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Abstract Prediction and control of emerging patho-

gens is a fundamental challenge for public health. To

meet this challenge, new analytic tools are needed to

characterize the underlying dynamics of the geo-

graphical spread of pathogens, identify pre-

dictable changes in their dynamics, and support

strategic planning for disease elimination and control.

Nonparametric and model-independent tools are par-

ticularly needed. Here, we propose a multivariate

method that uses similarity in cross-spectral density

between measured spatial time series of disease

prevalence as a feature measuring the proximity of a

tipping point, i.e., emergence or elimination. In

particular, we show that the increase in the average

value of spectral similarity in measured epidemiolog-

ical time series contains crucial information about the

underlying dynamics and proximity to critical points

in infectious disease systems. Theoretical analysis of a

standard metapopulation SIR model and empirical

analysis of case reports of pertussis in the continental

USA demonstrate that this increase is observed when

the disease approaches elimination. Therefore, this

nonparametric indicator provides insight into the

fundamental underlying state of the epidemiological

system, which is key in developing appropriate

strategies to more quickly achieve elimination goals.
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1 Introduction

Emerging and re-emerging pathogens are among the

hardest to predict threats to public health and global

security [1]. In recent years, outbreaks of novel

pathogens such as SARS-CoV-2 (the virus that causes

COVID-19) have led to significant morbidity, mortal-

ity, and the global reduction in expected life span

[2, 3], prompting substantial investment in emergency

planning and preparedness across the globe. Similarly,

endemic diseases such as tuberculosis, malaria, and

dengue fever continue to tax the health and economic

welfare of a large fraction of the global population

[4–9]. To control such diseases and evaluate the

effectiveness of interventions, e.g., vaccination, new

methods are needed to anticipate emergence and

elimination and, in general, characterize the associated

critical phenomena. Despite recent advances in infec-

tious disease analysis and forecasting [10–12], meth-

ods for anticipating disease emergence and

elimination remain under-developed [13].

Predicting the emergence and elimination of infec-

tious diseases is possible by fitting complex paramet-

ric mathematical models of disease transmission to

incidence data [14–19]. While these models provide

an in-depth picture of disease dynamics, their success

relies on a detailed understanding of the underlying

epidemiology, immunology and pathogenesis of the

disease in addition to long-term data [20]. Such efforts

are labor-intensive, technically demanding, and

require detailed, fine-scale data that are often not

readily available, especially during an outbreak of an

emerging pathogen [21]. In addition, the underlying

disease drivers and key epidemiological determinants

including transmission route(s), the infectious period,

infectiousness and rate of spillover are typically

unknown or poorly quantified [22]. As a result,

model-independent methods are for anticipating dis-

ease emergence and elimination that may be especially

valuable in a wide range of scenarios. Such a need has

resulted in a growing interest in model-free

approaches to analyze the spatial and temporal pattern

of simulated and real-world epidemics and extract

features corresponding to the emergence of new

disease [13, 23–26].

Recently, the availability of data and computational

resources has inspired the use of data-driven tech-

niques to address challenges in predicting the dynam-

ics of epidemiological systems [27, 28]. However, the

performance of these methods is inversely related to

deviations identified from historically observed data

[29]. In addition, emergence and elimination of

infectious diseases are rare events and involve qual-

itative changes in dynamics [30] not just quantitative,

for which empirical data for training algorithms are

limited. Therefore, the development of metrics to

forecast epidemic transitions that can provide reliable

results without requiring substantial amounts of data is

crucial. The development of such metrics can be

achieved through systematic analysis of epidemiolog-

ical dynamical models. By identifying metrics that are

supported by the underlying principles of the system

dynamics for predicting epidemic transitions, more

reliable predictions can be made with a reduced need

for extensive data sets.

In particular, it is known that emergence and

elimination of infectious diseases are nonlinear phe-

nomena and involve a critical transition [22, 31, 32],

often reflected in deterministic models by a bifurca-

tion. Early warning signals of critical transitions that

are stochastic metrics extracted from online time-

series measurements of system dynamics are examples

of such approaches that indicate when systems

approach instabilities [13, 33]. Existing early warning

signals introduced as indicators of critical phenomena

in disease dynamics mostly focus on temporal or

spatial patterns observed in the dynamics of the

disease. Studies on the dynamics of the disease spread,

however, show that the spread of infectious disease is a

spectro-spatio-temporal dynamical process

[23, 24, 34]. As a result, analyzing epidemiological

time series separately in the time, space or frequency

domain might conceal essential characteristics of the

dynamics. We hypothesized that analyzing spatial

patterns in the time–frequency domain would identify

more robust and informative features for data-driven

algorithms to evaluate compared to other traditional

patterns in natural frames of reference, particularly in

infectious disease dynamics where a spatio-temporal

travelling wave induces instability.

Here, we propose a new spectro-spatio-temporal

approach to analyzing geographical data of emerging
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and endemic pathogens and extract features associated

with their transient and steady-state dynamics. From

theoretical analysis of a dynamical disease model, we

propose that monitoring the temporal evolution of

spectral similarity in multivariate epidemiological

time series may provide crucial information about

the underlying dynamics and the proximity of the

infectious disease system to a critical point. The

method uses a multivariate wavelet analysis of the

time series measured from the dynamics of the disease

at different spatial locations to probe for significant

changes in the pattern of similarity in wavelet cross-

spectra. By analyzing a standard SIR model with

vaccination as well as historical case reports of

whooping cough (or pertussis) in the continental

USA, we demonstrate that a measurable change in the

average pairwise similarity in the reported time series

is observed when the system approaches the critical

point of disease elimination.

2 Metapopulation SIR model

Numerical simulations were performed with a stan-

dard SIR metapopulation model, a simple model of an

immunizing disease among loosely coupled patches of

a population [35, 36].

We consider a metapopulation consisting of n

connected patches. Let Si; Ii; and Ri , respectively,

denote the number of susceptible, infected, and

removed individuals in patch i. We model the dynam-

ics of these variables in a population of n coupled

patches as

dSi
dt

¼ ri 1 � mð Þ � liSi � Si
Xn

j¼1

bijIj

dIi
dt

¼ Si
Xn

j¼1

bijIj � liIi � ciIi;

dRi

dt
¼ rivþ ciIi � liRi

ð1Þ

for i 2 1; 2; . . .; n. Here ri is the population birth

rate, m is the probability of immunization at birth,

li is the per capita death rate, 1
ci

is the mean infectious

period and bij is the rate at which susceptibles in patch

i are infected by infecteds in patch j. In the determin-

istic model, the population size Ni ¼ Si þ Ii þ Ri in

each patch is determined by ri=li; thus, the number of

removed individuals in patch i follows Ri ¼
ri=li � Si � Ii.

For biologically meaningful parameters (i.e., all

parameters are positive) and the assumption that the

matrix of transmission rates is irreducible, the

model always has a globally stable endemic equilib-

rium when Re [ 1, where Re is defined as the effec-

tive reproductive number [36]. Re is obtained via the

spectral radius of the n� n matrix M with ele-

ments mij ¼ bijS
0
i =½ðli þ ciÞ�, where S0

i denotes the

population in patch i in the absence of disease

(I1 ¼ I2 ¼ � � � ¼ In ¼ 0) [37]. The endemic equilib-

rium reflects the presence of the disease in all patches.

When Re � 1 the disease-free equilibrium in

which the disease is absent in all patches is globally

stable.

To account for the finite size of the population and

random fluctuations in disease transmission, we

incorporated demographic stochasticity by adding an

intrinsic noise vector, w2n�1 tð Þ, to the equations [38].

The noise vector w2n�1 tð Þ contains zero mean Gaus-

sian white noise sources with covariance calculated

from the system size expansion [39]. The resulting

stochastic differential equations are simulated to study

the proposed method using simulated data before

applying to real data.

3 Spatiotemporal features associated

with the stability of the endemic equilibrium

In this study, we propose an approach to measure two

main characteristics of the disease dynamics, the

degree of interrelation/similarity between system

components and the frequency band at which the

interrelation is dominant. Here, we briefly discuss how

these features of the disease process may vary over

time as the disease prevalence drops, resulting in a

measurable pattern in the dynamics of the disease.

Spectral similarity. Let S~
�
i and I~

�
i denote the

stable endemic equilibrium of the SIR model of

Eq. (1). Let z~Si and z~Ii , respectively, denote devia-

tions from the equilibrium of the susceptible and

infected variables. In the neighborhood of the endemic

equilibrium, the dynamics of z~Si and z~Ii may be

approximated with the linearization of the vector field

of Eq. (1) at the endemic equilibrium, which we

denote J. This linear system may be written as:
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dz~

dt
¼ Jz~ ð2Þ

where the vectors z~S and z~I , respectively, collect the

variables zSi and zIi , and z~ is a column vector con-

taining z~S stacked on top of z~I , i.e., z~¼ z~s
z~I

� �
. The

matrix J may be partitioned into four n� n blocks

depending on whether its row and column number

correspond to the index of susceptible or an infected

deviation in z~, that is

J ¼ JSS JSI
JIS JII

� �
ð3Þ

Each of these blocks has a unique structure based on

a few common elements. Below is the expression of

each block:

JSS ¼ �diag BI~
�� �

� diag l~ð Þ

JSI ¼ �diag S~
�� �
B

JIS ¼ diag BI~
�� �

JII ¼ diag S~
�� �
B� diag l~þ c~ð Þ;

ð4Þ

where B denotes the matrix containing the transmis-

sion rates among individuals across network patches

(i.e., Bð Þij¼ bij), S~
�

and I~
�

are column vectors

containing S�i and I�i , respectively, and l~ and c~ are

column vectors containing li and ci, respectively.

As Re approaches 1, the number of infectious

individuals, I~
�
, gradually declines towards zero (or its

minimum)—the tipping point at which the disease is

eliminated. Looking at the terms in Eq. (4), such a

change in disease prevalence results in a decrease in

the effect of within-patch processes on the dynamics

of the connected system and consequently an increase

in the effect of cross-coupling terms that come to

dominate transmission dynamics. It can be shown that

such an increase in interrelation is reflected in a

noticeable increase in similarity of the measured

power spectra of system time series. Given two signals

x1 tð Þ and x2 tð Þ, the cross-spectra identifying the

relationship between two time series as a function of

frequency are defined as:

S12 xð Þ ¼ r
þ1

�1
R12 sð Þeixsds ð5Þ

where R12 sð Þ is the cross-correlation function of

signals x1 tð Þ and x2 tð Þ. The matrix of cross-spectra

can be constructed as S xð Þð Þuv, where element in row

u and column v of the matrix represents Suv xð Þ.
Analyzing Eq. (4) shows that when I~

�
gradually

approaches zero, a pair of complex conjugate eigen-

values, namely k1 and k2 (k2 ¼ k1) also approach zero.

We can show (see supplementary information) that the

elements of the matrix of cross-spectra S for the

system in Eq. (3) at an angular frequency x can be

obtained as:

S xð Þð Þuv¼
X

ij

aij u; vð Þ
�Re kj

� �
� �Im kj

� �
� x

� �
ı

Re kj
� �2þ �Im kj

� �
� x

� �2
þ�Re kið Þ þ Im kið Þ � xð Þı

Re kið Þ2þ Im kið Þ � xð Þ2

 !
~R
� �

ij
;

ð6Þ

where S xð Þð Þuv denotes element in row u and column v

of the matrix S, ~R is the pseudo-covariance matrix of

the model variables projected into the space spanned

by the eigenvectors of J, and constant coefficients

aij u; vð Þ are determined by the necessary change of

basis matrix. It can be shown that the elements of

covariance matrix ~R are inversely proportional to the

system eigenvalues in the form of ~R
� �

ij
/ 1

kiþkj
(see

supplementary information). As a result, when Re k1ð Þ
(consequently Re k2ð Þ) becomes small relative to the

other eigenvalues, ~R
� �

12
¼ ~R
� �

21
grows relatively

large. Therefore, the corresponding term in Eq. (6)

becomes increasingly dominant in all elements of

S xð Þ. Additionally, decreases in the real parts of these

eigenvalues lead to component terms in Eq. (6) that

have relatively sharper and larger peaks near

Im k1ð Þ ¼ x. This analysis suggests that when a

disease approaches a tipping point (corresponding to

Re k1ð Þ ! 0), i.e., elimination or emergence, an

increased similarity in the frequency contents of the

measured time series is expected. In the supplemen-

tary information, we provide a more rigorous and

detailed argument for this assertion based on the

linearized model. While the details of this method are

demonstrated in Eq. (1), an increased spectral simi-

larity is due to the existence of a tipping point in the

system dynamics (i.e., when the dominant system

eigenvalue approaching to zero) and is not specific to

the set of equations studied in this paper. Hence, the

results can be extended to other epidemiological

models.
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In addition to an increased cross-coupling, inves-

tigation of the natural period of oscillations in disease

incidence is of fundamental importance in mathemat-

ical epidemiology [38, 40, 41]. Empirical data of

disease incidence show identifiable cyclic patterns in

many common diseases, including diseases for which

environmental influences do not appear to play an

important role, such as measles, pertussis, chicken

pox, and mumps [42, 43]. In an epidemiological

system with vaccination rate as a control parameter, a

progressive temporal change in the dominant period of

the epidemic is reported when vaccine uptake

increases and the disease approaches elimination

[24, 44]. Such a progressive change is also a sign of

approaching epidemic to a tipping point [7].

For the metapopulation model of Eq. (1), we can

show that as the disease prevalence gradually

decreases over time, lower frequency components of

the power spectra become more dominant (see

supplementary information). As a result, a change in

the dominant period of the measurements can be used

as an indicator of approaching to the tipping point in

the dynamics of the disease.

3.1 Multivariate time-varying spectral similarity

analysis

Based on the identified features associated with

approaching an epidemic transition, i.e., spectral

similarity and frequency shift, we propose a multi-

variate spectro-spatio-temporal method to monitor the

status of the endemic equilibrium. In particular, we

define a spectral similarity coefficient c for a multi-

variate system as a function that measures the spectral

similarity among measured spatial signals. Consider n

time series, namely x1 tð Þ; x2 tð Þ; . . .; xn tð Þ, where n

denotes the variable index. In addition, consider

Sn�n xð Þ to denote the cross-spectral matrix of the

time series. The spectral similarity for the measured

spatial time series is defined as follows

c ¼ n�4
X

u;v;u0;v0
r
1

�1
S xð Þð Þuv
�� �� S xð Þð Þu0v0

�� �� NuvNu0v0ð Þ�1
dx

ð7Þ

where Nuv ¼ r
1

�1
S xð Þð Þuv
�� ��dx is a normalization con-

stant. Theoretical analysis of the SIR equations shows

that the similarity coefficient in a metapopulation SIR

model increases exponentially as the disease

approaches an elimination (supplementary

information).

The approximated similarity essentially depends on

the power spectra of the time series. However, many

real time series including the epidemiological time

series are nonstationary. In such cases, classical

spectral analysis approaches (e.g., the Fourier trans-

form) do not provide time-dependent spectrum of the

time series. To address this issue, we use wavelet

analysis, which disentangles nonstationary and peri-

odic components of the spatiotemporal features of

nonstationary signals. In this study, we measured the

spectral similarity using a continuous wavelet trans-

form, and Eq. (7) is updated as

c t;xð Þ ¼ n�4
X

u;v;u0;v0

W t;xð Þð Þuv
�� �� W t;xð Þð Þu0v0

�� �� Nuv tð ÞNu0v0 tð Þð Þ�1;

ð8Þ

where Nuv tð Þ ¼ r
1

�1
W t;xð Þð Þuv
�� ��dx is a normalization

constant; c t;xð Þ measures the spectral similarity

between two signals at both time and frequency

domain. As a result, one can monitor how the spectral

similarity patterns change in both time and frequency

to evaluate the proximity to elimination threshold of

infectious disease.

The proposed approach can be advantageous com-

pared with existing methods, including temporal and

spatial correlation and variance, which are used as

warning signals in the literature. This method shows

the covariation between two signals as a function of

frequency and thus provides a set of coefficients (in

contrast to a single coefficient), which better describe

the underlying connections between system compo-

nents. More importantly, spectral similarity is able to

reveal the increased connectivity in systems with

traveling waves in their dynamics. While time-domain

methods like temporal correlation capture connectiv-

ity in a system with stationary oscillations, they do not

capture changes in the connectivity in systems where a

travelling wave induces instability. The proposed

approach, in contrast, considers correlation in the

frequency domain and can be an efficient method to be

applied to systems exhibiting traveling wave in their

dynamics. Since previous studies have revealed exis-

tence of traveling waves in the process of disease

spread in spatial systems [23, 24], the proposed

approach provides an advantage in studying disease

dynamical systems.
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4 Results and discussion

4.1 Simulation study

Two-patch SIR metapopulation model. To illustrate

the application of the proposed indicator, we first

evaluated the method with a simple, 2-patch metapop-

ulation model. The parameters of this model are given

in Table S2. In Fig. 1a, we show the equilibrium

number of infected for the deterministic model in both

patches across the range of transmission rates for

which the endemic equilibrium is stable. As the

vaccination rate is increased, Re approaches one and

the prevalence declines, approaching the disease-free

steady state. To evaluate the validity of the proposed

indicator in the absence of errors and approximations

associated with numerical and data observation/re-

porting processes, we first analytically computed the

spectral similarity coefficient c tð Þ as a function of

vaccination rate using I1 and I2 variables and Eq. (6).

Results of this analysis show that the theoretical value

of c rises exponentially as Re approaches its critical

value (Fig. 1b).

Next, to analyze the trend of the spectral similarity

coefficient using observations of infected individuals

in each patch as in real-world scenarios, we performed

numerical stochastic simulations of the metapopula-

tion model with the same vaccination rates as the

deterministic study. At each vaccination rate, the

model is simulated for 10 years and the dynamics is

sampled at increments of 0.1 year. The similarity

coefficients are then approximated numerically using

the power spectra of sampled data of infected

individuals in each patch (Eq. (6)). Results of this

numerical analysis are plotted on the top of the

analytical results in Fig. 1b. Results show that the

value of spectral similarity coefficient calculated from

stochastic simulations grows as the vaccination rate

increases but falls in the immediate neighborhood of

the critical value. Analysis of the simulations shows

that numerically approximated power spectra agree

with Eq. (6) when the number infected at equilibrium

is large and the linear noise approximation performs

well (see Fig. S5). In the vicinity of the critical point,

however, the linear noise approximation fails and the

approximated similarity coefficient does not follow

the analytically expected path. As a result, it is

expected that in the practical application of this

approach, the peak in the similarity coefficient is

observed ahead but in a close neighborhood of the

critical point. Such an observation is consistent with

what we observe in the empirical study presented in

Sect. 4.2.

Multi-patch SIR metapopulation model. Here, we

consider a 8-patch metapopulation model as described

in Sect. 2. The parameters and interactions were

selected to generate a spatially heterogeneous epi-

demic. In particular: ri 2 5e4; 5e5½ �,
li 2 0:02; 0:04½ � year�1, ci ¼ 14 year�1, where

year�1 is the unit and indicates the frequency of the

event per individual per year. The parameters ri, li,
and ci were randomly selected from a uniform

distribution within the specified ranges. We define

interaction terms ðbij) in the model in the form of an

interaction matrix B,where Bð Þij¼ bij. We assume that

B is symmetric and that the within patch transmissions

Fig. 1 a The equilibrium number infected in the two-patch example as a function of vaccination rate, b the theoretical and numerical

values of spectral similarity coefficient c as a function of vaccination rate
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are similar among all patches, i.e.,

b0 ¼ bii; i 2 1; . . .; n. In addition, we set bij ¼ �ib0,

where �i � 1 and �i 6¼ �j, i.e., we defined a nonho-

mogeneous coupling in the system. Figure 2a shows

the stable endemic equilibria of the system obtained

by varying the vaccine uptake rate. For the set of

parameters selected, the critical immunization level

for disease elimination is m ¼ 0:95.

Unlike the previous example (Fig. 1), here we

chose the vaccination rate to be time dependent and to

vary continuously over time, resulting in a nonsta-

tionary time series. We chose initial conditions close

to the endemic equilibrium when the immunization

rate is m ¼ 0 and the model dynamics resulted from

demographically driven stochastic oscillations in the

absence of seasonal forcing [38]. The vaccine uptake

increased gradually from m ¼ 0 to m ¼ 0:95 over

80 years, and the number of infected individuals was

recorded at weekly intervals and used as an input to the

multivariate similarity analysis (Fig. 2b).

Using the recorded monthly incidences at each of

ten patches, the spectral similarity coefficients c t;xð Þ
were estimated and are shown in Fig. 2. We observed

that as the vaccination rate increased, there is an

increase in the estimated similarity coefficient c t;xð Þ,
where the maximum value is observed in the vicinity

but ahead of the elimination point. In addition to the

change in the system-wide spectral similarity, we

observed a progressive change in the period at which

the similarity is maximum (Fig. 2c). This observation

implies that the period at which the dynamics of the

patches are dominantly coupled changes over time as a

function of the vaccination rate, consistent with our

analysis in the supplementary information.

4.2 Empirical study

To demonstrate the use of this method in practice, we

analyzed monthly whooping cough incidence in the

continental USA. Whooping cough is a highly conta-

gious respiratory disease caused by the bac-

terium Bordetella pertussis. Despite concerted and

long-standing pediatric immunization programs dat-

ing to the 1950s, pertussis control in many developed

nations remains a significant public health challenge

[3]. These data include monthly cases of pertussis in

49 continental US states (including the District of

Columbia) from 1938 to 1980, which reflect temporal

and spatial patterns of the disease over many decades.

In the 1950s, a national immunization program led to a

drastic reduction in incidence over the subsequent

3 decades [45]. As a result, this time series provides a

unique opportunity to study the dynamics of an

infectious disease exhibiting elimination due to an

increase in the immunization level.

Fig. 2 a Variation of

endemic equilibrium

(disease prevalence) in the

simulated metapopulation

model as a function of

immunization level, b
dynamics of the number

infected in a slow approach

to elimination in one of the

patches, c time evolution of

system level spectral

similarity cðt;xÞ in the

simulated metapopulation

model as the immunization

level gradually increases, d
time evolution of spectral

similarity coefficient cðtÞ
obtained from Eq. (6) as the

immunization level

gradually increases
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Figure 3 shows the monthly incidence of pertussis

aggregated over the 49 states from 1938 to 1980. In

addition, monthly incidences in six selected states are

also shown in Fig. 3. The spectral similarity coeffi-

cient c t;xð Þ was calculated over time and is plotted in

Fig. 4. We observed that as the vaccination uptake rate

increased in 1950s, there was a significant increase in

the estimated similarity coefficient c tð Þ. The time at

which the similarity coefficient was maximized is

around 1955, which is a few years before the disease

was successfully controlled in some of the states.

Figure 3 shows that between 1950 and 1960 the

disease was controlled in some states. In addition, the

time–frequency map of the similarity coefficient

c t;xð Þ shows a change in the frequency at which the

spectral similarity was at its maximum ranged from

2 years in 1940s to 4.5 years in 1950s, which is

consistent with what observed in theoretical and

numerical analysis [23]. Results of this analysis show

potential practical applicability of the spectral simi-

larity coefficient in empirical epidemiological systems

to reveal the proximity of the disease dynamics to a

critical point.

5 Conclusion

The spatial dynamics of infectious disease are com-

plex, hard to model and difficult to predict. To aid the

creation of efficient strategies for disease elimination

and control, new model-independent methods that

characterize the underlying processes of spread may
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Fig. 3 Aggregate monthly pertussis incidences in the 49 contiguous states of the US from 1938 to 1980. Monthly notifications of

pertussis cases in six of the 49 states are also demonstrated

Fig. 4 a Time evolution of

the system level spectral

similarity cðt;xÞ between

states of the United States

using historical time series

of pertussis from 1938 to

1980, b time evolution

spectral similarity

coefficient cðtÞ (i.e., cðt;xÞ
averaged over all frequency

ranges) for the continental

USA
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be extremely useful. In this study, we introduced

spectral similarity analysis of multivariate epidemio-

logical time series as a tool for estimating the

proximity of an infectious disease system to a critical

point. Theoretical analyses demonstrated that when

the disease prevalence gradually decreases over time

and approaches elimination, the power spectrum of

small fluctuations of the infected populations in each

patch around their equilibrium values becomes

increasingly dominated by a common function, result-

ing in an increased system-wide power spectral

similarity. This approach exploits information con-

tained in the spatial pattern and time–frequency

structure of the epidemiological data. Results of

simulated disease spread on a metapopulation model

and analysis of historical spatiotemporal data of

pertussis cases provide empirical validation of the

method under both ideal and real-world data reporting.

The proposed approach is motivated by dynamical

systems theory and represents a model-independent

early warning signal of critical transitions in epidemi-

ological systems. This early warning signal is sup-

ported by theory from nonlinear dynamics, and

specifically the occurrence of critical slowing down

in the proximity of certain bifurcations. This approach

is distinct from traditional data analyses that extract

feature from data and identify trends in data without

considering that data results from nonlinear system

dynamics. In contrast, using theoretical analysis of a

well-stablished epidemiological system, this method

suggests that one can identify whether the epidemio-

logical system is approaching a critical event (emer-

gence or elimination) in its dynamics by monitoring

the multivariate spectral similarity in measurements.

Since anticipating critical events in infectious disease

is a formidable task, this approach combined with

other methods in this active area of research may

advance the field of data-driven prediction in infec-

tious disease.
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