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The detection of evolutionary transitions in influenza A (H3N2)
viruses’ antigenicity is a major obstacle to effective vaccine design
and development. In this study, we describe Novel Influenza Virus A
Detector (NIAViD), an unsupervised machine learning tool, adept at
identifying these transitions, using the HA1 sequence and associated
physico-chemical properties. NIAViD performed with 88.9% (95% CI,
56.5–98.0%) and 72.7% (95% CI, 43.4–90.3%) sensitivity in training and
validation, respectively, outperforming the uncalibrated null model—
33.3% (95% CI, 12.1–64.6%) and does not require potentially biased,
time-consuming and costly laboratory assays. The pivotal role of the
Boman’s index, indicative of the virus’s cell surface binding potential, is
underscored, enhancing the precision of detecting antigenic transitions.
NIAViD’s efficacy is not only in identifying influenza isolates that belong
to novel antigenic clusters, but also in pinpointing potential sites driving
significant antigenic changes, without the reliance on explicit modelling of
haemagglutinin inhibition titres. We believe this approach holds promise
to augment existing surveillance networks, offering timely insights for
the development of updated, effective influenza vaccines. Consequently,
NIAViD, in conjunction with other resources, could be used to support
surveillance efforts and inform the development of updated influenza
vaccines.

1. Introduction
With more than 3 million cases of severe illness per year and around half
a million annual deaths worldwide, infections with influenza A viruses (e.g.
H3N2, H1N1) are a leading cause of morbidity and mortality in humans,
as well as a significant economic burden [1]. As part of holistic public
health policies aimed at reducing the burden of influenza, experimental and
computational approaches have determined that viral antigenic drift [2] leads
to sporadic dominance of new antigenic clusters and subsequently the need
for updated vaccines [3–5]. The critical challenge is to establish whether there
is an antigenic mismatch between cocirculating viruses and those responsible
for existing immunity, including both vaccine derived and infection derived.
Inhibition-based laboratory assays are regarded as the current standard for
identifying drifted viruses, but these assays are retrospective, could be biased,
time-consuming and the haemagglutination-inhibition (HI) assay in particu-
lar can be too labour-intensive for routine utilization at large scale unlike
high content imaging-based neutralization (HINT) assays [4,6]. More recently,
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computational methods have been used to identify antigenic variants of influenza A [4,7–9]. For instance, it has been shown that
surface glycoprotein HA1 amino acid sequences may be mapped to HI titre values and provide a measure of viral drift [6,10,11].
But existing computational tools require large quantities of serological data to generate accurate predictions about antigenicity
[12]. With the ubiquitous availability of high-throughput nucleotide sequencing technology, sampling of viral surface protein
amino acid sequences now far outpaces corresponding measurements of HI titres. Thus, if a method could be devised to
predict antigenicity without the need for direct measurements of HI titres, gains in predictive accuracy and timely detection and
response could be substantial.

Moreover, in recent years, the inability of some influenza A (H3N2) viruses to agglutinate red blood cells has made
experimental HI titre used in supervised antigenicity prediction less reliable for prediction [11]. Thus, for H3N2 viruses, there
has been a switch to micro-neutralization assays [13] (e.g. focus reduction assay (FRA) and HINT) [11,14] that reduce antigenic
mischaracterization resulting from viral adaptation to cell cultures (particularly in instances where cells are inappropriate
and protocols for virus isolation and propagation are not followed), but these assays are not yet widely used outside of
specialized laboratory settings [11]. Furthermore, although advancements in sequencing technology have improved our ability
to identify different viral strains during routine surveillance, it should not be assumed that there will always be sufficient
mutant strains from large samples for effective supervised antigenicity prediction. Thus, despite abundant genetic data about
cocirculating viruses, one might not be able to perform antigenic assays on these strains due to their low presence. As genomic
surveillance continues to expand, this challenge will become increasingly prominent. If sufficiently accurate, unsupervised
learning approaches would not only be independent of inhibition assay measurements but would also be more robust to
smaller datasets and imbalances in the frequency of antigenic cluster-to-non-cluster transitions, particularly in instances where
antigenicity is modelled as a binary outcome of few antigenic transitions compared with more non-antigenic transitions. We,
therefore, propose that since evolutionary innovations that result in a cluster transition are comparatively rare, even with
extensive differences within antigenic clusters [15,16], one should view the identification of novel variants as a kind of anomaly
detection within an unsupervised learning framework.

Isolation forests [17] and one-class support vector machines (SVMs) [18] are examples of unsupervised learning methods
that have been used extensively in other domains to detect anomalies without mapping to a targeted outcome during model
development [19,20]. In the biological sciences, these techniques have been used extensively for the structural and functional
characterization of proteins. For instance, a previous study suggests that scaling unsupervised learning to 250 million protein
sequences could reveal biological structure and function using only sequence data [21]. However, such powerful techniques
have not yet been applied to virus variant detection, even for benchmark datasets. A review of computational tools used to
predict influenza phenotype identified only one study that characterized antigenicity using unlabelled data [22]. Further, noting
that protein fold recognition and structural class predictions were made using modelled physico-chemical properties calculated
from amino acid sequences [23], we hypothesize that an unsupervised algorithm that makes use of HA1 amino acid sequences
and associated physico-chemical properties could enable rapid detection of new antigenic variants of the H3N2 virus.

For this reason, we considered five physico-chemical properties—the Boman’s index, isoelectric point, hydrophobicity,
electrostatic charge and instability index—of mechanistic relevance to viral antigenicity [24]. The Boman’s index estimates
the potential of peptides/proteins to bind to other proteins [25]. The isoelectric point is the pH at which a protein carries
no net electrical charge, relevant to antigenicity as isoelectricity affects the interaction of proteins with other molecules [26].
Hydrophobicity, the tendency of protein regions to repel water, influences protein folding and stability, crucial for the formation
of antigenic determinants by exposing or masking potential epitopes [27]. Electrostatic charge affects the formation of immune
complexes, with charge interactions influencing the antigenicity [28]. Lastly, the instability index predicts the in vivo half-life and
thermostability of proteins, impacting their degradation and the presentation of antigenic peptides, key for initiating immune
responses [29].

Here, we report on an unsupervised influenza prediction tool—Novel Influenza Virus A Detector (NIAViD) (figure 1)—that
takes these physico-chemical covariates derived from HA1 amino acid sequences as input and returns a binary antigenic
transition/antigenic non-transition label for each viral sequence. With NIAViD, we model the evolving set of antigenic clusters
to demonstrate the sequence-based detection of emerging antigenically novel influenza A (H3N2) viruses. By leveraging
existing sequenced-based data streams, our tool can efficiently complement routine virological surveillance for vaccine strain
selection. To familiarize readers with the technical terminology used throughout this article, we have provided a glossary of key
specialists’ terms in electronic supplementary material, table S1.

2. Results
NIAViD is a process (figure 1) to predict the antigenic transition of influenza isolates from five physico-chemical covariates
calculated directly from HA1 sequence data (the Boman’s index, isoelectric point, hydrophobicity, electrostatic charge and an
instability index) and does not depend on other assay scores (e.g. HAI, FRA and HINT) [11,14,30]. To demonstrate the NIAViD
process, we used the 273 H3N2 isolates reported in the classic study of Smith et al. [31], which have become a benchmark
to compare influenza antigenicity prediction algorithms [6,8,32]. The trends from 1968 to 2003 in each virus physico-chemical
covariate are shown in figure 2 and are statistically different from a randomized sample of the same sequences (i.e. all
non-parametric Wilcoxon rank-sum test p-values comparing the physico-chemical trends are <0.05) (electronic supplementary
material, appendix S1, table S2 and figure S1).

Our pipeline successfully anticipated the majority of antigenic transitions over this time span. Estimated sensitivity (true-
positive rate) on the training data was 88.9% (95% CI, 56.5−98.0%), which compares favourably to the performance on a
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null model (33.3%, 95% CI, 12.1−64.6%; table 1 and figure 3a). (Detailed methods are provided in electronic supplementary
material, appendix S1 and text S5.) For comparison, model-detected non-transitions (i.e. true negatives) are comparable to
those identified by chance (table 1). Sensitivity on the validation data was 72.7% (95% CI, 43.4–90.3%; table 1 and figure 3a).
This sensitivity was achieved at a cost in precision (also known as positive-predictive value and is equal to one minus the
false-discovery rate), which was estimated to be 12.3% (95% CI, 6.4−22.5%) in the training data and 50.0% (95% CI, 28.0−72.0%)
in the validation data (figure 3a). An emphasis on sensitivity and prediction can present an incomplete picture of model
performance due to the imbalance between the number of antigenic transitions and non-transitions [33]. Hence, we also
calculated the area under the receiver operating characteristic curve (AUC), which represents the true-positive rate as a function
of the false-positive rate [33] (figure 3b). Training and validation AUC for NIAViD are 85.9% (95% CI, 80.4−90.0%) and 79.1%
(95% CI, 66.7−87.8%), respectively (figure 3a,b), comparing favourably with the null model 51.4% (95% CI, 44.6−58.2%; figure
3a,b ).

In addition to overall model performance, we examined predictive skill through time. The model exhibited good classifica-
tion skill in the first decade of the data (AUC > 0.9) followed by a general decrease over time (figure 4), coinciding with two
antigenic cluster transitions. The first drop occurred with the extinction of the TX77 cluster [31] and the emergence of the BK79
cluster. The second, a few years later, when two new antigenic clusters, BE89 and BE92, emerged from the SI87 cluster in close
succession. Despite these drops, the overall performance of NIAViD was high, with all AUCs exceeding 0.75. This is especially
noteworthy given the antigenic bifurcation when SI87 gave rise to BE89 and BE92; the challenge of this event for reliable cluster
characterization has been previously noted [6].

HA1 protein sequences
(a) (b) (f)

(c)

(e)

(d)

NIAViD training and validation

Trained NIAViD predictive model

Physico-chemical properties Transitions

Physico-chemical

properties

Figure 1. NIAViD is a model for detecting antigenic transitions in influenza A (H3N2) without knowledge of cluster identity. This figure illustrates the computational
workflow used to fit and validate NIAViD. Input data for NIAViD are the amino acids at 329 positions from the HA1 region of the haemagglutinin protein for m isolates
in the data (a). For each isolate, we calculate the average over the 329 amino acid sites for each of five physico-chemical properties—hydrophobicity, isoelectric point,
Boman’s index, electric charge and a measure of instability—which constitute the m × 5 prediction matrix P (c). Prior to model training, isolates were randomly
assigned to training and validation datasets after stratifying by cluster. The training was performed iteratively by sequentially introducing each isolate into the analysis
(f). With each iteration, outlier detection was used to assign an anomaly score for the new isolate with respect to all prior isolates. Isolates that receive a high
anomaly score at their first appearance are considered candidates for antigenic transition, i.e. the appearance of a new antigenic cluster. We perform the validation by
constructing a sample from all datasets with the validation isolate withheld. Thus, for validation (but not for training), we require information on the antigenic cluster
C (d) to which each isolate belongs, obtained from haemagglutinin inhibition assays (b). For each isolate in the validation data, the cluster identity is examined and
compared with all prior isolates in the validation data. If the cluster is new, then that isolate is labelled a ‘validation transition’. Otherwise, it is not a transition. For
non-transitions, the input data are all the training data together with any validation data from prior iterations of the validation. For validation transitions, the input
data are all the training data less any isolates from the cluster to be predicted (because the model cannot have seen any information on a new cluster) together with
any validation data from prior iterations of the validation (f). The mapping produces a binary output (e). This output can be compared with the true transitions and
non-transitions in a confusion matrix. See electronic supplementary material for the pseudocode.
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To further test the validity of NIAViD, we evaluated its performance using more contemporary data [34]. These data show
that recent antigenic clusters have less distinct boundaries (electronic supplementary material, appendix S1 and figure S2),
challenging NIAViD even further as it seeks to identify antigenic transitions over time (electronic supplementary material,
appendix S1 and figure S3). Unsurprisingly, we see a reduction in both training sensitivity and performance in the validation
phase. For the Smith et al. [31] data, (1968–2002), training and validation sensitivity are 88.9% (95% CI, 56.5−98.0%) and 72.7%
(95% CI, 43.4–90.3%), respectively. For the more recent data from Han et al. [34] (1968–2016), training and validation sensitivity
are 64.3% (95% CI, 63.6−65.0%) and 56.3% (95% CI, 54.8−57.7%), respectively (electronic supplementary material, appendix S1
and figure S4).

To identify the most important covariates, we quantified the relative importance of each feature to the summary F measure
using model-agnostic permutation [35] (figure 5a). All the physico-chemical covariates have similar importance with mostly
overlapping confidence intervals (figure 5a), although for both the Smith et al. (1968–2002) and Han et al. (1968–2016) (electronic
supplementary material, appendix S1 and figure S6) data, the Boman’s index is the most important physico-chemical covariate
involved in the identification of an antigenic cluster transition in H3N2 viruses (F measure 0.09, range 0.08−0.11, figure
5a). Additional analysis showed that different physico-chemical covariates could be driving each specific antigenic transition
(electronic supplementary material, appendix S1 and figure S7). To identify which specific amino acid sites are most important
to cluster transition, we trained NIAViD fitted using one-class SVM and used permutation importance scores to measure how
much of the variance in antigenic cluster transition was contributed by each amino acid substitution. Notably, four amino acid
sites (i.e. residues 135, 144, 158 and 189) identified as antigenically important by Koel et al. [6], and within our top 10% sites
of major antigenic change, were found to be statistically more important than other sites (figure 5b, boxplot). Most of these
major amino sites driving antigenic transitions were also identified in the contemporary dataset (i.e. 1968–20216) (electronic
supplementary material, appendix S1 and table S3).
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Figure 2. The five physico-chemical covariates of influenza virus A (H3N2) virus HA1 sequences are plotted against the year of isolation, with the 11 antigenic clusters
marked by distinct colours and the two cluster transitions marked by different shapes. The horizontal black line in each panel represents the rolling average of each
physico-chemical property, calculated using a rolling window of 10 influenza A viruses.
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3. Discussion
A key challenge for seasonal influenza surveillance and response is the sensitive and rapid identification of novel
antigenic clusters. We have shown that antigenic cluster transitions in influenza A (H3N2) viruses can be anticipated
from calculable, sequence-based physico-chemical properties and amino acid substitutions in the HA1 protein. In fact,
physico-chemical properties outperform (in the training phase), and at least match (in the validation phase) the perform-
ance of a model built on the counts of amino acid changes in HA1 (electronic supplementary material, appendix S1 and
figure S8). Furthermore, unlike these amino acid counts that depend on a suitable and meaningful reference virus, the
physico-chemical properties can be extracted from independent viral isolates. Another notable characteristic of influenza
viruses is the glycosylation in the globular head of the HA1 proteins. While these glycosylation sites are important in
the immune escape of HIN1 viruses [36], our study indicated no notable relationship between acquisition or loss of
glycosylation and antigenic cluster transition in the H3N2 viruses we investigated in this study (electronic supplementary
material, appendix S1 and figure S9). A reliable unsupervised tool like NIAViD that detects antigenically novel viral
strains could be used to aid vaccine formulation or pandemic preparedness planning. Moreover, NIAViD could serve as a
cost-effective complement to deep mutational scanning [37] and reverse genetics [6], streamlining the process by pinpoint-
ing specific viral strains for further laboratory testing and validation. NIAViD detected 8 out of the 11 antigenic cluster
transitions identified by 2002. The high sensitivity of NIAViD could be valuable for decision contexts where the cost of
false negatives is high (e.g. pandemic response). Impressively, the sensitivity estimates obtained with our unsupervised
approach are comparable to those reported in studies where supervised learning was employed [4,7–9,38,39]. NIAViD
also quantifies the contribution of different biological drivers of antigenic transitions and once we account for specific
antigenic transitions, none of the physico-chemical properties individually dominate the transition process. Thus, the
global (i.e. full dataset) biological inference might be masking subtle changes in the physico-chemical properties driving
individual antigenic transition. Mutations, driving these physico-chemical changes, enhancing the fusion of the full viral
HA sequences to cell membranes have been previously identified as novel mechanisms through which the influenza A
virus escapes antibody neutralization [25,40]. Also, the importance of the Boman’s index, which measures the protein–pro-
tein interaction within the HA1 protein and not with a receptor, suggests that characterization of antigenicity should focus
on these interunit interactions especially when interactions with HA2 are considered [41]. Future iterations of this work
could further explore these HA2 interactions. Our discovery that certain amino acid sites on the HA1 sequence are highly
predictive of antigenic transition is corroborated by Koel et al. [8]. However, we also identify additional sites that warrant
further investigation (i.e. residues 54, 62, 137, 143, 146, 160, 244, 248, 260 and 307). While these findings provide insight
into population averages, we caution that NIAViD does not account for individual-level immune dynamics which are
known to play a role in viral antigenicity [42]. One recent study shows how dynamic interactions of immune components
may drive cyclic patterns of immunity, including antibodies [43]. Furthermore, within-cluster antigenic differences have
been well characterized in previous studies [31] suggesting that other factors, including host immune history and seasonal
patterns not captured in our process might also be contributing to viral antigenic evolution. Nonetheless, NIAViD shows
that sequence-based approaches to understanding influenza A antigenic evolution can be successful even without antigenic
labelling of individual viral isolates.

Supervised learning approaches, such as deep neural network models, have been demonstrated to be effective in accurately
predicting HI titres of influenza A (H3N2) viruses using only sequence information [44,45]. We chose to exclude modelled HI
titres as NIAViD covariates due to an ongoing shift away from measuring HI titres for virus characterization. Our unsupervised
approach with NIAViD, which uses only HA1 sequences, has shown some decrease in performance over time, which may
be attributed to changes in the viral population or emergence of new strains not included in the data [23]. In fact, further
analysis (electronic supplementary material, appendix S1 and figure S10) shows that NIAViD is robust to historical depth for
prediction confirming that the process depends on the signals from all viruses irrespective of the time they were first identified.
This suggests the physico-chemical features capture intrinsic antigenic properties rather than time-dependent epidemiological
patterns, enabling generalization across historical periods. Thus, re-emphasizing the need to periodically update NIAViD to

Table 1. The number of cluster transitions to be predicted and four terms used in quantifying the predictions.

novel influenza A virus detector (NIAViD)

null model training phase validation phase

transition clusters to predict 9 9 11

TP 3 8 8

FN 6 1 3

FP 62 57 8

TN 132 137 36

The four terms include: TP—the antigenic transitions identified correctly. FN—the antigenic transitions identified incorrectly. FP—the antigenic non-transitions
identified as transitions. TN—the antigenic non-transitions identified correctly. The null model for isolation forest and one-class SVM is the model for which the
antigenic transitions have been assigned randomly.
FN, false negatives; FP, false positives; SVM, support vector machine; TN, true negatives; TP, true positives.
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expand its training data with new strains when they become available. Nonetheless, the model still detects antigenic transitions,
even before they persist in the population, further demonstrating that NIAViD is a potentially powerful tool for the detection
and characterization of influenza A antigenicity even in the presence of considerable temporal heterogeneity.

As further analysis with the more recent data show, earlier H3N2 antigenic evolution presented punctuated cluster transi-
tions that enabled optimistic model validation, recent years show less-defined groupings with the corresponding decrease
in validation performance. With blurring boundaries, binary transition classification becomes more challenging. Assessing
incremental viral novelty along an antigenic continuum may be more appropriate in future framework expansions. Nonethe-
less, NIAViD demonstrated reliable identification of outliers in earlier periods with improved discriminability. Ongoing updates
by integrating additional sequenced isolates will likely enhance the detection of emerging viral variants.

Finally, while we fitted NIAViD using both isolation forests and a one-class SVM, other unsupervised learning methods
could further improve the performance of NIAViD. For instance, more recent anomaly detection models such as Empirical-
Cumulative-distribution-based Outlier Detection warrant future testing in NIAViD [46]. NIAViD can be effectively applied to
a wide range of influenza A (H3N2) viral sequences without the need for significant modifications or fine-tuning. Therefore,
in future work, we will seek to confirm the robustness of NIAViD using other datasets. Perhaps, models with data-agnostic
hyperparameters could improve the performance of NIAViD [47]. Overall, the ability to incorporate different unsupervised
learning models is a powerful feature of NIAViD (the pseudocode is provided in electronic supplementary material, appendix
S1 and text S3, S4 and S5), as it allows the tool to incorporate improved unsupervised learners as they become available.

In conclusion, as proof-of-concept we have shown that cluster transitions in influenza A (H3N2) antigenicity can be rapidly
and sensitively detected using NIAViD without explicitly modelling haemagglutinin inhibition. We suggest that NIAViD be
used to help interpret and inform influenza surveillance in both seasonal and pandemic settings.
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F measure, precision and sensitivity/recall. The AUC represents the correlation between true-positive and false-positive rates, with values ranging from 0.5 (50%) to
1.0 (100%), where 0.5 (50%) indicates no better than random prediction and 1.0 (100%) indicates perfect agreement between predicted and observed antigenic
transitions. The F measure is the harmonic mean of the precision and recall. Panel (b) shows the ROC curves for the null, training and validation phase performances,
with the separate phases marked by distinct colours. The diagonal (broken) line on the ROC reflects theoretical performance that is no better than chance, with
uncorrelated antigenic transition status. ROC, receiver operating characteristic.

6

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240790

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 A

ug
us

t 2
02

4 



4. Material and methods
(a) Physico-chemical covariates
Physico-chemical properties of protein sequences can often be associated with these proteins’ functions [24,28,48]. We calculated
physico-chemical covariates from HA1 sequences via the seqinr and Peptide packages in R v. 4.2.0 [49,50]. These R packages
enable the extraction of physico-chemical properties from individual amino acid sequences. All values were normalized (i.e.
0 mean and unit variance) to ensure that the predicted relationship to antigenic transition was not influenced by the scale of
each covariate. We assigned antigenic transition outcomes to each influenza isolate based on these covariates. (See electronic
supplementary material, appendix S1 for more information.)

(b) Data preprocessing and modelling
Influenza A (H3N2) virus HA1 sequence data and cluster identity were obtained from Smith et al. [31]. Clusters are named
after the first vaccine strain in the cluster and include information about the location and year of isolation, in chronological
order HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97 and FU02. Before training models, we stratified the data by
antigenic cluster and randomly assigned isolates to the training and validation datasets (see electronic supplementary material,
appendix S1 and text S1). We then randomly sampled 80% of isolates without replacement within each antigenic cluster (HK68,
EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97 and FU02) to create the training set; the remaining 20% from each
cluster were retained for validation. Then, isolates belonging to each cluster were ordered by year (the lowest chronological
resolution available for the Smith et al. data). One isolate randomly selected in the earliest year of each cluster was notionally
designated an antigenic transition with other isolates designated as non-transitions (see figure 1 and electronic supplementary
material, appendix S1, test S2).

(c) Anomaly detection
To detect outlying isolates and identify candidates for antigenic transition (i.e. the appearance of a new antigenic cluster), we
trained NIAViD by sequentially adding each isolate to the analysis and used isolation forest [17] and one-class SVMs (electronic
supplementary material, appendix S1 and text S3) for outlier detection and biological inference, respectively [17] (electronic
supplementary material, appendix S1 and text S3). Isolation forest is a method for detecting anomalies that does not use a
distance or density measure, while one-class SVM uses a distance metric to learn a hyperplane between normal and anomalous
data points [17,51]. The isolation forest performed better at detecting antigenic transitions, so for outlier detection, we present
results for NIAViD fitted with isolation forest. In isolation forests, the anomaly score is calculated as the average path length
for a sample over all the trees in the forest, with shorter path lengths corresponding to higher anomaly scores [17]. However,
to evaluate inferential performance for amino acid substitutions, we fitted NIAViD with one-class SVMs because isolation
forest cannot properly handle the one-hot encoded categorical amino acid positional covariates [17]. In one-class SVMs, the

N
IA

V
iD

 p
er

fo
rm

an
ce

 (
A

U
C

)

HK68 EN72 BK79 S187 BE89 BE92 WU95 SY97 FU02

1.0

0.9

0.8

0.7

0.6

0.5

SI87®BE92

SI87®BE89

1970 1980 1990 2000

Year of isolation

TX77VI75

Figure 4. The performance of NIAViD (1968–2002), as measured by the AUC, is plotted against the year of isolation for each virus, stratified by antigenic cluster. The
plotted points show the performance as the influenza A virus transitions from one antigenic cluster to another. The white circles represent the transition from SI87
to BE92 (SI87→BE92), while the pink circles represent the transition from SI87 to BE89 (SI87→BE89). In these data, the BE89 cluster does not show any antigenic
transition to other strains of the influenza virus. The horizontal (broken) line represents the average AUC of the means for each of the 11 antigenic clusters.

7

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240790

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 A

ug
us

t 2
02

4 



raw anomaly score is the distance between a test point and the separating hyperplane, with larger distances indicating more
anomalous points. The raw scores are transformed to normalized anomaly scores, using a sigmoid function [51]. The full
computational pipeline is illustrated in figure 1.

(d) Performance evaluation—1968–2002
We evaluated the ability of the framework to identify antigenic cluster transitions by comparing predicted outcomes with
known antigenic transitions. To assess the predictive performance relative to a baseline model (electronic supplementary
material, appendix S1 and text S5), we generated a null measure of predictive performance by comparing the prediction for
each isolate with a randomly assigned antigenic transition outcome. NIAViD allows comparison with a baseline model and
quantified the potential of other covariates in informing the antigenic transition of the influenza A virus.

(e) Performance evaluation—1968–2016
To model antigenic clustering over a more recent period and reflect the evolving mode of HA binding to sialic acid
receptors, we applied NIAViD to a published dataset [34] that characterizes influenza A (H3N2) antigenicity beyond 2002.
This dataset includes six more antigenic clusters (CA02, BR07, PE09, TX12, SW13 and HK14) that emerged after the Fujian
2002 (FU02) strain. These data contain antigenic coordinates and cluster classifications (electronic supplementary material,
appendix S1 and figure S2) for 21 434 isolates. We extracted the physico-chemical properties of these isolates and followed
the same data preprocessing and modelling procedures as already described in §4.2. We examined the performance of
NIAViD on these data.
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(f) Biological inference
To better understand the biological drivers of our results, we evaluated the inferential performance (i.e. the variance in antigenic
cluster transition) of the models using a model-agnostic feature importance score (F measure). This score measures the decrease
in a model’s score caused by randomly shuffled feature values [35]. We used this feature importance to quantify the contribution
of each physico-chemical covariate in explaining the variance in antigenic cluster transition by calculating the F measure of each
covariate. We also calculated the feature important scores for the amino acid substitutions that inform the physico-chemical
changes in the HA1 sequences to further characterize the contribution of these sequences in explaining antigenic cluster
transition variance. The predictive importance scores of the top 10% of amino acid sites, identified as major antigenic change
sites, were plotted against all other sites using a boxplot in the analysis. Within these top 10% of sites, we highlighted four sites
that have been previously validated in the literature [6].
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