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Natural immune boosting biases pertussis
infection estimates in seroprevalence studies

Matthieu Domenech de Cellès 1,7 , Anabelle Wong 1,2,7, Tine Dalby 3 &
Pejman Rohani 4,5,6

Seroepidemiology has significant potential for uncovering the unreported
burden of infectious diseases. However, for diseases without well-defined
serological correlates of protection, natural immune boosting—whereby
pathogen exposure triggers a detectable immune response without causing a
transmissible infection—can complicate the interpretation of serosurveys. This
issue is relevant to pertussis, a vaccine-preventable disease that remains a
significant public health concern worldwide. Here, we aimed to evaluate the
reliability of pertussis serosurveys using a transmissionmodel that tracked the
dynamics of pertussis infection, natural immune boosting, and ser-
oprevalence. By fitting this model to seroprevalence data from the late whole-
cell pertussis vaccine era in six European countries, we estimated that pro-
tection against infection conferred by natural infection or vaccination was
variable but lasted, on average, for several decades. We then predicted the
positive predictive value (PPV) of seropositivity in serosurveys among adults
across twelve countries that broadly captured transmission patterns world-
wide. Overall, we predicted a low PPV across multiple scenarios, especially in
adults aged20–39 years, where it typically droppedbelow50%. Thus, although
serosurveys are unquestionably useful for quantifying pertussis exposure
levels, the common interpretation of seroprevalence as a measure of recent
infections may lead to overestimating pertussis circulation and under-
estimating the impact of pertussis vaccines.

Pertussis, also known as whooping cough, is a highly contagious
respiratory disease caused predominantly by infection with the bac-
terium Bordetella pertussis, as well as other bacteria of the Bordetella
genus1. Historically, this common childhood disease led to high infant
mortality2, until the development and widespread use of whole-cell
pertussis (wP) vaccines significantly reduced reported cases during the
second half of the twentieth century3,4. While wP vaccines remain
recommended by the WHO and widely used globally, many high-
income countries have switched to acellular pertussis (aP) vaccines

that became available in the 1990s5–7. Despite relatively high vaccine
coverageworldwide (~ 85% for the primary series in the last ten years8),
the burden of pertussis remains considerable, with an estimated 19.9
million new cases in children aged0–14 in 20199. Unexpectedly, a long-
termresurgenceofpertussis has beenobserved in several high-income
countrieswith sustained high vaccination coverage, including theUSA,
Sweden, andDenmark5. Although reported pertussis cases plummeted
shortly after the start of the COVID-19 pandemic10–12, many countries—
especially in Europe13—are nowwitnessing large epidemics, resulting in
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infant deaths14. These alarming trends highlight the ongoing threats of
pertussis, which remains one of the least controlled vaccine-
preventable diseases worldwide.

A major challenge in pertussis epidemiological research is to
estimate accurately the rates of pertussis infections. Standard sur-
veillance systems often fall short because infections are reported only
whenpatients exhibit symptoms, seek healthcare, and receive a clinical
or laboratory diagnosis—with potential case loss at every step15. For
pertussis, this problem is thought to be acute for at least three reasons.
First, asymptomatic infections may be common, especially (but not
only) among vaccinated age groups16. Second, clinical diagnosis based
on typical pertussis symptoms—such as paroxysmal coughing,
whooping, and posttussive vomiting—can be inaccurate17. Third, non-
pediatricians may lack awareness of pertussis disease and fail to
diagnose it in adult patients18. These factors collectively contribute to
case underreporting, which is estimated to be substantial for
pertussis19–21.

Due to the limitations of standard surveillance data, ser-
oepidemiology is frequently used to assess the prevalence of anti-
bodies against B. pertussis antigens, typically immunoglobulin G (IgG)
against pertussis toxin (PT, a toxin unique to B. pertussis)22. However,
since serological correlates of protection remain unidentified for
pertussis23, anti-PT IgG titers do not correlate well with immunity
against infection. Indeed, anti-PT IgG antibodies from vaccination
decrease to undetectable levels within a few years, while protection
persists for longer23. This continued protection may be attributed to
the relatively slow progression of pertussis infection (mean serial
interval of ~3 weeks24), such that recall responses from memory cells
maybe rapid enough toprovidepartial protection, even in the absence
of circulating antibodies25. Hence, in most seroprevalence studies, or
serosurveys, seropositivity is interpreted as evidence of a recent
infection, where the recency depends on the IgG threshold used to
define seropositivity. As both symptomatic26 and asymptomatic27

infections generally induce an immune response, serosurveys can
hypothetically quantify recent transmission levels, including asymp-
tomatic infections. As a result, the baseline hypothesis of many ser-
osurveys is that seroprevalence is a more accurate measure of
pertussis circulation compared to case-based surveillance data, espe-
cially among adults22. Seemingly supporting this view, studies have
found significant discrepancies between infection rates derived from
serosurveys and those reported through surveillance data, with ser-
osurveys often revealing infection rates that are much higher—some-
times by several orders of magnitude22.

Several investigators, however, have questioned this view and
cautioned that serological datamay lack specificity28,29. This criticism is
based on the fact that serology alone cannot distinguish between
infection and natural immune boosting30. In other words, exposure to
B. pertussis through contact with an infected host may trigger an
immune boost—or anamnestic response—in individuals protected by
earlier infection or vaccination, leading to seropositivity but not to a
productive infection that can be transmitted to other hosts (i.e., a
transmissible infection). To clarify our terminology regarding the
outcomes of B. pertussis exposures resulting in seropositivity, we
henceforth restrict our definition of infection to an exposure leading
to transmissible infection (either symptomatic or asymptomatic), and
we define other exposures as natural immune boosts. We believe this
definition is justified, as transmissible infections are arguably themost
pertinent from an epidemiological and evolutionary perspective.

Empirical evidence supports the idea that immuneboostingoccurs
for pertussis31. A household study conducted as part of the aP clinical
trial in Sweden reported frequent observationsof seropositivitywithout
culture positivity32. Similarly, in a human challenge experiment in adults
aged 18–45, the highest inoculum dose of 100,000 colony-forming
units caused seroconversion in all participants; however, extensive
environmental sampling could not detect any bacterial shedding, thus

suggesting the absence of transmissible infection27. In a study of aP
vaccines in adults over 50 years in Australia, vaccine effectiveness was
substantially underestimated when cases were identified by single-titer
serology, compared to PCR-confirmed cases; the authors interpreted
this discrepancy as evidence of case misclassification and poor diag-
nostic specificity of serology in their setting, suggestive of immune
boosting33. This body of evidence suggests that serosurveys may over-
estimate the incidence of pertussis infections.

Despite occasional mentions of these complexities29,30, the
potential unreliability of serosurveys and the implications of immune
boosting on the interpretation of seropositivity are frequently over-
looked in the literature (see our review of published serosurveys
below). Due to this lack of awareness, the reliability of serosurveys has
not been systematically examined. Resolving this knowledge gap is
essential to reconcile the different estimates of pertussis infection
from serosurveys and case-based surveillance and to evaluate the
impact of pertussis vaccines more accurately. Here, we present results
from a population-based model of pertussis transmission that tracked
the dynamics of infection, immune boosting, and seropositivity and
enabled a comparison with empirical seroprevalence estimates. We
first calibrated the model based on seroprevalence data from the late
wP vaccine era in six European countries. This calibration then allowed
us, through a comprehensive simulation study, to predict the pre-
valence and reliability of seropositivity in various countries worldwide.

Results
Interpretation of seropositivity in published serosurveys
To understand how seroprevalence data were interpreted in the sci-
entific literature, we first reviewed recent seroprevalence studies
conducted on the general population (see Methods). We identified 59
articles published in the last five years and included 18 pertussis ser-
oprevalence studies in our review. Through this analysis, we identified
two broad categories of seroprevalence studies with distinct aims. In
the first category of studies (Table S1), the investigators considered
low to moderate anti-PT IgG thresholds to evaluate immune protec-
tion. However, the threshold to differentiate protection from lack of
protection varied across studies, ranging from 5 IU/mL34,35 to 50 IU/
mL36. Furthermore, these studies were inherently limited because anti-
PT IgG titers do not correlate well with protection, as the serological
correlates of protection remain unidentified for pertussis23. Only two
studies explicitly recognized this limitation34,37.

In the second group of studies (Table S2), the investigators
defined moderate to high anti-PT IgG thresholds to evaluate recent
exposure or infection. With few exceptions37–40, the threshold con-
sidered was 100 IU/mL; based on this cut-off, seropositivity was gen-
erally interpreted as evidence of exposure or infection within the last
year. However, a few studies interpreted seropositivity as evidence of
more immediate exposure or infection (acute infection34,35 or within
the past 58.6 days41), and many studies did not explicitly define what
constitutes recency. In four studies34,38,42,43, the term “exposure” was
used instead of “infection,” but no definition of exposure was pro-
vided. Notably, the issue of immune boosting and how it may result in
false positives was not discussed in any study, highlighting a lack of
awareness surrounding this problem.

Estimation and model fit to seroprevalence data
To assess the reliability of pertussis seroprevalence studies, we
developed a stochastic, simulation model of pertussis transmission
that tracked the population-level dynamics of immune boosting and
anti-PT IgG seroconversions, seropositivity, and seroreversions (see
Fig. 1, Table 1, andMethods). We considered twomodel endpoints: the
seroprevalence and the positive predictive value (PPV) of ser-
opositivity, defined as the conditional probability of recent infection
given seropositivity (or, equivalently, the proportion of true cases
among seropositive cases in serosurveys).
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Table 1 | Main model parameters

Parameter Meaning Value(s) Source/Comment

σ�1 Average latent period 8 days 64

γ�1 Average infectious period 15 days 64

θ Relative infectiousness of secondary infections 0.99 64

Ni Age-specific population sizes Fig. S4 46
Country-specific

Mij Social contact matrix Fig. S3 46
Country-specific

R0 Basic reproduction number 11–16 Country-specific

tp Average time from exposure to seroconversion 23 days 26

tn Average duration of seropositivity after
seroconversion

1 yr (seropositivity cut-off of 100 IU/mL)
0.75 yr (seropositivity cut-off of 125 IU/mL)

26

PV Vaccination coverage (all doses) 0.95 Assumption

ϵV Probability of primary vaccine failure 0.05 64

pV =PV ð1� ϵV Þ Effective vaccination coverage (all doses) 0.9 Table S6

v Effective vaccination rate Calculated from pV Supplementary methods

ρ Boosting coefficient of infection/wP-derived
immunity

0.5, 1, 2, 5 Range of values tested based on earlier
studies31,50–52

Assumption: ρ=ρV =ρR

α�1 Averageduration of infection/wP-derived immunity (if
no immune boosting)

Estimated based on empirical serosurveys in
the late wP era

Assumption: α�1 =α�1
V =α�1

R

S1 E1 I1 RP,1 RE

S2 E2 I2 R RP,2

V VE VP

1/tp

1/tn

1/tp
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Fig. 1 | Schematic representation of the serotransmission model. For clarity,
only one age group is depicted, and demographic transitions such as birth, aging,
and death are not represented. The serological parameters are highlighted in blue,
and the seropositive states are circled in blue (see Table S3 for the definition of all
state variables). Following either primary (state variables S1, E1, I1) or secondary
infection (state variables S2, E2, I2), individuals are assumed to remain seropositive
for an average duration tn (state variable RP, 1). Upon exposure to B. pertussis,
seronegative individuals with either infection-derived (state variable R) or vaccine-
derived immunity (state variable V ) against infection may undergo an immune
boost and become seropositive (state variables RP and VP , respectively). State

variables with an E index represent individuals exposed to B. pertussis and about to
seroconvert. The diagram highlights a key issue with seroprevalence studies: gen-
erally, seroprevalence (represented as Sp =RP, 1 +RP, 2 +VP , the sum of the blue
states) includes both recent infections (RP, 1) and immune boosts from individuals
with immunity derived from earlier infection (RP, 2) or vaccination (VP). Conse-
quently, seropositivity does not always indicate a recent infection, which may lead
to falsepositives and a lowpositive predictive value (definedhereasPPV =RP, 1=Sp).
In this model, infections are defined by their ability to transmit to other hosts,
whereas immune boosts do not contribute to transmission.
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We first aimed to parametrize this model by fitting it to ser-
oprevalence data from two large serosurveys conducted during the
late wP era in Europe44,45 (Methods). After applying our inclusion cri-
teria (Table S5), we selected six countries for the model-data com-
parison of seroprevalence. These included four countries (Finland,
France, East Germany, and the Netherlands) from ref. 44 and two
countries (Lithuania and Romania) from ref. 45. Serological samples
were collected approximately 30–45 years after the start of wP vacci-
nation in the first four countries and 50 years after in the latter two. In
all six countries, the primary vaccine series started 2–3 months after
birth with an additional booster dose at age 1–3 years, and the vacci-
nation coverage remained high (over 85%) until the serosurvey
(Table S6). Keeping in mind the different seropositivity thresholds
used in the two studies (100 IU/mL and 125 IU/mL), the seroprevalence
estimates were fairly consistent across countries, ranging from 0.9%
(standard error [SE]: 0.2 %) in the Netherlands to 2.9% (SE: 0.5%) in
Finland.

The model fit to seroprevalence data for every immune-boosting
scenario is displayed in Fig. 2. The average duration of infection/wP-
derived protection was estimated at several decades in all scenarios,
with point estimates ranging from 30 to 50 years (Table 2). However,
the duration of protection was inherently variable, such that these
averages translated into a sizeable fraction of 10–15% of vaccinees
losing protection within 5 years and 18–28% within 10 years. These
estimates resulted in a low mean weighted error (MWE) of < 0.5% in
every scenario, demonstrating strong model-data agreement irre-
spective of the fixed boosting level. Hence, the immune-boosting
coefficient could not be estimated from these data. Across the sce-
narios, the PPV of serology decreased as immune boosting increased,
with a range (across countries) of 47–62% for the lowest boosting level
and 6–12% for the highest (Table 2). These results suggest that the
seroprevalence data were consistent with a long, although variable
duration of protection, with immune boosting accounting for a large
part of seropositive cases.
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Fig. 2 | Model fit to empirical seroprevalence data in six European countries.
PPV positive predictive value of serology, IU international unit. The dashed line is
the identity line, representing a perfectmatchbetween themodel and the data. The
2-letter codes indicate the countries considered for model-data comparison: DE
(East Germany), FI (Finland), FR (France), LT (Lithuania), NL (Netherlands), and RO
(Romania). The data and predictions represent seroprevalence in adults aged

20–39 in Lithuania and Romania45 or 20–44 in other countries44. For each immune-
boosting level (ρ), the graph shows the model predictions for the duration of
infection/wP-derived immunity that produced the best fit to the seroprevalence
data (see Table 2 for the corresponding value). The intervals represent 95% con-
fidence intervals for the data (x-axis) and 95% prediction intervals for the model
simulations (y-axis).
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NGM clustering and representative countries
To get a broader picture of the potential shortcomings of serology, we
then used our model to predict the seroprevalence and PPV of ser-
opositivity across various countries worldwide. To simplify our ana-
lysis, we clustered the next-generation matrices (NGMs) derived from
Mistry et al.46 to identify groups of countries with broadly similar
transmission dynamics.

The clustering analysis identified 11 clusters among the 35
country-level NGMs. Because of the large number of serosurveys
conducted in China, we separated the China NGM (initially grouped
with the NGMs from Australia, Canada, and the US), resulting in 12
clusters overall. As shown in the resulting dendrogram (Fig. S2), the
number of countries in each cluster varied, ranging from 1 (Israel,
China) to 5. Some clusters comprised countries from the same geo-
graphical region (e.g., the Norway-Denmark and France-Italy-UK clus-
ters), while others included geographically distant countries (e.g., the
India-South Africa cluster). To reduce our subsequent analysis, we
selected one representative country from each cluster, resulting in the
following 12 countries: China, Czechia (aka the Czech Republic), Den-
mark, Germany, India, Israel, Japan, the Netherlands, Sweden, Swit-
zerland, the UK, and the USA. The corresponding social contact
matrices (SCMs) are plotted in Fig. S3.

Variations in seroprevalence and PPV across 12 representative
countries
To assess the prevalence and reliability of seropositivitymore broadly,
we simulated our calibrated model in the 12 representative countries
identified by NGM clustering. The model reached equilibrium across
all boosting levels in the 12 countries (see Fig. S5 for representative
time series in the USA). Even though our model did not include sea-
sonality in transmission, the simulated seroprevalence exhibited
multiannual cycles in the hyper-sensitive boosting scenarios (ρ> 1).
This behavior has been reported in previous theoretical analyses of
hyper-sensitive boosting models31,47.

Figure 3 shows the variation in seroprevalence and PPV across
countries, age groups, and immune-boosting levels based on an
average duration of protection of 40 years (consistent with the ser-
oprevalence data for all boosting levels; see Table 2). The predicted
seroprevalence ranged from 0.5 to 2.5%, displaying large variability
across scenarios. The key factors contributing to this variability were
age and immune-boosting levels, with seroprevalence predicted to
increase as age decreased (by a factor 2–4 for 20–39 yo in comparison
to 60–79 yo) or immune boosting intensified (by a factor 1.5–3.0 for
the highest boosting level compared with the lowest). In contrast,
variations in SCMs resulted in less variability in seroprevalence.

The PPV of serology in seroprevalence studies ranged from 10 to
80% across scenarios. As for the seroprevalence, the PPV varied sen-
sitively with the strength of immune boosting and age. Specifically, the
PPV increasedwith age, by a factor 1.8–3.8 for 60–79 yo in comparison
to 20–39 yo; in contrast, the PPV decreased as the immune-boosting
strength increased, by 40–80% when comparing the highest boosting
level to the lowest. Consequently, seropositivity was predicted to be

most reliable in the elderly (60–79 yo) when boosting was low and
least reliable in young adults (20–39 yo) when boosting was high.

To further characterize the reliability of serosurveys as a function
of age and immune-boosting strength,we ranadditional simulations of
seroprevalence and PPV across all scenarios consistent with the
empirical seroprevalence data (Table 3). Overall, themedian predicted
seroprevalence from themodel was in the range 0.6–2.2% in 20–39 yo,
0.4–1.8% in 40–59 yo, and 0.2–1.1% in 60–79 yo. These additional
simulations confirmed the variations observed in Fig. 3: for fixed
duration of protection and immune-boosting strength, as age
increased, seroprevalence decreased while the PPV of serology
increased; in contrast, when the duration of protection and age were
held constant, stronger boosting resulted in higher seroprevalencebut
lower PPV. Additionally, at fixed age and immune-boosting level, a
shorter duration of protection led to both higher seroprevalence and
PPV of serology. These results illustrate that the reliability of serology
in seroprevalence studies varies with age and the characteristics of
immunity, which complicates the interpretation of serosurveys when
these characteristics are unknown.

To better understand how the prevalence and reliability of ser-
opositivity vary with age, we dissected seroprevalence across different
age groups (Fig. 4). At a fixed boosting level (e.g., ρ= 1), the force of
infection decreasedwith age (from0.6% per yr in 20–39 yo to 0.3% per
yr in 60–79 yo, Fig. 4A), reflecting general age-specific contact pat-
terns, particularly the lower contact rates in the elderly (Fig. S3).
Meanwhile, the fraction susceptible to infection increased with age
(from ~35% in 20–39 yo to ~70% in 60–79 yo) due to the gradual loss of
infection-/wP-derived protection (Fig. 4C). As a result of these two
effects, the seroprevalence due to true infections peaked in the
intermediate age group of 40–59 yo (Fig. 4D). Conversely, the ser-
oprevalence resulting from immune boosts declined as age increased
(from 0.6% in 20–39 yo to 0.1% in 60–79 yo, Fig. 4F), as loss of
immunity gradually reduced protection against infection and thus
opportunities for immune boosting in older age groups (Fig. 4E).
Overall, this decline outweighed the age variations in seroprevalence
caused by true infections so that the overall seroprevalence decreased
with age (Fig. 4B). Consequently, seropositivity was less frequent but
also more likely to represent a true infection because of reduced
immune boosts in older age groups. These results highlight the com-
plexity of interpreting seropositivity and suggest that seroprevalence
may not even qualitatively capture age variations in infection.

We repeated these simulations to examine how immune-boosting
strength affects seroprevalence (Fig. 4). In a given age group (e.g.,
20–39 yo), the force of infection was predicted to decrease as the
strength of immune boosting increased (range from lowest to highest
boosting level: 0.7% per yr to 0.2% per yr, Fig. 4A). This effect can be
explained as follows: assuming all other factors remain constant,
increasing the strength of immune boosting is analogous to extending
the duration of protection (Fig. 1), resulting in reduced circulation and
a lower prevalence of infection—and thus a lower force of infection—
across age groups. As a result, the seroprevalence due to true infec-
tions decreased with stronger immune boosting (range: 0.3% to 0.2%,

Table 2 | Estimates of the average duration of immunity

Fixedvalueofboostingcoefficient ðρÞ Estimate (95% confidence interval) of the average duration of infection/wP-derived
immunity (α�1), years

MWE, % PPV range, %

0.5 30 (20–40) –0.4 47–62

1.0 30 (30–50) 0.0 29–41

2.0 40 (30–60) –0.1 16–27

5.0 50 (40–80) 0.1 6–12

MWE stands for mean weighted squared error, while PPV represents the positive predictive value of serology. The uncertainty interval indicates the range of values for which the MWE was not
significantly different from zero. The PPV range indicates the range of median PPV across the six countries included in the model-data comparison and across scenarios where the MWE was non-
significant.
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Fig. 4D). In contrast, the seroprevalence from immune boosts
increased with immune-boosting strength (range: 0.3% to 1.8%,
Fig. 4F). This increase dominated the changes in seroprevalencedue to
true infections, so that the overall seroprevalence increased with
immune-boosting strength (range: 0.6% to 2.0%, Fig. 4B). Thus, higher
levels of immune boosting resulted in fewer true positives (i.e., ser-
opositive cases after a true infection) and more false positives (i.e.,
seropositive cases after an immune boost). By definition of the PPV,
these two effects combined to reduce the PPV of serology in ser-
oprevalence studies (as also observed in Fig. 3 and Table 3).

In conclusion, these results illustrate how the complex interplay
between waning protection, immune boosting, and the age-specific

contact patterns and force of infection sensitively determines ser-
oprevalence and the reliability of seropositivity as an indicator of
recent infection in seroprevalence studies.

Alternative model structure and parametrization of immune
boosting
To test the robustness of our results, we considered an alternative
model structure in which immune boosting was allowed to decline
more gradually with time since infection or vaccination (see model
schematic in Fig. S6). In this model, the duration of vaccine-derived
protection (without boosting) followed a Gamma distribution (with
shape parameter 2 and mean 1=α), while the duration of infection-
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three different adult age groups (20–39 yo, 40–59 yo, and 60–79 yo). The average
duration of infection- or wP-derived immunity was set to α�1 = 40 years in all
simulations, a value within the confidence interval for all tested values of the
boosting coefficient (see Table 2).
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derived protection followed a generalized Erlang, or hypoexponential,
distribution (i.e., the sum of three exponential distributions with rates
1=tn, 2α, and 2α). In both cases, therefore, the distribution of the
duration of protection was assumed less variable than that of the base
model. For simplicity, we ignored age structure (homogeneous
model); we considered two target levels of overall seroprevalence,
based on two nationwide serosurveys (both with an anti-PT IgG ser-
opositivity threshold of 62.5 IU/mL): 10% (Netherlands, 2006–200748)
and 20% (Australia, 1997–199849). To our knowledge, these estimates
are the highest reported in the vaccine era. As shown in Table S7, our
main results remained robust, even for the lowest levels of immune
boosting and the highest seroprevalence: a combination of relatively
long average duration of protection (range: 30–60 years) and low PPV
(range: 8–25%) best explained the empirical estimate. Hence, these
additional simulations suggest that our main results are robust to
different modeling assumptions regarding waning protection and
boosting.

Discussion
In this study, we aimed to evaluate the reliability of pertussis ser-
oprevalence studies, particularly how the well-documented phenom-
enon of natural immune boosting may lead such studies to
overestimate pertussis infections. To address this, wedeveloped a new
model of pertussis transmission that tracked the dynamics of ser-
oprevalence, enabling a comparison with empirical estimates from
serosurveys. Fitting this model to two large European serosurveys in
the late wP era, we estimated infection-/wP-derived protection to last,
on average, for several decades (keeping inmind that this durationwas
variable andmuch shorter in a sizeable fraction of the population). We
then predicted the prevalence and PPV of seropositivity among adult
age groups in twelve countries that were broadly representative of
transmission patterns worldwide. Overall, we predicted a low PPV of
serology for seroprevalence studies across multiple scenarios, espe-
cially in young adults aged 20–39, where it fell below 50% in almost all
scenarios tested. We conclude that the issue of immune boosting is
likely severe, making raw seroprevalence estimates potentially mis-
leading when interpreted in isolation. Our model can be useful for
analyzing seroprevalence data, ideally in conjunction with disease
incidence data to synthesize all available evidence and derive more
accurate estimates of pertussis infections.

When comparing our model to seroprevalence data from two
large European serosurveys, we found the best model-data agreement
for average durations of infection-/wP-derived protection of 30–50

years (overall range of 95% confidence intervals: 20–80 years). As our
model did not include several real-world complexities of pertussis
(such as seasonality in transmission, variations in vaccine coverage or
changes in demographic structure), we emphasize this estimation is
only approximate. Nevertheless, these durations are consistent with
previous estimates from immune-boosting models fitted to case
report incidence data. Wearing & Rohani estimated that durations of
infection-/wP-derived protection of 20–40yr best reproduced the
interepidemic periods, and of 40–100 yr the patterns of epidemic
fade-outs observed in the wP era in England and Wales (assuming an
immune boosting level of 0.5 and an exponential distribution for the
duration of protection)50. Based on incidence data in the prevaccine
era in Copenhagen, Denmark, Lavine et al. estimated infection-derived
protection to last on average 34 (95% CI: 17–66) years (assuming a
Gamma distribution for the duration of protection), a value well
identified despite minimal information regarding the immune-
boosting parameter (6.6, 95% CI: 0.66–66)51. Using the same model,
Rozhnova et al. found that an average duration infection-derived
protection of 40 years (assuming an immune boosting coefficient of 1)
resulted in periodic epidemic patterns consistent with those observed
in the prevaccine era in Ontario, Canada, and London, UK52.

Although differences in model structure preclude an exact com-
parison of all available estimates, our results add to the large body of
modeling and epidemiological evidence about the long (but variable)
protection conferred by natural infection and wP vaccines against
pertussis infection and themarked impact of wP vaccines on pertussis
transmission53–55. They also suggest that, due to natural immune
boosting and the high transmissibility of pertussis, seroprevalence
estimates of a few percent in adults are expected for imperfect yet
highly effective vaccines, even in populations with near-perfect
pediatric vaccination coverage.

In contrast to the duration of protection, all tested values for
immune boosting resulted in an equally good model-data agreement.
Hence, we could not estimate this parameter based on seroprevalence
data alone. Other attempts to identify this parameter based on dis-
ease incidence data yielded similarly uncertain estimates31,51,56. A lower
bound of 0.66 was identified in Lavine et al.’s study in Copenhagen51. A
lower bound of 10 was estimated based on prevaccine era data in
Massachusetts, USA31, but a subsequent study in the USA reported
such levels to be too high to reproduce the observed patterns of
pertussis resurgence from the 1970s57. Given this admittedly limited
evidence, we believe the range we considered (0.5–5) is reasonable,
but we acknowledge the remaining uncertainties. Consequently, a

Table 3 | Predicted seroprevalence and positive predictive value of serology across 12 representative countries

Boosting coefficient (ρ) Average duration of immunity (α�1) Seroprevalence (%) Positive Predictive Value (%)

20–39 yo 40–59 yo 60–79 yo 20–39 yo 40–59 yo 60–79 yo

0.5 20yr 2.0 (1.9–2.3) 1.8 (1.6–2.2) 1.1 (0.9–1.4) 52 (43–58) 77 (70–79) 83 (75–84)

30 yr 1.1 (0.9–1.3) 1.0 (0.8–1.2) 0.6 (0.5–0.7) 47 (38–53) 75 (64–78) 82 (70–84)

40 yr 0.7 (0.5–0.8) 0.6 (0.4–0.8) 0.3 (0.3–0.4) 43 (35–50) 72 (61–77) 81 (66–85)

1.0 30 yr 1.5 (1.3–1.8) 1.1 (0.9–1.4) 0.6 (0.5–0.8) 31 (24–37) 61 (48–65) 70 (54–74)

40 yr 1.0 (0.7–1.2) 0.7 (0.5–0.9) 0.4 (0.3–0.5) 28 (21–34) 57 (44–63) 68 (50–74)

50 yr 0.6 (0.3–0.8) 0.4 (0.2–0.6) 0.2 (0.1–0.3) 26 (20–32) 54 (41–60) 66 (46–73)

2.0 30 yr 2.2 (1.7–2.7) 1.4 (1.0–1.8) 0.7 (0.5–1.1) 19 (14–23) 45 (32–50) 56 (38–61)

40 yr 1.4 (0.9–1.9) 0.8 (0.5–1.3) 0.4 (0.3–0.7) 17 (12–21) 41 (28–47) 53 (34–60)

50 yr 0.9 (0.4–1.4) 0.5 (0.2–0.9) 0.3 (0.1–0.4) 15 (11–19) 38 (26–44) 50 (30–58)

5.0 40 yr 2.2 (0.1–5.3) 1.2 (0.0–3.5) 0.5 (0.0–2.3) 8 (6–10) 23 (13–27) 33 (16–40)

50 yr 1.4 (0.0–3.7) 0.7 (0–2.3) 0.3 (0.0–1.1) 7 (5–10) 20 (12–24) 29 (14–38)

60 yr 0.8 (0.0–2.9) 0.4 (0.0–1.8) 0.2 (0–0.8) 6 (3–9) 18 (5–22) 26 (7–35)

Overall range 0.0–5.3 0.0–3.5 0.0–2.3 3–58 5–79 7–84

The values indicate the median (95% prediction intervals) from 200 simulation-years (10 model simulations, each spanning 20 years) across the 12 countries.
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promising avenue for future research will be to fit our model to mul-
tiple real-world data sources to more accurately estimate the level of
immune boosting and the rates of pertussis symptomatic and
asymptomatic infections.

Our results suggest that the interpretation of pertussis ser-
oprevalence estimates is challenging and must be placed within a
broader epidemiological context. Specifically, we find that the pre-
valence and reliability of seropositivity result from a complex interplay
between immune boosting, waning protection, and age-specific con-
tact patterns. In particular, we predict that the PPV of serology in
seroprevalence studies varies predictably with age, with the lowest
values in young adults (20–39 yo) whomore often experience immune
boosting. Strikingly, in almost all scenarios tested, the PPV fell below
50% in this age group. In other words, interpreting seropositivity as
evidence of a recent infection may be incorrect more than half of the
time in this age group. This finding is noteworthy, as our review

showed that this interpretation was nearly universal in seroprevalence
studies. In the older age groups (40–59 yo, 60–79 yo), the reliability of
seropositivity was better but still low in many scenarios, with the
maximum PPV ranging from 79–85% at the lowest boosting level to
27–40% at the highest. Hence, in line with earlier suspicions28–30 and
empirical evidence27,32,33, our results highlight that the issue of immune
boostingmust be consideredwhen analyzing pertussis seroprevalence
data. More broadly, our study emphasizes the key difference between
exposure and infection, as seropositivity always indicates the former
but not necessarily the latter. Therefore, our results do not imply that
serosurveys are irrelevant, as seroprevalence data can accurately
quantify the level of pertussis exposure in the population.

Another implication of our study is that comparing case report
data to seroprevalence data will not yield valid estimates of under-
reporting. As immune boosting will generally cause seroprevalence to
overestimate true infection rates, this ratio will tend to underestimate
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Fig. 4 | Breakdown of seroprevalence and illustration of age-specific trans-
mission dynamics in the US. The values shown represent the median across 200
simulation years (derived from 10 model simulations, each spanning 20 years) for
six model variables indicated by the y-axis titles (see Fig. 1). A force of infection (%
per year); B overall seroprevalence (%); C fraction susceptible to infection (%);
D seroprevalence due to true infections (%); E fraction immune to infection (%);
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the boosting coefficient for infection- or wP-derived immunity (ρ). In all simula-
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the reporting probability or, equivalently, overestimate under-
reporting, in turn leading to an overly pessimistic assessment of the
impact of pertussis vaccines on pertussis circulation.

Our study has several important limitations that relate to the
formulation of our model. First, we assumed that the serological
parameters did not vary with age, as the data available26 did not permit
an age-specific parametrization. However, age variations in the
immune response—e.g., because of immunosenescence—may cause
these parameters to differ between age groups, especially in the
elderly58. Second, given the limited information in seroprevalence
data, we made the simplifying assumption that infection- and wP-
derived immunities had identical properties (in terms of immune
boosting and duration of protection). This assumption is justified by
epidemiological evidence56,57 and immunological evidence showing
that natural infection and wP vaccination trigger a comparable
immune response59,60. Nevertheless, this assumption would be invalid
for aP vaccines, which trigger a different immune response61 that may
be less prone to subsequent boosting by natural exposure62. Epide-
miological evidence also shows that these vaccines, though effective at
reducing transmission and inducing herd immunity5,63, confer shorter-
lived protection against infection, with waning rates of 2–10% per
year57,64–66. Hence, extending our model to the aP era would require a
separate parametrization for infection/wP-derived and aP-derived
immunities. This complication prevented us from considering more
recent seroprevalence data, especially those from another large ser-
osurvey by Berbers et al. in adults aged 40–59 conducted in 18 Eur-
opean countries in 201542. Still, we note that the seroprevalence
estimates in Berber’s study (range: 2.7–5.8% across 13/18 countries)
were only moderately larger than those considered in our study.

Other limitations of this study relate to our estimation method.
First, we only considered data from two large serosurveys conducted
in European countries, as their serological results were standardized
and ensured comparability across countries. However, many other
seroprevalence data are available and could be used to estimate the
parameters and test the predictions of our model22. Nevertheless,
seroprevalences of similar magnitude (a few percent) have been esti-
mated among adults in various other countries (e.g., in Australia67,
Israel68, Japan22, and theUSA22), sowebelieve our results should remain
robust evenwith the inclusion of additional data. Second, as discussed
above, when fitting our model to seroprevalence data, we did not
consider seasonal or long-term parameter variations that may affect
seroprevalence. However, in all countries included in our analysis,
sample collection took place over ~1 year, allowing for any seasonal
effects, if present, to be smoothed out. In addition, we did not include
other data to inform the model about the past epidemics and age-
specific history of prior exposures and infections in each country. In
practice, the serosurveys may have captured a different stage of the
epidemic cycle in every country, yet ourmodel predictionswerebased
on averages across multiple epidemic cycles (Fig. S5). Thus, our esti-
mates are approximate, though they generally agree with previous
estimates from more detailed models. Third, we assumed identical
properties of wP vaccines across the six countries, although these
vaccines were produced by different national or commercial manu-
facturers during the study period and might have had different
efficacies44,69. Finally, even though we tested a range of realistic values,
we could not estimate the strength of immune boosting, a parameter
that sensitively controls the prevalence and reliability of seropositivity.
As noted above, additional information in the form of case-based data
should help resolve this uncertainty. Acknowledging these limitations,
ourmodel could serve as a building block to investigate the remaining
unknowns in pertussis epidemiology.

There is growing interest in collecting serological data to inform
the immunity landscape and tap into the “epidemiological dark mat-
ter” of infectious diseases70–72. For pathogenswith identified correlates
of protection (like neutralizing antibodies formeasles andmumps73,74),

serology is relatively unequivocal and can directly inform specific
variables of transmission models, such as recovered or vaccinated
compartments. In the case of pertussis and other pathogens70, how-
ever, the picture is much more complex, as seropositivity indicates a
recent exposure. As a result, interpreting serological data is inherently
ambiguous and requires careful consideration of waning immunity
and immune boosting using transmission models. Hence, our model—
or variations thereof—may prove useful for analyzing seroprevalence
data and synthesizing evidence from other sources, including disease
notification data. Eventually, fitting suchmodels to all available data in
multiple populations will improve our estimates of pertussis infection
rates and help resolve the ongoing disagreements within the field.

Methods
Review of the interpretation of seropositivity in published
serosurveys
We aimed to review recent seroprevalence studies conducted on the
general population to understand how seroprevalence data were
interpreted in the scientific literature. We specifically examined how
investigators interpreted seropositivity and whether they addressed
the issue of natural immune boosting.

Following the search terms used by a previous review by Barkoff
et al.22, we conducted a search for articles published in the past five
years (as of the search date, February 3, 2025) that contain [pertussis
AND seroprevalence], [pertussis AND serosurvey], [pertussis AND
serosurveillance] OR [pertussis AND seroincidence] in the Title/
Abstract on the literature database, PubMed.

We initially excluded records based on article type and language.
In the abstract retrieval and screening stage, we further excluded
records due to their (i) study type (assay method development); (ii)
study aim (investigating antibody waning among vaccinated children
or examining factors associated with antibody concentrations instead
of assessing seroprevalence in the sample); or (iii) being conducted in
specific risk groups (pregnant women, healthcare workers [HCW], or
patientswith chronic obstructive pulmonary disease [COPD]). Full-text
articles of the remaining records were retrieved and assessed for
eligibility, resulting in additional studies being excludeddue to their (i)
article type, (ii) study type (simulations or modeling), (iii) study aim
(antibody waning among vaccinated children or factors associated
with antibody concentrations), or (iv) being conducted in specific risk
groups (adults of child-bearing age). Study screening was conducted
by one reviewer. Data were extracted from the included articles by two
reviewers independently and the extraction was cross-checked by
both reviewers. The studies’ identification process is summarized in
the PRISMA flow diagram displayed in Fig. S1 (see also the PRISMA-P
2020 reporting checklist at the end of the supplement).

Model structure
We developed a stochastic simulationmodel of pertussis transmission
that generated serological endpoints in addition to standard pre-
valence and incidence endpoints (Fig. 1). The backbone of this model
was similar to that of a previous model developed to explain the epi-
demiology of pertussis in the USA64,65. Briefly, the model distinguished
between primary infections in fully susceptible individuals (i.e., never
vaccinated or infected) and secondary infections in susceptible indi-
viduals whose immunity was primed by earlier vaccination or infec-
tion. Based on earlier evidence in the USA64,65, we assumed that
vaccine-derived protection against infection was imperfect and might
immediately fail (primary vaccine failure), with subsequent waning of
protection. Similarly, infection-derived protection against infection
was assumed to wane over time.

To generate serological endpoints, the model tracked the
population-level dynamics of anti-PT IgG seroconversions, ser-
opositivity, and seroreversions (Fig. 1). Unless otherwise stated, ser-
opositivity was defined as an antibody titer exceeding 100 IU/mL, a
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standard threshold used in numerous seroprevalence studies
(refs. 22,75 and Table S2). Following recovery from either a primary or
secondary infection, seropositivity was assumed to occur and last, on
average, tn years. In individuals with either infection- or vaccine-
derived protection, exposure to B. pertussis also led to seropositivity
(but not to transmissible infection) at a rate proportional to the force
of infection λ. Because such seroconversions arise due to nat-
ural immune boosting, the proportionality constant ρ is called the
immune-boosting coefficient31. This parameter controls the sensitivity
of immune boosting: for ρ< 1, an exposure sufficient for infection is
less likely to induce immune boosting, while for ρ> 1 an exposure
insufficient for infection can still result in immune boosting. The latter
scenario, known as hypersensitive boosting, can also be interpreted as
follows: an exposure dose of B. pertussis antigen lower than what is
needed for infection can still result in immune boosting. For com-
pleteness, we considered the former scenario of hyposensitive
boosting, but we note this assumption is conservative and immuno-
logically unlikely.

Wenote that, in thismodel, seropositivity implies protection from
infection; the converse, however, is not true, as seronegative indivi-
duals (V and R compartments in Fig. 1) can still be protected. Hence,
seropositivity is assumed to be sufficient but not necessary for pro-
tection against infection, consistent with the fact that anti-PT IgG
antibodies are not a serological correlate of protection23. We also note
that seropositivity due to recent vaccination is ignored in this model.
This assumption is justified because recently vaccinated individuals
are generally excluded from serosurveys to limit the risk of false
positives from causes different from exposure or infection75.

By design, this model produced serological endpoints—such as
seroprevalence and sero-incidence rates—comparable to serosurveys.
In the following, we focus only on seroprevalence, the endpoint most
typically estimated in these surveys (see Fig. 1 for the model-based
definition). However, because we assume that seropositivity lasts, on
average, one year (see below), the seroprevalence approximately
equals the yearly sero-incidence rate in our model (based on the
approximate formula: prevalence = incidence * duration). To assess
whether seropositivity can reliably indicate a recent infection, we
further calculated the PPV of seropositivity, which is defined here as
the conditional probability of recent infection given seropositivity.
Equivalently, the PPV represents the proportion of true cases among
seropositive cases in serosurveys: PPV = true positives/(true positives +
false positives), ranging from 0 (all seropositives result from immune
boosting) to 1 (all seropositives result from a transmissible infection).

Hence, this model allowed us to parsimoniously capture and
study the interpretation problem described in the introduction: with-
out other information, seroprevalence includes both recent trans-
missible infections and immune boosts; consequently, seropositivity
does not always indicate a recent infection, which may lead to false
positives and a low PPV of serology for a given prevalence of actual
infections.

Model parametrization
Fixed model parameters. The model was structured by age, dividing
individuals into two age groups during the first year of life and into
one-year age groups from ages 1 to 79, resulting in a total of 81 age
groups. The first age group represented newborns aged <2 or
<3 months, reflecting current pertussis vaccination schedules that
recommend administering the first vaccine dose a few months after
birth5. Contacts between age groups were parameterized using SCMs
derived from the work of Mistry et al.46. These SCMs were available in
35 countries worldwide and provided an age resolution of one year
from age 0 to 79, enabling us to accurately capture contact patterns
among infants and preschool children. Additionally, the model incor-
porated country-specific population age structures based on demo-
graphic data from 2010, as provided by Mistry et al.46.

The main transmission parameters were fixed based on earlier
modeling studies64,65. These parameters included the average latent
and infectious periods and the relative transmissibility of secondary
infections (Table 1). Importantly, since we focused exclusively on
infection endpoints, we did not add an observation model to link our
model outputs to reported disease cases.

Some serological parameters were assumed to be known and
fixed according to a previous modeling study of the kinetics of anti-PT
IgG after a lab-confirmed infection [5]. Specifically, we used the pos-
terior distribution from the best-fitting power decay model described
by Teunis et al.26 to estimate the average time to seroconversion after
exposure (tp =23 days) and the average duration of seropositivity
(tn = 1 year), both defined for a seropositivity threshold of 100 IU/mL.

Estimated model parameters. In contrast to the fixed parameters
described above, the immune-boosting coefficient and the duration of
protection were assumed to be unknown. This assumption was justi-
fied becauseof structural differences between ourmodel and previous
immune-boosting models31,50,51,56, which prevented us from directly
incorporating estimates from earlier studies. For example, though
both our model and Lavine et al.’s model31,51 stratify protection into a
boosted and waning stage, the duration spent in the boosted stage is
shorter in our model (because it represents the duration of ser-
opositivity). As a result, using the estimates from Lavine et al. would
lead to a higher force of infection in our model, requiring parametric
adjustment (e.g., by increasing immune boosting or extending the
duration of protection) to ensure comparability between the two
models. In addition, there remains considerable uncertainty in the
estimates of the immune-boosting coefficient,whichwere estimated at
≥10 in Lavine et al.31 and 6.6 (0.6–66) in Lavine et al.51.

To simplify our analysis, we further assumed that infection- and
wP-derived immunities had identical properties in terms of immune
boosting (ρR = ρV =ρ) and the average duration of protection
(α�1

R =α�1
V =α�1). This assumption is supported by immunological

evidence showing that both natural infection and wP vaccination elicit
a comparable immune response59,60, as well as epidemiological evi-
dence from modeling studies56,57.

To estimate these two unknown parameters, we fitted our model
to seroprevalence data from two large serosurveys in Europe44,45. We
focused on these two studies because their results were standardized
to ensure comparability of the serological assays across the partici-
pating countries. The first study, conducted in six countries in themid
−1990s, covered all age groups and reported seroprevalence based on
a seropositivity threshold of 125 IU/mL44. The second study, conducted
in fourteen countries during the early 2010s, focused only on adults
aged 20–39 and reported seroprevalence based on a seropositivity
threshold of 100 IU/mL45.

To include countries in our study, we applied three criteria:
1. Social contact data available from Mistry et al.46

2. Stable high ( > 80%) vaccine coverage from the start of wP vacci-
nation until the collection of serological samples.

3. Switch to aP vaccines for primary immunization ≤5 years before
the collection of serological samples.

These criteria, thus, restricted our analysis to countries with
mature and stable vaccination programs before or very shortly after
the switch to aP vaccines. In particular, the last criterion was applied to
simplify our model and focus our analysis on infection/wP-derived
protection, which differs from aP-derived protection61,62. Of note, we
did not consider a more recent European serosurvey42 because all
participating countries had switched to aP vaccines >5 years before
sample collection.

In each selected country, we ran 10 stochastic simulations from
thebeginning ofwPvaccination until the serological survey period.We
then calculated the model-predicted seroprevalence in adults aged
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20–44 (for countries fromref. 44) or 20–39 (for countries from ref. 45).
For model-data comparison, we used weighted linear regression with
the observed seroprevalence (SðobsÞP ) as the outcome and the predicted
seroprevalence (SðmodÞ

P ) as an offset, with weights equal to the inverse
variance of the observed seroprevalence estimates. Such weighting
allowed us to account for the statistical uncertainty due to the limited
sample size of the serosurveys. Mathematically, this regression model
is represented by the equation:

SðobsÞP = SðmodÞ
P � α ð1Þ

In this regression model, the parameter α thus represented the
MWE between the model predictions and the data.

We repeated this procedure for multiple pairs of the
immune-boosting coefficient and average duration of protection
ðρ,α�1Þ. Specifically, we considered four values of immune-
boosting (0.5, 1, 2, 5) and multiple average durations of protec-
tion ranging from 10 to 90 years (by increments of 10 years). Of
note, in the absence of immune boosting (ρ=0), the duration of
vaccine-derived protection follows an exponential distribution
(with rate α) and the duration of infection-derived protection a
generalized Erlang distribution (a sum of two exponential dis-
tributions with rates 1=tn and α). In both cases, the duration of
protection is inherently variable, with a large fraction of indivi-
duals losing protection before the average duration (63% for the
exponential distribution). Any pair resulting in a non-significant
MWE (i.e., not significantly different from 0, according to a t-test)
was considered an admissible estimate consistent with the data.
For a given immune-boosting level, we calculated an approximate
95% confidence interval for the average duration of protection as
the range of all admissible estimates. This approach is based on
the connection between confidence intervals and hypothesis
testing, such that a 95% confidence interval can be calculated as
the set of null hypotheses that are not rejected at level 5% (ref. 76,
chapter 5).

Model predictions across representative countries
Next generation matrix clustering. To get a broader picture of the
potential shortcomings of serology, we predicted the seroprevalence
and PPV of seropositivity from serosurveys across various countries
worldwide. To simplify our analysis, we did not consider all 35 coun-
tries with social contact data available from Mistry et al.46. Instead, we
clustered the NGMs to identify groups of countries with broadly
similar transmission dynamics.

In every country, we first calculated the NGM and the corre-
sponding basic reproduction number (R0, defined as the leading
eigenvalue of the NGM)77. Next, we computed the pairwise Manhattan
distance between every pair of country-level NGMs to create a dis-
similarity matrix encompassing all countries. Finally, we applied
agglomerative nested hierarchical clustering and used the silhouette
method to determine the optimal number of clusters78. For every
cluster with ≥2 countries, we selected the country with the largest
population as the representative for that cluster.

Simulation protocol. In every representative country identified
throughNGMclustering,we simulatedour serotransmissionmodel for
150 years to reach equilibrium in the prevaccine era and another 150
years in the vaccine era. We ran ten replicate stochastic simulations
and recorded the seroprevalence in three adult age groups—20–39,
40–59, and 60–79—for the last twenty years of the simulated period
(200 simulation-years in each agegroup).Weconsidered these specific
age groups because serosurveys often focus on adults42,45, in whom
pertussis is less likely to be reported.

Numerical implementation and code availability statement
The serotransmission model was developed using the pomp package
(version 5.10)79,80 in R version 4.4.181. The NGM clustering was per-
formed using the R package clValid82, with visualization done using the
package factoextra83.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available on GitHub (https://github.com/DomenechLab/
Pertussis_seroprevalence) and Zenodo84.

Code availability
All programming codes are available on GitHub (https://github.com/
DomenechLab/Pertussis_seroprevalence) and Zenodo84.
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