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Abstract

Motivation: Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly
evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on
multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and
inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic
relationships from incomplete experimental data while maintaining biological relevance, especially given that more than
95% of possible measurements could be missing in large-scale studies.

Results: We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into
accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction
accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining
complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal
dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates
orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the
rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background,
revealing the underlying antigenic relationships and cluster transitions.

Availability and implementation: Topolow is implemented in R and freely available at
[https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].

Contact: rohaniQuga.edu

Supplementary information: Available at Bioinformatics online.

Key words: antigenic cartography, multidimensional scaling, viral evolution, cross-reactivity assay, binding affinity,
dimensionality reduction

Introduction This set of non-complete and noisy pairwise immunological

. . . . . . measurements forms a complex network of relationships that
Understanding and tracking the antigenic evolution of viruses . i R
. . . . . . can be difficult to interpret directly.
is crucial for public health, particularly for rapidly evolving X . X .
. . Rk X The development of antigenic cartography, primarily
pathogens like influenza that require regular vaccine updates

(Smith et al. 2004, Koel et al. 2013, Neher et al. 2016).
The ability of viruses to escape immune recognition through

through multidimensional scaling (MDS), has been instrumental
in visualizing and analyzing antigenic relationships among
viruses (Smith et al. 2004). MDS-based methods project

antigenic change enables them to reinfect previously exposed X . ] . R X
. . immunological measurements into a continuous low-dimensional
individuals (Harvey et al. 2016). This process, known as . o R
. . . . . .. space where antigenic distances between viruses correspond to
antigenic drift, is quantified through cross-reactivity assays . N X . .
. . . their immunological differences. A compelling demonstration
that measure how well antibodies generated against one . X R
K . . . . . of the MDS approach to antigenic cartography was provided by
virus isolate recognize and neutralize other strains (Hirst . . L.
Smith et al. (2004), who used gradient descent to minimize
1943, Hensley et al. 2009). Assay outcomes are expressed as i
the sum of squared errors between predicted and measured

distances. It is implemented in the R package RACMACS
(Wilks 2022). The method does, however, face challenges with
sparse data (Bravo 2002) —a common issue as dataset size
increases (Cai et al. 2010).

either titers (highest dilution producing measurable effect) or
concentrations (e.g. IC5¢ for 50% inhibition).

Given the resource-intensive nature and substantial costs of
these assays, only a small fraction of possible pairwise antigenic
relationships are measured directly. Assay measurements also
exhibit significant experimental variability (Zacour et al. 2016).

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 1
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

GZ0Z aun 9z uo Jasn salieiqi] e1bi1oas) Jo AlsisAiun Aq 6¥6E . L8/ CIRIG/SONBUWIOIUIOIN/SE0 L 0 | /I0P/8|01B-80UBAPE/SOIIBWIOIUIOIG/WOD dNo olwepeoe)/:sdiy Wwolj papeojumod


https://orcid.org/0009-0005-2681-6598
https://orcid.org/0000-0002-7221-3801
email:rohani@uga.edu

oNOYTULT D WN =

Bioinformatics

2 | Arhami and Rohani

Data sparsity arises since assays such as hemagglutination
inhibition (HI) are typically constrained to a limited number of
contemporary antigens. When separate HI tables are merged
into a super-matrix, the resulting table is generally highly
incomplete, with up to 95% missing values in datasets spanning
multiple decades (Cai et al. 2010). The abundance of missing
values in a dataset forms one of the most significant barriers
to creating accurate antigenic maps (Bravo 2002, Cai et al.
2010).

Thinking of cartography from a different perspective helps
understand the problem of missing measurements. Creating
a map is equivalent to determining the coordinates of the
points in an r-dimensional space, where r can be any integer
greater than 1. If we have ¢ points and their similarities to, or
distances from, r references are fully measured, the coordinates
of points can be exactly determined in an 7-dimensional
space. However, if only a part of similarities/distances
between points and references are available, each point can
assume an infinite number of positions in the r-dimensional
space, and there will not be a unique solution. In this
case, the common approach is to use MDS to find the
positions in a lower-dimension space (Lapedes and Farber
2001). However, missing data creates a challenging trade-off
for MDS between accuracy and completeness in dimensionality
selection: Choosing more dimensions for the target space
increases accuracy but hinders finding positions for all points
when the number of measurements is smaller than the number
of dimensions. Conversely, choosing lower dimensionality
causes loss of information and compromises the accuracy
of the estimated positions. As the proportion of missing
data increases, the dimensionality selection becomes more
challenging due to insufficient constraints from the observed
distances. Furthermore, as a gradient-based algorithm,
RACMACS implementation of MDS is adversely affected by
missing data, which impact the accuracy of the magnitude and
directions of gradient vectors.

Additionally, as we demonstrate in this paper, antigenic
maps created by MDS for the same data vary substantially
between runs. This convergence instability, combined with
relatively high mapping errors, affects our ability to visualize
accurately and understand antigenic evolution with confidence,
ultimately impacting critical public health decisions in vaccine
development and viral surveillance efforts.

Several variants have been developed to improve performance
relative to MDS in the context of antigenic data, such as use of
non-metric MDS (Lapedes and Farber 2001), temporal matrix
completion (Cai et al. 2010), Bayesian MDS (Bedford et al.
2014), biological matrix completion (Huang et al. 2017), and
integrating protein structure (Harvey et al. 2023).

Here, we adopt a novel, physics-inspired optimization
framework that transforms cross-reactivity titers and binding
affinity values into spatial representations in the optimal
dimensionality. Our method is called Topological Optimization
for Low-Dimensional Mapping or Topolow. The algorithm
estimates the antigenic map through sequential optimization
of pairwise distances, reducing the multidimensional problem
to a series of one-dimensional calculations. This gradient-
free approach eliminates the need for complex gradient
RACMACS,

performance even with substantially incomplete assay data.

computations required by enabling robust

As demonstrated in our results, Topolow achieves superior

accuracy compared to MDS when handling missing data.
Antigenic evolution is rarely uniform; some lineages

accelerate, whereas others stall or branch (Bush et al. 1999,

Bedford et al. 2014, Neher et al. 2016). Therefore, we
introduce antigenic velocity, a vectorial description of rate
and direction of each antigen’s drift. This offers more insight
than scalar summaries such as “antigenic advance per year”
(e.g. in (Neher et al. 2016)).

Materials and Methods

Data description and preparation

Pairwise similarity measurements, such as HI titers or
neutralization ICj5¢ values, are typically represented in matrix
form. The matrix contains three types of entries: (i) numeric
values, (ii) threshold values that may represent either low (< h)
or high reactors (> h), and (iii) missing values.

A titer T;; in HI assay measures the similarity between test
antigen 7 and reference antigen j; this is transformed into a
dissimilarity measure denoted by D;;:

D;; = log, (Tmam,) - 10g2(Tij)7 (1)

where Ty, q.; represents the maximum titer value observed for
the reference antigen (Smith et al. 2004). Since experimental
conditions and antiserum potency can vary between assay
panels, we search the entire dataset for the maximum titer of
each reference antigen rather than using either the homologous
titer (Neher et al. 2016) or the maximum titer within a single
panel or clade. This approach helps normalize measurements
across different experimental batches.

Threshold values (h) are incorporated in the algorithm as
equality constraints. Missing values can be predicted by the
model once antigenic coordinates are determined.

Proposed mathematical model

The algorithm models antigenic relationships as a physical
system where test and reference antigens are represented as
similar particles in an N-dimensional space, resembling force-
directed graph layout approaches (Kobourov 2012). Each pair
of particles for which we have a measurement is connected by a
spring with a free length equal to their measured dissimilarity,
D;;. Following Hooke’s law, the magnitude of the force exerted
by the spring is proportional to the displacement from its free
length: Fg ;5 = k(r;; — D;j), where k is the spring constant
and 7r;; is the current distance between particles 7 and j.

Pairs of particles lacking a direct measurement apply a
repulsive forces to each other that follows the inverse square
law: Fg ¢ = r—i7 where ¢ is a repulsion constant that
is fitted from dat;. This design choice is both biologically
sensible and computationally efficient. Previous studies have
shown that antigenic distances between temporally distant
strains tend to be large (Smith et al. 2004, Cai et al.
2010), yet such pairs are rarely measured in laboratory
assays due to logistical constraints. By applying repulsion
specifically between pairs with no measurement, our model
naturally facilitates separation while avoiding unnecessary force
calculations.

For each particle ¢, the total force F; is the sum of spring
forces from its measured neighbors (N;) and repulsive forces
from non-connected particles:

Fi=— > k(rij — Dij)ti; + > (%) Fij, (2)

JEN, jen, \Tij

where t;; is the unit vector from i to j.
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corresponding to the threshold value. The force works to push
the distance closer to at least the threshold value. A similar
scenario happens in the opposite direction for lower bound
thresholds.

The loss function in Topolow is based on Mean Absolute
Error (MAE):

1
Loss(0) = - Z [Dij — 7rijl, (11)
D, ZNA

where 0 represents the model parameters. At the end of each
cycle (when the positions of all particles are updated), the loss
is calculated and the convergence checked against a threshold.
The full pseudo-code of the algorithm and some implementation
notes are provided in the supplementary methods.

Parameter fitting and likelihood analysis

There are four parameters in the model: the spring constant
(k), the repulsion constant (c¢), the dimensionality of the
antigenic space (IN), and the cooling rate (a). An Adaptive
Monte Carlo (AMC) sampling approach (Bucher 1988) was
employed to construct the likelihood surface for each dataset
and determine the optimal value of each parameter, prior to
using the algorithm for mapping. Full details are provided in
the supplementary methods.

Notably, likelihood-based determination of dimensionality
enhances analytical precision compared to the ad hoc
dimensionality optimization protocols adopted in previous
studies (Smith et al. 2004, Bedford et al. 2014). Insufficient
dimensionality introduces non-uniform distortions in pairwise
distances, where some distances become artificially inflated
while others are compressed (Fig. S-1). These distortions can
generate spurious clusters or merge distinct antigenic groups,
potentially confounding biological interpretation.

Antigenic velocity

To quantify the rate and direction of antigenic change, we
introduce the antigenic velocity vector for each isolate i:

O T

Jit;<t; v tj
JEC(d)
Vi, = —————— (12)
> Ky
gty <t;
JEC(3)

where x;, and t; are the map coordinates and sampling year
of isolate k. Background points j are restricted to the same
clade C(i) when a phylogeny is supplied; otherwise, all earlier
antigens are eligible. Each pair is weighted by a kernel Kj;:

llx; — xall? (t; — t:)*
K;j :eXP<—T exp| — T 202 ) (13)

so that only temporally and antigenically proximate ancestors
contribute appreciably. o, and o, are kernel bandwidths in
antigenic and temporal dimensions. Bandwidth parameters and
clades can be set by the user or calculated automatically
based on the data. Bandwidth calculations, dynamic depth-
based clade detection based on ”average leaf-to-backbone
distance”, and limitations of the approach are discussed in the
supplementary methods.

The magnitude of v; represents the antigenic change per
unit of time (e.g. 2-fold per year), and its orientation shows the
direction of drift.

Simulation study design

To benchmark the relative performance of Topolow and MDS,
we carried out a simulation study. Three essential features
of antigenic evolution were incorporated in simulated data:
directional selective pressure, clustered antigenic phenotypes,
and measurement noise (Bush et al. 1999, Bedford et al.
2014). Arbitrary values were selected to generate these features.
Dataset complexity was characterized by dimensionality, with
antigenic coordinates generated in 2-, 5-; and 10-D spaces. A
three-step process was implemented for coordinate generation.
Initially, a trend vector was established to represent a
directional selective pressure and antigenic drift observed in
viral data (Bush et al. 1999), with a linear progression
from -10 to 10 arbitrary units across the simulated antigenic
space. Five distinct antigenic clusters were then positioned
along this trend vector, with cluster centers drawn from a
uniform random distribution over the trend length. Biological
variation was subsequently introduced through two layers: local
spread of antigens around cluster centers was drawn from a
multidimensional normal distribution (¢, = 1), and global
phenotypic randomness was implemented (o4 = 3.3).

For each dimensionality, 250 antigenic phenotypes were
generated and split into 150 test and 100 reference antigens to
mirror typical experimental conditions. For each dimensional
scenario, three datasets with increasing proportions of missing
measurements were created (70%, 85%, and 95%). Missing
values followed a distance-dependent pattern, preferentially
occurring between temporally and antigenically distant
antigens. Then three variants for each scenario were developed:
(1) ”Original” - the base dataset; (2) ”+Noise” - original data
with added Gaussian noise (¢ = 0, 0 = 5% of mean distances);
and (3) ”+Noise+Bias” - original data with both random noise
and a constant bias (5% of mean distances). Table S-1 shows a
summary of the simulated datasets.

Cross-validation experimental setup

Model performance was evaluated through 20-fold cross-
validation experiments on empirical and simulated data.
Available measurements in each antigenic distance matrix
were randomly partitioned into training (95%) and test (5%)
sets. Model parameters were fitted to the training data using
AMC simulation (see Supplementary methods), after which
both Topolow and MDS models were employed to predict
test measurements. Prediction accuracy was quantified using
validation MAE for within-data comparisons and validation
Mean Absolute Percentage Error (MAPE) for cross-data
evaluations between predicted and test antigenic distances.

Implementation

Topolow is implemented as an open-source R package (requires
R>4.3.2) and is freely accessible on CRAN (Arhami and
Rohani 2025). Optimization of parameters within 5% error
tolerance for the H3N2 HI dataset requires 40 initial and 100
AMC samples, completing in approximately 20 minutes on an
M1 Mac (3.2GHz, 20 cores, 32GB RAM). Subsequent antigenic
map generation requires only 5 seconds on identical hardware.
For larger datasets, the algorithm supports parallel processing
through distributed computing frameworks to further reduce
computation time.
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Fig. 2. Quantification of model performance on simulated data. Validation MAPE was compared across data generated in dimensions 2, 5, and 10, three

variants of data: original, +Noise (original distances plus a 5% random noise), +Noise+Bias (original distances plus a 5% random noise and a 5% bias),

and three missing percentages: 70%, 85%, and 95%. Optimal dimensionality of each method for each scenario was determined beforehand (Fig. S-3 and

Table S-2). Numerical results are reported in Table S-3.

Results

Validation on simulated data

To rigorously benchmark the performance of Topolow, we first
designed a comprehensive simulation framework (see Materials
and Methods and Fig. S-2).

Performance comparison with MDS

Topolow was evaluated against the commonly used MDS
method for antigenic mapping, as implemented in RACMACS
(Wilks 2022). Among existing approaches (e.g. (Bedford et al.
2014, Han et al. 2019)) Topolow and traditional MDS were
distinguished by their function as standalone tools for antigenic
characterization without requiring additional data types. As
demonstrated in Fig. 2, both methods exhibited decreased
accuracy with increasing data complexity (dimensionality) and
sparsity. Notably, Topolow consistently achieved significantly
lower MAPE than MDS —typically multiple orders of magnitude
smaller— across all scenarios (paired t-tests calculated in
Tables S-4 and S-5, p < 0.0001 for all scenarios). Visual
inspection of maps created by Topolow and MDS also shows
that while MDS produces distorted relationships and fails
to position all points, Topolow maintains the clear cluster
structure almost identical to the original data. Fig. S-4 depicts
the comparison for the most challenging scenario.

Completeness of antigenic maps

A critical feature of Topolow is its complete positioning of
antigens in maps regardless of dimensionality or missing data.
In contrast, the completeness of MDS output deteriorates as
both dimensionality and the proportion of missing data increase
(Table S-6).

Bias analysis

The distributions of error for MDS maps exhibited positive bias
across all scenarios, while Topolow consistently achieved near-
zero biases (Table S-7). It is notable because antigenic distances

are usually compared against a threshold and biases can shift
antigens from non-novel to novel area, or vice versa.

Robustness to input noise and bias

One of the potential advantages of creating an antigenic map
is the reduction of errors by using multiple measurements to
determine the position of each antigen. We test this hypothesis
for each method by comparing the MAPE of its results with
known input errors. The error metrics are defined as follows: (1)
Input MAPE: The average percentage of absolute differences
between distances in the noisy/biased and the original variants
of each scenario. It is the baseline noise in the input data,
representing the experimental and measurement errors. (2)
MDS MAPE: The MAPE between the distances on the maps
created by MDS and the original distances. (3) Topolow MAPE:
The MAPE between the distances on the maps created by
Topolow and the original distances.

Table 1 shows the comparison of MAPEs for 5D scenarios
(other scenarios in Table S-8). Topolow consistently achieves
lower MAPE than MDS and typically the baseline. This
phenomenon can be attributed to Topolow’s network-based
noise cancellation mechanism. When inconsistencies arise from
random measurement errors, the spring-based physical model
naturally mitigates them through competing forces within the
network. This intrinsic error-dampening property demonstrates
Topolow’s robust ability to reduce measurement noise in the
data and reveal the underlying antigenic relationships.

Application to Empirical Datasets

We evaluated Topolow using three distinct empirical datasets
that represent different challenges in antigenic cartography.
The first is the extensively studied dataset of HI assays of
H3N2 influenza antigens from Smith et al. (2004), which
serves as the gold standard due to its careful curation and
extensive validation. The second is a larger, uncurated, HIV-
1 neutralization dataset from Los Alamos National Labs
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Table 1. Comparison of MAPE (%) in the inputs due to added
noise/bias against MAPE of locations determined by MDS and
Topolow. All errors are calculated against the known non-noisy
ground truth. Only data generated with 5 dimensions is shown; see
full data in Table S-8.

Missing Variant Input MDS Topolow
70% +Noise 5.693 29.917 3.205
70% +Noise+Bias 8.488 29.769 6.507
85% +Noise 5.420 37.041 4.073
85% +Noise+Bias 7.867 35.523 6.328
95% +Noise 4.791 48.159 5.459
95% +Noise+Bias 7.173 47.703 7.324
a5 Algorithm B3 MDS EJ Topolow
’g 0.0 I | ]
= l—‘_‘ C e
k=]
g
E—z.s
s
i}
-5.0
MAE=1.273 0.555 0.838 0.813 2.214 1.319
SD= 0.970 0.473 0.703 0.690 1.529 0.967

DENV H3N2 HIV

Fig. 3. The distribution, MAE, and SD of validation errors across
methods, for antigenic distances of Dengue viruses with 5th to 95th
percentile (0 - 5.858), H3N2 viruses with 5th to 95th percentile (0 - 7.665)
and log(IC5g) values for HIV with 5th to 95th percentile (0 - 3.864).

(Yoon et al. 2015), which presents additional challenges of
potential noise and the absence of clear established antigenic
patterns. Lastly, the smaller dataset of dengue virus (DENV)
neutralization titers (Katzelnick et al. 2015), which is unique
in comprising 4 distinct serotypes of DENV.

H3N2 influenza analysis (1968-2003)

The H3N2 HI dataset (Smith et al. 2004) contains 4,215
measurements between 273 antigens (test) and 79 antisera
(reference), spanning 1968-2003. This represents 20% of all
possible test-reference combinations, resulting in 91% missing
values in a symmetric matrix of all antigens and antisera.

Topolow’s likelihood analysis and elbow method for MDS
identified the data to be 5D and 4D, respectively (Fig. S-5 and
S-6A). Topolow achieved a validation MAE of 0.814+0.69 logs
units, comparable with MDS (MAE=0.84+0.70) although we
note that in 4D, MDS failed to find the location of all antigens
(Table S-6). Fig. 3 shows the distribution of validation errors
and detailed performance metrics across methods.

The 2D projection of the antigenic map generated by
Topolow (Fig. 4A) is strikingly similar to the map published by
Smith et al. (2004) using MDS, with consistently identified key
antigenic clusters. The presented antigenic velocities are limited
to the largest vector per cluster. The resulting arrows closely
correspond to the flagship reverse-genetics antigenic mapping
work of Koel et al. (2013) in terms of arrows’ lengths and
details —e.g. antigenic velocity vectors of BE92 cluster orient
out of SI87, not the temporally closer BE89— with the potential
advantage that our vectors are calculated automatically, mark

KIK68
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-5 0 5 -5 0 5
Dimension 1 Dimension 1

Fig. 4. Comparison of antigenic maps estimated by (A) Topolow and (B)
MDS for H3N2 HI titers. Test antigens are shown as colored circles and
reference antigens as colored diamonds, with colors denoting antigens’
clusters inferred by Smith et al. (2004). The largest antigenic velocity
vector for each cluster is shown on map A. The map showing all vectors
is provided in Fig. S-7. Each unit on the map corresponds to a 2-fold
change in HI titer.

the exact shifted strain, needing only the sole new isolate,
rather than requiring a retrospective consensus virus for the
new cluster (Koel et al. 2013).

K-means clustering of Topolow’s map (Fig. S-8) reveals a few
differences in cluster assignments compared to those in Smith
et al. (2004). To evaluate biological relevance, we quantified the
discriminatory power of amino acid substitutions at antigenic
and receptor binding sites (Harvey et al. 2023) between both
clustering schemes using Mutual Information (MI). Analysis
demonstrates that Topolow’s clustering correlates strongly
with these established immunologically significant positions
(Fig. 5). The MI between Topolow’s clusters and key amino
acid positions were typically equal or greater than that of
Smith et al. (2004) clusters, indicating our purely data-driven
approach captures antigenic clusters with equivalent or superior
biological relevance.

HIV and DENV neutralization data

The HIV neutralization dataset comprises IC5¢ measurements
between 284 antigens and 51 antibodies from HIV-1 subtypes
B and C, the subtypes accounting for over 50% of global HIV
infections (Buonaguro et al. 2007). The distance matrix is 94%
incomplete.

IC5¢ values directly measure antigenic dissimilarity but
showed strong right-skew, necessitating log-transformation
during pre-processing. Both Topolow and MDS identified 2 as
the optimal dimensionality for mapping these data (Fig. S-9
and S-6B). Topolow achieved a validation MAE of 1.32+0.97
logs units —a 41% improvement over MDS (MAE=2.214+1.53 ).

The resulting antigenic map (Fig. 6A) reveals a pattern of
antigenic clustering by viral subtype. It should be noted that
antigenic drift in HIV does not exhibit a systematic trend, and
larger velocity vectors are common in subtype C, corroborating
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Fig. 5. Evaluation of discriminatory power of amino acid substitutions
in antigenic and receptor binding sites. Only positions with MI>0.05
are shown. In total, > (MI in Topolow clusters) >>(MI in Smith et al.
clusters) by 0.1.
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Fig. 6. (A) 2D visualization of HIV antigenic maps created by Topolow,
colored by subtypes. Antigenic velocity arrows longer than 1 unit are
shown. (B) Same map with DENV data. Arrows longer than 0.1 unit are
shown. Each unit on the maps corresponds to a 2-fold change in titer. See
maps showing all arrows in Fig. S-10 and S-12 and similar maps by MDS
in S-13 and S-14.

previous findings of the highest genomic substitution rate in
this subtype (Patino-Galindo and Gonzalez-Candelas 2017).
The DENV data comprises 47 viruses and 1839 neutralization
titers. The distance matrix is 77% incomplete. Topolow selected
10 as the optimal dimensionality and after positioning every
virus achieved a validation MAE of 0.56+0.68 log, units, 56%
lower than MDS (2.21£1.53) in 3-D (optimal dimensions).
The resulting map (Fig. 6B) preserves the expected serotype
slightly
compared to the map produced by MDS (Katzelnick et al.

structure while demonstrating smaller distances
2015). Comparison with the data proves that the difference is
due to a bias of +1 fold in MDS results (Fig. 3). Consistent
with being the most prevalent serotype for decades (Costa et al.
2012), DENV2 demonstrates a more pronounced trend in its
antigenic evolution, with arrows indicating evolution away from
More detailed analyses on HIV and DENV

antigenic maps are warranted, but beyond the scope of this

other serotypes.

article.
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Table 2. Run-to-run stability analysis (Procrustes sum of squares)

Data Method Mean SD t-test
H3N2 TopoLow 37.70 22.35 < 0.001
H3N2 MDS 3665.55 3121.34 LS
HIV TopoLow 483.88 244.48

0.001
HIV MDS 1115.81 339.23 p<
DENV TopoLow 61.85 23.13
DENV MDS 43.22 37.74 p < 0.001

Convergence stability analysis

It is critical for policy applications that antigenic characterizations

be consistent across multiple runs of any method. To quantify
the stability of Topolow and MDS, 15 independent 2D maps
were created by each method for all 3 empirical datasets to have
105 paired maps ((*7) = 105) for each of the 6 method-data
combinations, yielding sufficient power in paired t-tests. MDS
was allowed to repeat each run 1000 times and keep the result
with the smallest sum of squared errors to avoid convergence
to a local optimum. Run-to-run variation for each method-data
combination was evaluated by calculating Procrustes sum of
squared errors (PSSE) for the 105 paired maps. Since each pair
of maps is generated by the same method on the same data,
they should not, in principle, differ significantly.

The mean and variance of PSSEs are shown in Table 2.
Topolow demonstrated better stability on H3N2 and HIV -
larger data with higher missing proportion— with mean PSSE
orders of magnitude smaller than MDS for both datasets,
confirmed by paired t-tests (p < 0.001). However, the mean
PSSE of MDS was significantly smaller on DENV —small data
with lower missing proportion. The standard deviations of
PSSEs were lower for Topolow in all cases, indicating more
consistent performance across runs, confirmed by F-tests for
variances (p < 0.001).

Discussion

Understanding and quantifying the antigenic evolution of
rapidly evolving viral pathogens, including influenza (Smith
et al. 2004), SARS-CoV-2 (Wilks et al. 2023), HIV (Haynes
and Montefiori 2006), dengue (Katzelnick et al. 2015),
and Hepatitis C (Lara et al. 2008), is crucial for public
health surveillance and the design of effective intervention
strategies (Hadfield et al. 2018). Current methods for antigenic
cartography, primarily based on multidimensional scaling
(MDS), face limitations when handling complexity and sparse
datasets —a common issue as experimental data grow in size. Up
to 95% of possible measurements may be missing in large-scale
studies, compromising the accuracy and stability of resulting
maps (Haynes and Montefiori 2006, Wikramaratna et al.
2013).

‘We have developed Topolow, a physics-inspired optimization
framework that

effectively addresses key challenges in

antigenic cartography. When tested on various empirical

and simulated datasets, Topolow demonstrated several

advantages over traditional MDS approaches: (1) Superior
handling of missing data through independent optimization of
pairwise relationships (2) Automatic determination of optimal
dimensionality through likelihood-based estimation (3) Orders
of magnitude better consistency of results across multiple runs

(4) Effective reduction of experimental noise and bias.
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The mechanistic foundations of these improvements derive
from several key algorithmic features. First, while traditional
MDS approaches calculate global gradient vectors that are
susceptible to local optima, Topolow’s sequential pairwise
optimization approach updates particle positions one pair at a
time. This reduces susceptibility to local minima and decreases
sensitivity to missing data patterns, as each subsequent pair
can help the system escape suboptimal configurations. Second,
the physics-inspired spring network organically distributes and
dampens individual disturbances—when noisy measurements
attempt to pull a particle to an incorrect position collective
forces from other connections resist this deviation, averaging
out errors. Third, Topolow’s stability improvements are
further enhanced by its robust error modeling using Laplace
distribution, providing better resilience against outliers in
serological data. Fourth, The cooling schedule creates a
balanced exploration-exploitation approach, allowing initial
broad exploration followed by gradual refinement. Finally,
continuous stochasticity through random pair selection in
each iteration introduces persistent randomization throughout
optimization, helping the algorithm thoroughly explore the
solution space and avoid premature convergence to suboptimal
configurations. These mechanisms work synergistically to
overcome the limitations of gradient-based approaches when
handling sparse datasets, reduce sensitivity to experimental
noise, and produce more consistent maps.

The smaller improvement observed with empirical data
compared to our simulation studies reflects complex non-metric
characteristics in biological reality compared to synthetic
data. Furthermore, the H3N2 dataset represents a carefully
curated benchmark that has been extensively analyzed with
existing  RACMACS implementation of MDS, potentially
approaching optimal achievable performance. This underscores
the importance of evaluating algorithmic performance across
diverse datasets with varying characteristics, as demonstrated
by the substantially larger improvements (56% and 41%)
achieved with DENV and HIV neutralization data.

We have introduced the new concept of antigenic velocity,
which offers a potentially insightful view of the direction and
magnitude of evolution of isolates through antigenic space
relative to the immunity landscape created by their immediate
predecessors. It indicates whether the virus has become
relatively better at escaping neutralization by certain sera
versus others. The antigenic velocity field reveals punctuated
shifts in H3N2 (Fig. 4A and S-7), scattered movement in HIV-1
(Fig. 6A), and an evolutionary trend away from other serotypes
in DENV2 (Fig. 6B). One large vector, or several small aligned
vectors, has typically preceded the emergence of new antigenic
clusters in influenza, suggesting that velocity hotspots may offer
early warning of future lineage replacements.

By uncovering distances between all antigens, including
those lacking direct measurements, Topolow effectively
multiplies the training data available for downstream machine
learning models, e.g. (Lara et al. 2008, Lees et al. 2010,
Steinbruck et al. 2014, Jia et al. 2024). The method can
characterize any continuous and relational phenotype under
directional selection pressure, extending its utility beyond viral
antigenic mapping to broader evolutionary studies (Pybus and
Rambaut 2009).

Recent work has demonstrated the value of combining
antigenic characterization with other data types for surveillance
and vaccine strain selection (Liao et al. 2008, Xia et al.
2009, Steinbruck et al. 2014, Ritchie et al. 2015, Huang
et al. 2017, Harvey et al. 2023). Topolow could enhance

such efforts by providing comprehensive, accurate, and stable
antigenic characterization across the viral strains. Topolow’s
ability to predict antigenic phenotypes for under-characterized
strains could be particularly valuable for early detection of
emerging variants and examining early indicators of cluster
success (Neher et al. 2016).

Limitations of the current implementation include: (1)
inability to connect completely disconnected subgraphs in
the measurement network, (2) assumption of directional
selection pressure in temporal initialization, and (3) relative
computational intensity.
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