporal trend.

We included vaccination coverage in the epidemic component of
the model as log proportion of children 19–35 months old that had
fewer than 4 doses of DTaP vaccine because we are interested in
the effect of pertussis vaccination on size and occurrence of pertussis
epidemics. Effect of vaccination coverage on disease incidence has
been modeled similarly for measles using the endemic–epidemic model
before (Herzog et al., 2011). The epidemic component is written as:

log(𝜆𝑖𝑡) = 𝛼𝐴𝑅 + 𝛽𝑣 log(1 − 𝑥𝑖𝑡), (7)

where 𝜆𝑖𝑡 is the epidemic pertussis risk, 𝛼𝐴𝑅 is the epidemic intercept,
𝑥𝑖𝑡 is the vaccination coverage in school district 𝑖 at time 𝑡, and 𝛽𝑣
s the parameter associated with under-vaccination. The proportion
f 19–35 month old children under-vaccinated or susceptible in the
chool-districts is 1 − 𝑥𝑖𝑡. The intercept 𝛼𝐴𝑅 is assumed to be constant
ver all areas. In this simple endemic-epidemic model, we do not
nclude a neighborhood component to be able to compare the 𝛼𝐴𝑅
nd 𝛼𝐸𝑁 estimates with estimates from the ecological vaccine model.
verall, Model 1 can be written as:

𝑖𝑡 = 𝑒𝑖𝜈𝑖𝑡 + 𝜆𝑖𝑡𝑌𝑖,𝑡−1 (8)

here 𝜇𝑖𝑡 is the total pertussis risk, 𝑒𝑖 is the population fraction in
chool district 𝑖 used as a multiplicative offset in the endemic compo-
ent, and 𝑌𝑖,𝑡−1 is the observed number of cases in school district 𝑖 at
ime 𝑡 − 1.

We fit a separate endemic–epidemic model (Model 2) with socio-
emographic covariates in the endemic component and the epidemic
omponent split into autoregressive and neighborhood components to
easure spatio-temporal dependence. School districts that shared a

oundary were defined as neighbors. A matrix of transmission weights,
𝑗𝑖, which represent the flow of cases from school district 𝑗 to school
istrict 𝑖 when 𝑗 ≠ 𝑖, was included in the neighborhood component
The model assumes that the epidemic can only arrive from adjacent
reas. Thus, if two school districs share a boundary, the assigned weight
as 1, otherwise 0. To reflect that people likely commute to densely
opulated metropolitan areas, we scaled the school district’s risk with
espect to its population fraction, 𝑒𝑖. The neighborhood component can
e written as:

og(𝜁𝑖) = 𝛼𝑁𝐸 + 𝛽𝑃𝑜𝑝 log(𝑒𝑖), (9)

here 𝜁𝑖 is the neighborhood associated risk of pertussis, 𝛼𝑁𝐸 is the
ntercept associated with the neighborhood component, and 𝛽𝑃𝑜𝑝 is the

parameter associated with the population fraction of school-district 𝑒𝑖 .
Let 𝛽𝑧 be a vector of parameters associated with a vector of school-

district level sociodemographic covariates denoted by 𝛽𝑖, namely the
roportion of population in each school district that are foreign born,
hite, non-citizens, speak a language other than English at home,

roportion of population over 16 years old that have not completed
igh school, proportion of households with more than 4 people living
n them, and median income. These factors included in the model
ere selected a priori based on previous research. Household size was

elected as it could potentially impact pertussis transmission (Magpan-
ay and Rohani, 2015). Median income, proportion of residents who
4

u
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were White, foreign-born, non-citizens, non-native English speakers,
and who did not complete high school were selected as proxies for
socioeconomic status and have been previously associated with vac-
cination coverage (Hill et al., 2016, 2018; Sánchez-González et al.,
2017; Larson et al., 2014; Varan et al., 2017). Combining the endemic,
epidemic, and neighborhood components, we get Model 2 as:

log(𝜈𝑖𝑡) = 𝛼𝐸𝑁 + 𝛽𝑡 + 𝛾 sin(𝜔𝑡) + 𝛿 cos(𝜔𝑡) + 𝛽𝑧𝑧𝑖
og(𝜆𝑖𝑡) = 𝛼𝐴𝑅 + 𝛽𝑣 log(1 − 𝑥𝑖𝑡)

log(𝜁𝑖) = 𝛼𝑁𝐸 + 𝛽𝑃𝑜𝑝 log(𝑒𝑖)

𝜇𝑖𝑡 = 𝑒𝑖𝜈𝑖𝑡 + 𝜆𝑖𝑡𝑌𝑖,𝑡−1 + 𝜁𝑖
∑

𝑗≠𝑖
𝑤𝑗𝑖𝑌𝑗,𝑡−1 (10)

here 𝑌𝑗,𝑡−1 is the number of cases in school-district 𝑗 at time 𝑡 − 1.

. Results

.1. Descriptive analysis

Between 2010 and 2017, 1885 pertussis cases of all ages were
eported in the 18 school districts in King County, WA. There was one
arge epidemic in 2012 with 894 cases and a smaller one in 2015 with
50 cases. The largest number of cases in a school district in a single
onth was 50 during the 2012 epidemic and occurred in Seattle school
istrict, which also recorded the highest number of cases overall (𝑛 =
81). Because pertussis is a rare disease, many school districts recorded
ero cases during several months. Tukwila school district recorded only
cases over the span of 10 years. Pertussis incidence per 100,000 by

chool district is in Fig. 1a.
Data from WA-IIS was used to estimate vaccine coverage at the

chool-district level which is displayed in Fig. 1b. Even though we used
9–35 month olds to estimate vaccination coverage with ≥ 4 DTaP
oses, we assumed that the vaccine coverage for the entire population
f King County is the same as the coverage estimated for this analysis.
accination coverage is higher in school districts in northern and north-
astern King County, compared to school districts in the south. Vashon
sland (in black) has the lowest vaccine coverage of all school districts.

ithin each school district, vaccine coverage appeared to increase with
ime between 2010 and 2017 (Table 1).

Pearson correlation coefficients showing correlations between DTaP
accine coverage among 19–35 month old children and disease inci-
ence calculated over a rolling 3-year window are in Table 2. With
he exception of 2015, vaccine coverage with ≥ 4 doses of DTaP
as negatively correlated with pertussis incidence. This association
as strong and statistically significant in the years 2012 (𝑅: −0.61,
5% CI: −0.20,−0.84), 2013 (𝑅: −0.61, 95% CI: −0.19,−0.83) and 2014
𝑅 ∶ −0.60, 95% CI: −0.19,−0.83). Thus, there is some indication that
reas with higher vaccine coverage showed lower disease incidence,
specially during a period of high incidence.

.2. Ecological vaccine model

Summaries of posterior medians of fixed effects and 95% credible
ntervals from the ecological vaccine model are in Table 3. Using a
trong prior for the vaccine effectiveness 𝜙, we estimated it to be
3% (95% CI: 63%, 95%). Thus, the vaccine effectiveness associated
ith receiving ≥ 4 doses of DTaP compared to receiving < 4 DTaP
oses is statistically significant. With a strong prior on 𝜙, our results
gree with estimates of efficacy of DTaP vaccine found in the literature
∼ 85%) (Fulton et al., 2016). As a sensitivity analysis, we ran the same
odel using a uniform prior for 𝜙 and vaccine effect was estimated

o be 79% (95% CI: 33%, 96%) (Appendix A Table 2). The uniform
rior resulted in a slightly lower estimate for 𝜙, but credible intervals
ere wider. This vaccine effectiveness estimate does not differentiate
etween primary vaccine failure and failure due to leakiness. With a

niform prior, the estimate of epidemic intercept 𝛼𝐴𝑅 in this model was
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Fig. 1. Pertussis incidence per 100,000 and DTaP vaccine coverage for ≥ 4 doses among children aged 19–35 months old in King County, Washington.
(a) Total pertussis incidence between 2010 and 2017 plotted at school district level. Incidence is high in Vashon Island (in pale yellow in (a) and in black in (b) and school
districts in southern King County; incidence is high in school districts in southern King County; (b) DTaP Vaccine coverage among children aged 19-35 months averaged over 8
years from 2011 to 2017 is plotted by school district. Visually, it appears that school districts with low vaccine coverage have high pertussis incidence. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Pertussis cases and estimated DTaP vaccination coverage among children aged 19–35 monthsa in King County, Washington, between 2010 and 2017.

School
district

Pope Pertussis cases Estimated vaccine coveraged (%)

Max casesb Sum casesc 2011 2012 2013 2014 2015 2016 2017

Enumclaw 25 179 6 26 51.7 54.3 58.9 55.6 58.1 69.2 70.6
Auburn 84 053 16 165 67.6 68.4 69.1 66.3 66.8 70.8 68.7
Bellevue 124 003 6 71 66.4 68.2 67.9 65.3 69.1 80.1 75.8
Federal Way 130 706 20 215 64 67.2 67.6 67.0 65.0 73.4 70.1
Highline 124 481 13 78 70.9 69.0 73.2 72.7 73.4 80.5 76.7
Issaquah 98 660 9 73 76.4 77.1 76.6 74.2 76.6 82.6 79.8
Kent 158 233 18 195 65.8 67.4 67.5 69.2 70.7 77.8 73.1
Lake
Washington

177 476 13 152 69.5 71.1 70.9 71.0 74.1 82.5 77.3

Riverview 19 315 5 36 74.9 73.9 70.0 71.5 69.1 79.4 75.3
Mercer Island 22 699 2 15 76.8 76.7 78.9 73.8 80.4 84.9 79.3
Northshore 122 684 14 101 72.8 74.6 75.6 72.3 70.2 80.1 74.0
Renton 115 511 9 73 70.9 71.7 73.2 72.1 72.0 77.4 74.6
Seattle 609 471 50 481 71.1 73.5 74.4 73.7 74.8 83.8 81.8
Shoreline 65 547 13 72 73.2 75.9 75.8 74.6 72.0 86.1 85.1
Snoqualmie
Valley

35 054 2 22 76.6 77.3 75.1 76.2 80.1 86.0 82.1

Tukwila 18 038 1 3 64.3 66.1 67.7 68.4 69.5 75.2 70.1
Tahoma 37 376 21 83 70.1 75.2 73.0 70.2 69.8 81.0 78.7
Vashon
Island

10 624 10 24 51.0 48.3 62.6 45.1 49.1 65.3 55.1

aVaccination coverage defined as proportion of 19–35 month old children with ≥4 DTaP doses.
bMax Cases are the maximum number of cases in any given month.
cSum Cases are the total number of cases between 2010 and 2017.
dVaccination coverage of 2010 was assumed to be the same as 2011.
eTotal Population in census year 2010.
also smaller with wider credible intervals. Using a uniform prior did not
change the endemic intercept 𝛼𝐸𝑁 by much .

The school-district-specific time-varying 𝑅𝑒𝑓𝑓 are plotted in Ap-
pendix C Fig 1. All estimates are below 1 and vary slightly with time
within school-districts. There was no apparent effect of DTaP vaccine
coverage on 𝑅𝑒𝑓𝑓 . Due to small number of cases within school-districts,
the credible intervals of 𝑅𝑒𝑓𝑓 were quite wide.

Fig. 2 shows the observed number of cases, incidence per 100,000
people, and model fits for each school district obtained from the ecolog-
ical vaccine model. District-specific estimates of 𝑅𝑒𝑓𝑓 and endemic risk
𝜈𝑖𝑡 are given in each panel. The model seems to fit the data well espe-
cially for areas with a large number of cases such as Federal Way, Kent,
5
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Lake Washington, and Seattle. The correlation coefficients between
average DTaP vaccination coverage (measured as total children 19–35
months old with ≥ 4 doses of DTaP between 2010 and 2017 divided
by total children 19–35 months old for each school district) and 𝑅𝑒𝑓𝑓
(𝑟 = −0.05; 95% CI: −0.50, 0.42) and average DTaP vaccine coverage
and endemic risk 𝜈𝑖𝑡 (𝑟 = 0.18; 95% CI: −0.31, 0.59) are small and not
statistically significant. Population density (measured as persons per
square mile) is positively correlated with both 𝑅𝑒𝑓𝑓 (𝑟 = 0.24; 95% CI:
−0.25, 0.63) and endemic risk (𝑟 = 0.58; 95% CI: 0.16, 0.82). Thus, 𝑅𝑒𝑓𝑓
in this study was not statistically significantly correlated with either
vaccination coverage or population density. Endemic pertussis risk was
significantly correlated with population density.
ersity of Georgia Medical Partnership from ClinicalKey.com by 
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Fig. 2. Ecological vaccine model fitted values by school district.
Number of pertussis cases (left axis) and incidence per 100,000 (right axis) by school district. Left and right axes are on different scales for different school districts. Red lines are
fitted epidemic component, gray lines show the endemic component, and black circles are absolute number of cases. The model appears to fit well, especially in areas with high
number of cases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Estimated Pearson’s correlation coefficients and 95% confidence intervals (CI)
between pertussis incidence and estimated DTaP vaccination coverage among
children aged 19–35 months in a rolling 3-year window.

Year Pearson’s
correlation
coefficient

95% CI P-value

2012 −0.61 (−0.20, −0.84) 0.006
2013 −0.61 (−0.19, −0.83) 0.007
2014 −0.60 (−0.19, −0.83) 0.008
2015 0.19 (−0.29, 0.61) 0.4
2016 −0.02 (−0.48, 0.45) 0.9
2017 −0.20 (−0.61, 0.28) 0.4

Appendix B Fig 2(a) and 2(b) show area-specific random effects
of the autoregressive and endemic components. Areas with a large
number of cases have larger autoregressive random effects. However,
no such structure was found in the endemic random effects. There
was no evidence of correlation between endemic and autoregressive
random effects (Appendix B Fig. 3) which supports our decision to use
independent random effects in our model.
6
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Table 3
Posterior median estimates and 95% credible intervals (CI) from ecological
vaccine model with a strong prior on vaccine effectiveness 𝜙, 𝜙 ∼ 𝐵𝑒𝑡𝑎(10, 2.5).

Parameter Parameter
description

Posterior
medians

95% CI

𝛼𝐴𝑅 Epidemic intercept 0.10 (−0.28, 0.42)
𝜙 Vaccine effect 0.83 ( 0.63, 0.95)
𝛼𝐸𝑁 Endemic intercept 3.16 ( 2.77, 3.50)
𝛾 Seasonality term −0.02 (−0.13, 0.09)
𝛿 Seasonality term −0.09 (−0.21, 0.02)
𝜎𝐴𝑅 Variance of 𝛼𝐴𝑅 0.38 ( 0.22, 0.66)
𝜎𝐸𝑁 Variance of 𝛼𝐸𝑁 0.45 ( 0.30, 0.71)
exp(𝛼𝐴𝑅) 1.10 ( 0.75, 1.52)

3.3. Endemic–epidemic models

We will first discuss the results of the simple model with DTaP
vaccination coverage in 19–35 month old children in the epidemic com-
ponent as the only covariate and no neighborhood component or other
demographic covariates included. The estimate of the exponentiated
autoregressive intercept from this model (exp(𝛼𝐴𝑅) = 0.07; 95% CI:
0.003, 1.43) is lower compared to the autoregressive intercept estimate
from the ecological vaccine model (exp(𝛼 ) = 1.1; 95% CI: 0.75,
𝐴𝑅
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Table 4
Results from endemic–epidemic models for effect of DTaP vaccination coverage in 19–35 month old children and other sociodemographic factors
on pertussis risk.

Parameters Epidemic component Endemic component log (L) p AIC

𝛽 Coefficient 95% CI 𝛽 Coefficient 95% CI

Model 1 −1939.89 7 3893.78

𝛼𝐴𝑅 −2.70 −5.78, 0.36
log(Under-vaccination) 0.59 −0.32, 1.51
𝛼𝐸𝑁 2.23 1.99, 2.47
Temporal trend 0.002 −0.001, 0.006
𝛾 −0.04 −0.20, 0.11
𝛿 −0.02 −0.18,0.13

Model 2 −1859.43 16 3750.85

𝛼𝐴𝑅 −2.42 −5.8, 0.98
log(Under-vaccination) 0.38 −0.63, 1.4
𝛼𝑁𝐸 −0.74 −1.62, 0.14
log(population fraction) 0.72 0.47, 0.97
𝛼𝐸𝑁 7.69 −2.29, 17.66
Temporal trend 0.005 0.0009, 0.01
𝛾 −0.09 −0.31, 0.12
𝛿 −0.09 −0.31, 0.11
% Foreign born −0.09 −0.34, 0.13
% White race −0.03 −0.13, 0.007
% Not Citizens 0.08 −0.15, 0.31
% with Household size ≥ 4 0.14 0.08, 0.19
% language other than English at home −0.03 −0.38, 0.31
% education less than high school −0.2 −0.40, 0.009
Median income (for every $10,000) −0.61 −0.93, −0.29

log(L): Log likelihood; p: number of parameters ; Akaike’s Information Criterion is calculated as (𝐴𝐼𝐶) = 2𝑝 − 2𝑙𝑜𝑔(𝐿); lower AIC values are
preferred.
Model 1: DTaP vaccination coverage in epidemic component, no neighborhood component.
Model 2: DTaP vaccination coverage in epidemic component, simple neighborhood structure, sociodemographic covariates.
.52) and has very wide confidence intervals (Table 4). The endemic
stimate from the endemic–epidemic model (2.23; 95% CI: 1.99, 2.47)
s lower than that from the ecological vaccine model (3.16; 95% CI:
.77, 3.50). There is no comparable estimate to vaccine effect 𝜙 in
his model. Here, the effect of DTaP vaccine coverage is estimated
s 2exp(𝛽𝑣). It is interpreted as for each doubling of pertussis under-
accination rate (or doubling of susceptible population), the epidemic
isk of pertussis increases multiplicatively by 3.54 fold (95% CI: 1.65,
3.05). Thus, this model suggests that epidemic pertussis risk was
tatistically significantly associated with DTaP vaccination coverage
n 19–35 month old children. There is no strong temporal or sea-
onal trend in the data (Hill et al., 2016). A statistically significant
verdispersion parameter suggests that using the negative binomial
istribution was a more appropriate choice for this model than Poisson
istribution.

We fit a second endemic–epidemic model where we split the epi-
emic component into the neighborhood and autoregressive compo-
ents and added sociodemographic factors in the endemic component
o estimate the effect of sociodemographic factors on endemic pertussis
isk. For this model, for each doubling of under-vaccination rate (or
oubling of susceptible population), the epidemic risk of pertussis
ncreased multiplicatively by 2.76 fold higher (95% CI: 1.44, 16.6)
Table 4). This result is consistent with the under-vaccination coverage
stimate from the simple model. Household size and median income
ere statistically significantly associated with endemic pertussis risk.
or every unit increase in proportion of households with more than
individuals, the endemic risk of pertussis increased by 15% (95%

I: 8.3%, 20.9%), adjusting for other covariates. For every $10,000
ncrease in median income, endemic pertussis risk decreased by 45%
95% CI: 25%, 60%). These are ecological associations and may not
pply at the individual level. No significant association was found
etween pertussis risk and proportion of residents who were White,
oreign born, non-citizens, spoke a language other than English at
ome, and had education less than high school.

The endemic–epidemic model appears to fit the data well (Fig. 3).
ccording to this model, 32.8% of the time-averaged mean pertussis
7
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risk is explained by the endemic component, 34% by the autoregressive
component, and 33% by the neighborhood component. The model
suggests that a large proportion of cases in Renton, Lake Washing-
ton, and Bellevue school districts come from neighboring areas. This
might be because these school districts have many neighbors and are
also highly populated. On the other hand, Vashon Island, being an
island (Appendix B Fig 1), has most of its incidence explained by the
autoregressive component.

4. Discussion

In this study, we explored the relationship between local area-level
vaccination coverage and sociodemographic factors with pertussis risk
using statistical models that account for the non-linear dynamics and
dependent nature of infectious diseases and address ecological bias.
From the endemic–epidemic model, we found that under-vaccination
at the school-district level was significantly associated with pertussis
epidemics and household-size and median income were associated with
endemic pertussis risk. Results from the ecological vaccine model also
showed that vaccination is highly effective in preventing pertussis,
while providing epidemiologically interesting parameters such as vac-
cine effectiveness and effective reproduction number. Our findings
emphasize the need to monitor sub-county level DTaP vaccination
coverage to assist local health authorities such as school boards, com-
munity health clinics, and public health officials target interventions to
most affected areas.

We estimated the vaccine effectiveness after 4 doses of DTaP vac-
cine to be 83%, which is commensurate with what is known in the
literature (Fulton et al., 2016). We also found local (school-district
level) variations in vaccination coverage that were associated with
pertussis epidemics, similar to other studies in the U.S (Atwell et al.,
2013; Omer et al., 2008). This suggests that health jurisdictions should
attempt to monitor vaccination uptake at sub-county levels in addition
to state and county levels to design optimal vaccination strategies. Of
the sociodemographic factors assessed, we found that median income

and household size were associated with endemic pertussis risk. Low
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Fig. 3. Endemic–epidemic model fitted values by school district.
Endemic component is denoted in gray, autoregressive in dark blue and neighborhood component in yellow. Number of pertussis cases (left axis) and incidence per 100,000 (right
axis) by school district. Left and right axes are on different scales for different school districts. Observed number of cases are displayed as black dots except for time points with
zero cases. The model appears to fit the data well, especially for school districts with higher number of cases. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
income has been associated with lower vaccine coverage and increased
likelihood of disease risk in the US (Hill et al., 2016; Larson et al.,
2014). Household size and crowding have been identified as important
factors contributing to pertussis transmission (Magpantay and Rohani,
2015; Saeidpour et al., 2022). In large households, there is an increased
possibility of prolonged close contact and transmission between an
index cases and household members. Other studies have found higher
pertussis incidence and lower vaccination coverage among populations
with longstanding barriers to healthcare access and greater social in-
equities, such as racial and ethnic minorities, migrant populations, and
populations with lower education attainment (Sánchez-González et al.,
2017; Wolf et al., 2016; Gilbert et al., 2017; Varan et al., 2017; Hill
et al., 2016). Even though we did not observe statistically significant
associations between these sociodemographic factors and pertussis risk
in our study, it is critical to provide accessible vaccination and primary
healthcare without financial barriers to these populations.

The strengths of the endemic–epidemic models over a Poisson
regression model for infectious disease data are that the endemic–
epidemic models can deal with multivariate time-series data and cope
with the occasional large outbreak, in addition to incorporating co-
variates (Herzog et al., 2011). Moreover, they are easily fit and al-
low modeling of neighborhood effects to study spatio-temporal de-
pendence. endemic–epidemic models with various complexities have
been used to study measles (Herzog et al., 2011), meningococcal
disease (Meyer et al., 2012; Meyer and Held, 2014), psychiatric hospital
admissions (Meyer et al., 2012), and Norovirus infections (Meyer and
Held, 2017).

An important limitation of the endemic–epidemic model is that they
may not be suitable for individual-level inference. Endemic–epidemic
models were developed with disease prediction as their main goal
8
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and do not address ecological bias. It has been shown before that
for estimating effects of vaccination on infectious disease incidence,
endemic–epidemic models can give biased estimates for the epidemic
and endemic risks (Fisher and Wakefield, 2020). Thus, effects of covari-
ates obtained from these models should be interpreted carefully, ex-
plicitly stating ecological bias as a drawback. In the endemic–epidemic
models, vaccination coverage (and other covariates) can be included
in either the epidemic or endemic components. In earlier studies, this
decision was driven by which model formulation fit the data best and
not with inference as the primary goal. In eq. (7), given how vacci-
nation coverage is included in the form of log(1 − 𝑥𝑖𝑡), the parameter
associated with vaccination coverage is the flexibility parameter that
improves model fit (Fisher and Wakefield, 2020). The interpretation
of this parameter as expected multiplicative change in disease risk for
every 2 fold increase in undervaccination or susceptibility is difficult
to interpret and non-intuitive. In our study, the decision to include
vaccination coverage in the epidemic component was driven by the hy-
pothesis that lower DTaP vaccination coverage could result in pertussis
outbreaks.

Like the endemic–epidemic model, the ecological vaccine model
also accounts for dependency of outcomes for infectious disease models
and allows for occasional large outbreaks. Compared to the endemic–
epidemic model, the ecological vaccine model more appropriately mod-
els aggregated infectious disease data. It gives less biased and easily
interpretable estimates of epidemic and endemic risks under certain
assumptions. One might consider using ecological vaccine models over
endemic–epidemic models when individual-level inference is the goal
of the analysis.

The ecological vaccine model also has certain limitations. The

model needs to be developed further to include neighborhood structure
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and variable infectious periods (Fisher and Wakefield, 2020). We
assumed that the DTaP vaccination coverage for the entire population
of King County is the same as that estimated using immunization
data for 19–35 month old children. A similar assumption was made
in other studies on effect of measles vaccination coverage on measles
incidence in Germany (Fisher and Wakefield, 2020; Herzog et al.,
2011). We also assumed (in both models) that the population of King
County remains constant, which is a strong assumption. Neither model
explicitly accounts for depletion of susceptible population or gives
insights into the mechanism of vaccine failure.

In summary, we found that school-district level low DTaP vacci-
nation coverage among 19–35 month old children was statistically
significantly associated with pertussis epidemicity, and median income
and household size were associated with endemic pertussis risk in King
County, WA. Even though we estimated high DTaP vaccine effective-
ness after four doses, local pockets of low vaccination coverage could
result in occasional pertussis outbreaks. Researchers should consider
using the ecological vaccine model when individual-level vaccination
and disease status is not available, but area-level vaccine coverage and
disease incidence are known to get less biased estimates of vaccine
effectiveness.
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