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Abstract

Motivation: Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly
evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on
multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and
inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic
relationships from incomplete experimental data while maintaining biological relevance, especially given that more than
95% of possible measurements could be missing in large-scale studies.
Results: We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into
accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction
accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining
complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal
dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates
orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the
rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background,
revealing the underlying antigenic relationships and cluster transitions.
Availability and implementation: Topolow is implemented in R and freely available at
[https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].
Contact: rohani@uga.edu
Supplementary information: Available at Bioinformatics online.

Key words: antigenic cartography, multidimensional scaling, viral evolution, cross-reactivity assay, binding affinity,
dimensionality reduction

Introduction

Understanding and tracking the antigenic evolution of viruses

is crucial for public health, particularly for rapidly evolving

pathogens like influenza that require regular vaccine updates

(Smith et al. 2004, Koel et al. 2013, Neher et al. 2016).

The ability of viruses to escape immune recognition through

antigenic change enables them to reinfect previously exposed

individuals (Harvey et al. 2016). This process, known as

antigenic drift, is quantified through cross-reactivity assays

that measure how well antibodies generated against one

virus isolate recognize and neutralize other strains (Hirst

1943, Hensley et al. 2009). Assay outcomes are expressed as

either titers (highest dilution producing measurable effect) or

concentrations (e.g. IC50 for 50% inhibition).

Given the resource-intensive nature and substantial costs of

these assays, only a small fraction of possible pairwise antigenic

relationships are measured directly. Assay measurements also

exhibit significant experimental variability (Zacour et al. 2016).

This set of non-complete and noisy pairwise immunological

measurements forms a complex network of relationships that

can be difficult to interpret directly.

The development of antigenic cartography, primarily

through multidimensional scaling (MDS), has been instrumental

in visualizing and analyzing antigenic relationships among

viruses (Smith et al. 2004). MDS-based methods project

immunological measurements into a continuous low-dimensional

space where antigenic distances between viruses correspond to

their immunological differences. A compelling demonstration

of the MDS approach to antigenic cartography was provided by

Smith et al. (2004), who used gradient descent to minimize

the sum of squared errors between predicted and measured

distances. It is implemented in the R package RACMACS

(Wilks 2022). The method does, however, face challenges with

sparse data (Bravo 2002) –a common issue as dataset size

increases (Cai et al. 2010).
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Data sparsity arises since assays such as hemagglutination

inhibition (HI) are typically constrained to a limited number of

contemporary antigens. When separate HI tables are merged

into a super-matrix, the resulting table is generally highly

incomplete, with up to 95% missing values in datasets spanning

multiple decades (Cai et al. 2010). The abundance of missing

values in a dataset forms one of the most significant barriers

to creating accurate antigenic maps (Bravo 2002, Cai et al.

2010).

Thinking of cartography from a different perspective helps

understand the problem of missing measurements. Creating

a map is equivalent to determining the coordinates of the

points in an r-dimensional space, where r can be any integer

greater than 1. If we have c points and their similarities to, or

distances from, r references are fully measured, the coordinates

of points can be exactly determined in an r-dimensional

space. However, if only a part of similarities/distances

between points and references are available, each point can

assume an infinite number of positions in the r-dimensional

space, and there will not be a unique solution. In this

case, the common approach is to use MDS to find the

positions in a lower-dimension space (Lapedes and Farber

2001). However, missing data creates a challenging trade-off

for MDS between accuracy and completeness in dimensionality

selection: Choosing more dimensions for the target space

increases accuracy but hinders finding positions for all points

when the number of measurements is smaller than the number

of dimensions. Conversely, choosing lower dimensionality

causes loss of information and compromises the accuracy

of the estimated positions. As the proportion of missing

data increases, the dimensionality selection becomes more

challenging due to insufficient constraints from the observed

distances. Furthermore, as a gradient-based algorithm,

RACMACS implementation of MDS is adversely affected by

missing data, which impact the accuracy of the magnitude and

directions of gradient vectors.

Additionally, as we demonstrate in this paper, antigenic

maps created by MDS for the same data vary substantially

between runs. This convergence instability, combined with

relatively high mapping errors, affects our ability to visualize

accurately and understand antigenic evolution with confidence,

ultimately impacting critical public health decisions in vaccine

development and viral surveillance efforts.

Several variants have been developed to improve performance

relative to MDS in the context of antigenic data, such as use of

non-metric MDS (Lapedes and Farber 2001), temporal matrix

completion (Cai et al. 2010), Bayesian MDS (Bedford et al.

2014), biological matrix completion (Huang et al. 2017), and

integrating protein structure (Harvey et al. 2023).

Here, we adopt a novel, physics-inspired optimization

framework that transforms cross-reactivity titers and binding

affinity values into spatial representations in the optimal

dimensionality. Our method is called Topological Optimization

for Low-Dimensional Mapping or Topolow. The algorithm

estimates the antigenic map through sequential optimization

of pairwise distances, reducing the multidimensional problem

to a series of one-dimensional calculations. This gradient-

free approach eliminates the need for complex gradient

computations required by RACMACS, enabling robust

performance even with substantially incomplete assay data.

As demonstrated in our results, Topolow achieves superior

accuracy compared to MDS when handling missing data.

Antigenic evolution is rarely uniform; some lineages

accelerate, whereas others stall or branch (Bush et al. 1999,

Bedford et al. 2014, Neher et al. 2016). Therefore, we

introduce antigenic velocity, a vectorial description of rate

and direction of each antigen’s drift. This offers more insight

than scalar summaries such as “antigenic advance per year”

(e.g. in (Neher et al. 2016)).

Materials and Methods

Data description and preparation
Pairwise similarity measurements, such as HI titers or

neutralization IC50 values, are typically represented in matrix

form. The matrix contains three types of entries: (i) numeric

values, (ii) threshold values that may represent either low (≤ h)

or high reactors (> h), and (iii) missing values.

A titer Tij in HI assay measures the similarity between test

antigen i and reference antigen j; this is transformed into a

dissimilarity measure denoted by Dij :

Dij = log2(Tmaxj
)− log2(Tij), (1)

where Tmaxj
represents the maximum titer value observed for

the reference antigen (Smith et al. 2004). Since experimental

conditions and antiserum potency can vary between assay

panels, we search the entire dataset for the maximum titer of

each reference antigen rather than using either the homologous

titer (Neher et al. 2016) or the maximum titer within a single

panel or clade. This approach helps normalize measurements

across different experimental batches.

Threshold values (h) are incorporated in the algorithm as

equality constraints. Missing values can be predicted by the

model once antigenic coordinates are determined.

Proposed mathematical model
The algorithm models antigenic relationships as a physical

system where test and reference antigens are represented as

similar particles in an N -dimensional space, resembling force-

directed graph layout approaches (Kobourov 2012). Each pair

of particles for which we have a measurement is connected by a

spring with a free length equal to their measured dissimilarity,

Dij . Following Hooke’s law, the magnitude of the force exerted

by the spring is proportional to the displacement from its free

length: Fs,ij,t = k(rij − Dij), where k is the spring constant

and rij is the current distance between particles i and j.

Pairs of particles lacking a direct measurement apply a

repulsive forces to each other that follows the inverse square

law: Fr,ij,t = c
r2
ij

, where c is a repulsion constant that

is fitted from data. This design choice is both biologically

sensible and computationally efficient. Previous studies have

shown that antigenic distances between temporally distant

strains tend to be large (Smith et al. 2004, Cai et al.

2010), yet such pairs are rarely measured in laboratory

assays due to logistical constraints. By applying repulsion

specifically between pairs with no measurement, our model

naturally facilitates separation while avoiding unnecessary force

calculations.

For each particle i, the total force Fi is the sum of spring

forces from its measured neighbors (Ni) and repulsive forces

from non-connected particles:

Fi = −
∑
j∈Ni

k(rij −Dij)r̂ij +
∑
j /∈Ni

(
c

r2ij

)
r̂ij , (2)

where r̂ij is the unit vector from i to j.
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Fig. 1. Schematic of the model. (A) Assay results are organized into a similarity matrix. Yellow and blue indicate reference and test antigens.

Measurements are possible only between opposite pairs. (B) The matrix is converted into a spring system, in which, antigens are represented as particles

connected by springs wherever an assay measurement exists. Dashed lines are missing measurements to be estimated by Topolow. (C) Model parameters

are fitted to maximize the likelihood of validation data. (D) Topolow finds the optimal dimensionality and coordinates of all test and reference antigens.

We assign weights to particles in their motion under the

forces, analogous to vertex-weighting schemes used in force-

directed graph layouts (Fruchterman and Reingold 1991). Each

antigen receives an effective mass mi proportional to its number

of measurements, in contrast with traditional MDS which

weights all coordinates equally. This weighting scheme provides

a natural regularization, preventing over-fitting; well-measured

antigens remain more stable while allowing antigens with fewer

measurements greater freedom of movement. The motion of

a particle during a time step follows Newton’s second law of

motion: ai = Fi

mi
, where ai denotes the acceleration of particle

i.

A critical distinction between Topolow and force-directed

graph layouts is in how distances are treated. In graph layouts,

edges typically have uniform lengths and serve mainly to keep

connected nodes close together (Fruchterman and Reingold

1991). In contrast, our model implements the true distances

through the free lengths of springs, making it suitable for

assessing quantitative relationships.

The output provides optimal N -dimensional coordinates for

all test and reference antigens. These coordinates can be used

directly for distance calculations and downstream analyses, or

passed to dimensionality reduction methods such as Principal

Component Analysis (PCA), t-distributed Stochastic Neighbor

Embedding (t-SNE), Uniform Manifold Approximation and

Projection (UMAP), or other techniques. By default, Topolow

visualizes high-dimensional output in 2D using PCA, with

appropriate scaling to preserve linearity and interpretability of

distances.

Optimization approach
The algorithm starts by setting initial positions for nodes

and optimizes the coordinates to minimize the mean absolute

error (MAE) between distances and observations. Rather

than a uniformly random initialization, we employ a

time-homogeneous Brownian-like Ornstein–Uhlenbeck diffusion

process (Lande 1976) to specify the initial antigenic trait

distribution (Bedford et al. 2014). The initialization affects

only the starting positions and does not constrain the final

solution, as particles move freely during the optimization

process.

Optimization proceeds in the N -dimensional space by

simulating the physical system’s dynamics. A random

permutation of list of particles is created at the beginning

of each cycle of simulations. At each time step, t, a single

particle i is selected and its position is updated based on the

pairwise interaction forces with one other particle, while all

other particles remain fixed. We allow the forces to act on

the particle and move it, starting from a stationary state, for

one unit of time. Spring and repulsive forces and their induced

displacements (ds,i,t and dr,i,t) are calculated as follows:

For spring forces, assuming a constant force during a

small displacement results in constant acceleration that can

be calculated using Newton’s second law: ai,t =
Fs,i,t

mi
. The

displacement of the particle during the time step, ds,i,t, can be

derived through the following independent relationships. First,

the speed at the end of the time period is calculated as:

Vt+1 = Vt + as,i,t∆t. (3)

Setting the time interval, ∆t to 1 and initial velocity Vt = 0

yields:

as,i,t = Vt+1. (4)

The average velocity in a motion with constant acceleration is

the average of the velocities at the beginning and end of the

motion:

V =
Vt + Vt+1

2
=

Vt+1

2
=

as,i,t

2
; (5)

Eq. (4) was used at the last step. We can estimate ds,i,t using

trapezium rule in discrete numerical integration as ds,i,t =

V∆t. Setting ∆t = 1 and using (5) and (4) (in this order):

ds,i,t =
as,i,t

2
=

Vt+1

2
. (6)

To express ds,i,t in terms of the latest distance of particles

i and j, rij,t, and the constants of the model, we use the rule

of conservation of energy:

1

2
kr

2
ij,t +

1

2
miV

2
t =

1

2
k(rij,t − ds,i,t)

2
+

1

2
miV

2
t+1. (7)

Substituting Vt = 0 and using (4) and (6), gives:

ds,i,t =
2krij,t

4mi + k
. (8)

For repulsive forces, plugging Fr,ij,t in Newton’s second law

yields:
c

r2ij,t
= miar,i,t. (9)

Fr,ij,t is inversely proportional to r2ij,t, hence, it is

comparably small. Consecutively, the resulting displacement

dr,i,t is small compared to rij,t, and we can approximate by

assuming a constant force during the motion. Then, similar to

(6), we will have dr,i,t =
ar,i,t

2 . Plugging it in (9)

dr,i,t =
c

2mir2ij,t
. (10)

To handle threshold constraints, spring forces are only

activated when the current distance falls below the distance
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corresponding to the threshold value. The force works to push

the distance closer to at least the threshold value. A similar

scenario happens in the opposite direction for lower bound

thresholds.

The loss function in Topolow is based on Mean Absolute

Error (MAE):

Loss(θ) =
1

n

∑
Dij ̸=NA

|Dij − rij |, (11)

where θ represents the model parameters. At the end of each

cycle (when the positions of all particles are updated), the loss

is calculated and the convergence checked against a threshold.

The full pseudo-code of the algorithm and some implementation

notes are provided in the supplementary methods.

Parameter fitting and likelihood analysis
There are four parameters in the model: the spring constant

(k), the repulsion constant (c), the dimensionality of the

antigenic space (N), and the cooling rate (α). An Adaptive

Monte Carlo (AMC) sampling approach (Bucher 1988) was

employed to construct the likelihood surface for each dataset

and determine the optimal value of each parameter, prior to

using the algorithm for mapping. Full details are provided in

the supplementary methods.

Notably, likelihood-based determination of dimensionality

enhances analytical precision compared to the ad hoc

dimensionality optimization protocols adopted in previous

studies (Smith et al. 2004, Bedford et al. 2014). Insufficient

dimensionality introduces non-uniform distortions in pairwise

distances, where some distances become artificially inflated

while others are compressed (Fig. S-1). These distortions can

generate spurious clusters or merge distinct antigenic groups,

potentially confounding biological interpretation.

Antigenic velocity
To quantify the rate and direction of antigenic change, we

introduce the antigenic velocity vector for each isolate i:

vi =

∑
j: tj<ti
j∈C(i)

Kij

xi − xj

ti − tj

∑
j: tj<ti
j∈C(i)

Kij

, (12)

where xk and tk are the map coordinates and sampling year

of isolate k. Background points j are restricted to the same

clade C(i) when a phylogeny is supplied; otherwise, all earlier

antigens are eligible. Each pair is weighted by a kernel Kij :

Kij = exp

(
−
∥xj − xi∥2

2σ2
x

)
exp

(
−

(tj − ti)
2

2σ2
t

)
, (13)

so that only temporally and antigenically proximate ancestors

contribute appreciably. σx and σt are kernel bandwidths in

antigenic and temporal dimensions. Bandwidth parameters and

clades can be set by the user or calculated automatically

based on the data. Bandwidth calculations, dynamic depth-

based clade detection based on ”average leaf-to-backbone

distance”, and limitations of the approach are discussed in the

supplementary methods.

The magnitude of vi represents the antigenic change per

unit of time (e.g. 2-fold per year), and its orientation shows the

direction of drift.

Simulation study design
To benchmark the relative performance of Topolow and MDS,

we carried out a simulation study. Three essential features

of antigenic evolution were incorporated in simulated data:

directional selective pressure, clustered antigenic phenotypes,

and measurement noise (Bush et al. 1999, Bedford et al.

2014). Arbitrary values were selected to generate these features.

Dataset complexity was characterized by dimensionality, with

antigenic coordinates generated in 2-, 5-, and 10-D spaces. A

three-step process was implemented for coordinate generation.

Initially, a trend vector was established to represent a

directional selective pressure and antigenic drift observed in

viral data (Bush et al. 1999), with a linear progression

from -10 to 10 arbitrary units across the simulated antigenic

space. Five distinct antigenic clusters were then positioned

along this trend vector, with cluster centers drawn from a

uniform random distribution over the trend length. Biological

variation was subsequently introduced through two layers: local

spread of antigens around cluster centers was drawn from a

multidimensional normal distribution (σc = 1), and global

phenotypic randomness was implemented (σg = 3.3).

For each dimensionality, 250 antigenic phenotypes were

generated and split into 150 test and 100 reference antigens to

mirror typical experimental conditions. For each dimensional

scenario, three datasets with increasing proportions of missing

measurements were created (70%, 85%, and 95%). Missing

values followed a distance-dependent pattern, preferentially

occurring between temporally and antigenically distant

antigens. Then three variants for each scenario were developed:

(1) ”Original” - the base dataset; (2) ”+Noise” - original data

with added Gaussian noise (µ = 0, σ = 5% of mean distances);

and (3) ”+Noise+Bias” - original data with both random noise

and a constant bias (5% of mean distances). Table S-1 shows a

summary of the simulated datasets.

Cross-validation experimental setup
Model performance was evaluated through 20-fold cross-

validation experiments on empirical and simulated data.

Available measurements in each antigenic distance matrix

were randomly partitioned into training (95%) and test (5%)

sets. Model parameters were fitted to the training data using

AMC simulation (see Supplementary methods), after which

both Topolow and MDS models were employed to predict

test measurements. Prediction accuracy was quantified using

validation MAE for within-data comparisons and validation

Mean Absolute Percentage Error (MAPE) for cross-data

evaluations between predicted and test antigenic distances.

Implementation
Topolow is implemented as an open-source R package (requires

R≥4.3.2) and is freely accessible on CRAN (Arhami and

Rohani 2025). Optimization of parameters within 5% error

tolerance for the H3N2 HI dataset requires 40 initial and 100

AMC samples, completing in approximately 20 minutes on an

M1 Mac (3.2GHz, 20 cores, 32GB RAM). Subsequent antigenic

map generation requires only 5 seconds on identical hardware.

For larger datasets, the algorithm supports parallel processing

through distributed computing frameworks to further reduce

computation time.
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Fig. 2. Quantification of model performance on simulated data. Validation MAPE was compared across data generated in dimensions 2, 5, and 10, three

variants of data: original, +Noise (original distances plus a 5% random noise), +Noise+Bias (original distances plus a 5% random noise and a 5% bias),

and three missing percentages: 70%, 85%, and 95%. Optimal dimensionality of each method for each scenario was determined beforehand (Fig. S-3 and

Table S-2). Numerical results are reported in Table S-3.

Results

Validation on simulated data
To rigorously benchmark the performance of Topolow, we first

designed a comprehensive simulation framework (see Materials

and Methods and Fig. S-2).

Performance comparison with MDS

Topolow was evaluated against the commonly used MDS

method for antigenic mapping, as implemented in RACMACS

(Wilks 2022). Among existing approaches (e.g. (Bedford et al.

2014, Han et al. 2019)) Topolow and traditional MDS were

distinguished by their function as standalone tools for antigenic

characterization without requiring additional data types. As

demonstrated in Fig. 2, both methods exhibited decreased

accuracy with increasing data complexity (dimensionality) and

sparsity. Notably, Topolow consistently achieved significantly

lower MAPE than MDS –typically multiple orders of magnitude

smaller– across all scenarios (paired t-tests calculated in

Tables S-4 and S-5, p < 0.0001 for all scenarios). Visual

inspection of maps created by Topolow and MDS also shows

that while MDS produces distorted relationships and fails

to position all points, Topolow maintains the clear cluster

structure almost identical to the original data. Fig. S-4 depicts

the comparison for the most challenging scenario.

Completeness of antigenic maps

A critical feature of Topolow is its complete positioning of

antigens in maps regardless of dimensionality or missing data.

In contrast, the completeness of MDS output deteriorates as

both dimensionality and the proportion of missing data increase

(Table S-6).

Bias analysis

The distributions of error for MDS maps exhibited positive bias

across all scenarios, while Topolow consistently achieved near-

zero biases (Table S-7). It is notable because antigenic distances

are usually compared against a threshold and biases can shift

antigens from non-novel to novel area, or vice versa.

Robustness to input noise and bias

One of the potential advantages of creating an antigenic map

is the reduction of errors by using multiple measurements to

determine the position of each antigen. We test this hypothesis

for each method by comparing the MAPE of its results with

known input errors. The error metrics are defined as follows: (1)

Input MAPE: The average percentage of absolute differences

between distances in the noisy/biased and the original variants

of each scenario. It is the baseline noise in the input data,

representing the experimental and measurement errors. (2)

MDS MAPE: The MAPE between the distances on the maps

created by MDS and the original distances. (3) Topolow MAPE:

The MAPE between the distances on the maps created by

Topolow and the original distances.

Table 1 shows the comparison of MAPEs for 5D scenarios

(other scenarios in Table S-8). Topolow consistently achieves

lower MAPE than MDS and typically the baseline. This

phenomenon can be attributed to Topolow’s network-based

noise cancellation mechanism. When inconsistencies arise from

random measurement errors, the spring-based physical model

naturally mitigates them through competing forces within the

network. This intrinsic error-dampening property demonstrates

Topolow’s robust ability to reduce measurement noise in the

data and reveal the underlying antigenic relationships.

Application to Empirical Datasets
We evaluated Topolow using three distinct empirical datasets

that represent different challenges in antigenic cartography.

The first is the extensively studied dataset of HI assays of

H3N2 influenza antigens from Smith et al. (2004), which

serves as the gold standard due to its careful curation and

extensive validation. The second is a larger, uncurated, HIV-

1 neutralization dataset from Los Alamos National Labs
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Table 1. Comparison of MAPE (%) in the inputs due to added

noise/bias against MAPE of locations determined by MDS and

Topolow. All errors are calculated against the known non-noisy

ground truth. Only data generated with 5 dimensions is shown; see

full data in Table S-8.

Missing Variant Input MDS Topolow

70% +Noise 5.693 29.917 3.205

70% +Noise+Bias 8.488 29.769 6.507

85% +Noise 5.420 37.041 4.073

85% +Noise+Bias 7.867 35.523 6.328

95% +Noise 4.791 48.159 5.459

95% +Noise+Bias 7.173 47.703 7.324

1.273

0.970

0.555

0.473

0.838

0.703

0.813

0.690

2.214

1.529

1.319

0.967

MAE=

SD=

−5.0

−2.5

0.0

2.5

DENV H3N2 HIV

E
rr

or
 (

va
lid

at
io

n 
da

ta
)

Algorithm MDS Topolow

Fig. 3. The distribution, MAE, and SD of validation errors across

methods, for antigenic distances of Dengue viruses with 5th to 95th

percentile (0 - 5.858), H3N2 viruses with 5th to 95th percentile (0 - 7.665)

and log(IC50) values for HIV with 5th to 95th percentile (0 - 3.864).

(Yoon et al. 2015), which presents additional challenges of

potential noise and the absence of clear established antigenic

patterns. Lastly, the smaller dataset of dengue virus (DENV)

neutralization titers (Katzelnick et al. 2015), which is unique

in comprising 4 distinct serotypes of DENV.

H3N2 influenza analysis (1968-2003)

The H3N2 HI dataset (Smith et al. 2004) contains 4,215

measurements between 273 antigens (test) and 79 antisera

(reference), spanning 1968-2003. This represents 20% of all

possible test-reference combinations, resulting in 91% missing

values in a symmetric matrix of all antigens and antisera.

Topolow’s likelihood analysis and elbow method for MDS

identified the data to be 5D and 4D, respectively (Fig. S-5 and

S-6A). Topolow achieved a validation MAE of 0.81±0.69 log2

units, comparable with MDS (MAE=0.84±0.70) although we

note that in 4D, MDS failed to find the location of all antigens

(Table S-6). Fig. 3 shows the distribution of validation errors

and detailed performance metrics across methods.

The 2D projection of the antigenic map generated by

Topolow (Fig. 4A) is strikingly similar to the map published by

Smith et al. (2004) using MDS, with consistently identified key

antigenic clusters. The presented antigenic velocities are limited

to the largest vector per cluster. The resulting arrows closely

correspond to the flagship reverse-genetics antigenic mapping

work of Koel et al. (2013) in terms of arrows’ lengths and

details –e.g. antigenic velocity vectors of BE92 cluster orient

out of SI87, not the temporally closer BE89– with the potential

advantage that our vectors are calculated automatically, mark

HK68
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VI75
TX77
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BE89

BE92

WU95

SY97

FU02
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D
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A
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D
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en
si

on
 2

B

Fig. 4. Comparison of antigenic maps estimated by (A) Topolow and (B)

MDS for H3N2 HI titers. Test antigens are shown as colored circles and

reference antigens as colored diamonds, with colors denoting antigens’

clusters inferred by Smith et al. (2004). The largest antigenic velocity

vector for each cluster is shown on map A. The map showing all vectors

is provided in Fig. S-7. Each unit on the map corresponds to a 2-fold

change in HI titer.

the exact shifted strain, needing only the sole new isolate,

rather than requiring a retrospective consensus virus for the

new cluster (Koel et al. 2013).

K-means clustering of Topolow’s map (Fig. S-8) reveals a few

differences in cluster assignments compared to those in Smith

et al. (2004). To evaluate biological relevance, we quantified the

discriminatory power of amino acid substitutions at antigenic

and receptor binding sites (Harvey et al. 2023) between both

clustering schemes using Mutual Information (MI). Analysis

demonstrates that Topolow’s clustering correlates strongly

with these established immunologically significant positions

(Fig. 5). The MI between Topolow’s clusters and key amino

acid positions were typically equal or greater than that of

Smith et al. (2004) clusters, indicating our purely data-driven

approach captures antigenic clusters with equivalent or superior

biological relevance.

HIV and DENV neutralization data

The HIV neutralization dataset comprises IC50 measurements

between 284 antigens and 51 antibodies from HIV-1 subtypes

B and C, the subtypes accounting for over 50% of global HIV

infections (Buonaguro et al. 2007). The distance matrix is 94%

incomplete.

IC50 values directly measure antigenic dissimilarity but

showed strong right-skew, necessitating log-transformation

during pre-processing. Both Topolow and MDS identified 2 as

the optimal dimensionality for mapping these data (Fig. S-9

and S-6B). Topolow achieved a validation MAE of 1.32±0.97
log2 units –a 41% improvement over MDS (MAE=2.21±1.53 ).

The resulting antigenic map (Fig. 6A) reveals a pattern of

antigenic clustering by viral subtype. It should be noted that

antigenic drift in HIV does not exhibit a systematic trend, and

larger velocity vectors are common in subtype C, corroborating
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Fig. 5. Evaluation of discriminatory power of amino acid substitutions

in antigenic and receptor binding sites. Only positions with MI>0.05

are shown. In total,
∑

(MI in Topolow clusters) >
∑

(MI in Smith et al.

clusters) by 0.1.
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Fig. 6. (A) 2D visualization of HIV antigenic maps created by Topolow,

colored by subtypes. Antigenic velocity arrows longer than 1 unit are

shown. (B) Same map with DENV data. Arrows longer than 0.1 unit are

shown. Each unit on the maps corresponds to a 2-fold change in titer. See

maps showing all arrows in Fig. S-10 and S-12 and similar maps by MDS

in S-13 and S-14.

previous findings of the highest genomic substitution rate in

this subtype (Patino-Galindo and Gonzalez-Candelas 2017).

The DENV data comprises 47 viruses and 1839 neutralization

titers. The distance matrix is 77% incomplete. Topolow selected

10 as the optimal dimensionality and after positioning every

virus achieved a validation MAE of 0.56±0.68 log2 units, 56%

lower than MDS (2.21±1.53) in 3-D (optimal dimensions).

The resulting map (Fig. 6B) preserves the expected serotype

structure while demonstrating slightly smaller distances

compared to the map produced by MDS (Katzelnick et al.

2015). Comparison with the data proves that the difference is

due to a bias of +1 fold in MDS results (Fig. 3). Consistent

with being the most prevalent serotype for decades (Costa et al.

2012), DENV2 demonstrates a more pronounced trend in its

antigenic evolution, with arrows indicating evolution away from

other serotypes. More detailed analyses on HIV and DENV

antigenic maps are warranted, but beyond the scope of this

article.

Table 2. Run-to-run stability analysis (Procrustes sum of squares)

Data Method Mean SD t-test

H3N2 TopoLow 37.70 22.35
p < 0.001

H3N2 MDS 3665.55 3121.34

HIV TopoLow 483.88 244.48
p < 0.001

HIV MDS 1115.81 339.23

DENV TopoLow 61.85 23.13
p < 0.001

DENV MDS 43.22 37.74

Convergence stability analysis

It is critical for policy applications that antigenic characterizations

be consistent across multiple runs of any method. To quantify

the stability of Topolow and MDS, 15 independent 2D maps

were created by each method for all 3 empirical datasets to have

105 paired maps (
(15

2

)
= 105) for each of the 6 method-data

combinations, yielding sufficient power in paired t-tests. MDS

was allowed to repeat each run 1000 times and keep the result

with the smallest sum of squared errors to avoid convergence

to a local optimum. Run-to-run variation for each method-data

combination was evaluated by calculating Procrustes sum of

squared errors (PSSE) for the 105 paired maps. Since each pair

of maps is generated by the same method on the same data,

they should not, in principle, differ significantly.

The mean and variance of PSSEs are shown in Table 2.

Topolow demonstrated better stability on H3N2 and HIV –

larger data with higher missing proportion– with mean PSSE

orders of magnitude smaller than MDS for both datasets,

confirmed by paired t-tests (p < 0.001). However, the mean

PSSE of MDS was significantly smaller on DENV –small data

with lower missing proportion. The standard deviations of

PSSEs were lower for Topolow in all cases, indicating more

consistent performance across runs, confirmed by F-tests for

variances (p < 0.001).

Discussion

Understanding and quantifying the antigenic evolution of

rapidly evolving viral pathogens, including influenza (Smith

et al. 2004), SARS-CoV-2 (Wilks et al. 2023), HIV (Haynes

and Montefiori 2006), dengue (Katzelnick et al. 2015),

and Hepatitis C (Lara et al. 2008), is crucial for public

health surveillance and the design of effective intervention

strategies (Hadfield et al. 2018). Current methods for antigenic

cartography, primarily based on multidimensional scaling

(MDS), face limitations when handling complexity and sparse

datasets –a common issue as experimental data grow in size. Up

to 95% of possible measurements may be missing in large-scale

studies, compromising the accuracy and stability of resulting

maps (Haynes and Montefiori 2006, Wikramaratna et al.

2013).

We have developed Topolow, a physics-inspired optimization

framework that effectively addresses key challenges in

antigenic cartography. When tested on various empirical

and simulated datasets, Topolow demonstrated several

advantages over traditional MDS approaches: (1) Superior

handling of missing data through independent optimization of

pairwise relationships (2) Automatic determination of optimal

dimensionality through likelihood-based estimation (3) Orders

of magnitude better consistency of results across multiple runs

(4) Effective reduction of experimental noise and bias.
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The mechanistic foundations of these improvements derive

from several key algorithmic features. First, while traditional

MDS approaches calculate global gradient vectors that are

susceptible to local optima, Topolow’s sequential pairwise

optimization approach updates particle positions one pair at a

time. This reduces susceptibility to local minima and decreases

sensitivity to missing data patterns, as each subsequent pair

can help the system escape suboptimal configurations. Second,

the physics-inspired spring network organically distributes and

dampens individual disturbances—when noisy measurements

attempt to pull a particle to an incorrect position collective

forces from other connections resist this deviation, averaging

out errors. Third, Topolow’s stability improvements are

further enhanced by its robust error modeling using Laplace

distribution, providing better resilience against outliers in

serological data. Fourth, The cooling schedule creates a

balanced exploration-exploitation approach, allowing initial

broad exploration followed by gradual refinement. Finally,

continuous stochasticity through random pair selection in

each iteration introduces persistent randomization throughout

optimization, helping the algorithm thoroughly explore the

solution space and avoid premature convergence to suboptimal

configurations. These mechanisms work synergistically to

overcome the limitations of gradient-based approaches when

handling sparse datasets, reduce sensitivity to experimental

noise, and produce more consistent maps.

The smaller improvement observed with empirical data

compared to our simulation studies reflects complex non-metric

characteristics in biological reality compared to synthetic

data. Furthermore, the H3N2 dataset represents a carefully

curated benchmark that has been extensively analyzed with

existing RACMACS implementation of MDS, potentially

approaching optimal achievable performance. This underscores

the importance of evaluating algorithmic performance across

diverse datasets with varying characteristics, as demonstrated

by the substantially larger improvements (56% and 41%)

achieved with DENV and HIV neutralization data.

We have introduced the new concept of antigenic velocity,

which offers a potentially insightful view of the direction and

magnitude of evolution of isolates through antigenic space

relative to the immunity landscape created by their immediate

predecessors. It indicates whether the virus has become

relatively better at escaping neutralization by certain sera

versus others. The antigenic velocity field reveals punctuated

shifts in H3N2 (Fig. 4A and S-7), scattered movement in HIV-1

(Fig. 6A), and an evolutionary trend away from other serotypes

in DENV2 (Fig. 6B). One large vector, or several small aligned

vectors, has typically preceded the emergence of new antigenic

clusters in influenza, suggesting that velocity hotspots may offer

early warning of future lineage replacements.

By uncovering distances between all antigens, including

those lacking direct measurements, Topolow effectively

multiplies the training data available for downstream machine

learning models, e.g. (Lara et al. 2008, Lees et al. 2010,

Steinbruck et al. 2014, Jia et al. 2024). The method can

characterize any continuous and relational phenotype under

directional selection pressure, extending its utility beyond viral

antigenic mapping to broader evolutionary studies (Pybus and

Rambaut 2009).

Recent work has demonstrated the value of combining

antigenic characterization with other data types for surveillance

and vaccine strain selection (Liao et al. 2008, Xia et al.

2009, Steinbruck et al. 2014, Ritchie et al. 2015, Huang

et al. 2017, Harvey et al. 2023). Topolow could enhance

such efforts by providing comprehensive, accurate, and stable

antigenic characterization across the viral strains. Topolow’s

ability to predict antigenic phenotypes for under-characterized

strains could be particularly valuable for early detection of

emerging variants and examining early indicators of cluster

success (Neher et al. 2016).

Limitations of the current implementation include: (1)

inability to connect completely disconnected subgraphs in

the measurement network, (2) assumption of directional

selection pressure in temporal initialization, and (3) relative

computational intensity.
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