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Accurate forecasting of contagious illnesses has become increasingly
important to public health policymaking and better prediction could prevent
the loss of millions of lives. To better prepare for future pandemics,
it is essential to improve forecasting methods and capabilities. In this
work, we implement physics-informed neural networks (PINNs), a popular
tool in the area of scientific machine learning, to perform infectious
disease forecasting. The used PINNs model incorporates dynamical systems
representations of disease transmission into the loss function, thereby
assimilating epidemiological theory and data using neural networks. Our
approach is designed to prevent model overfitting, which often occurs when
training deep-learning models with observation data alone. In addition,
we use an additional sub-network to account for mobility, cumulative
vaccine doses and other covariates that influence the transmission rate, a
key parameter in the compartmental model. To demonstrate the capability
of the proposed model, we examine the performance of the model using
state-level COVID-19 data in California. Our simulation results show that
predictions of the PINNs model on the number of cases, deaths and
hospitalizations are consistent with existing benchmarks. In particular, the
PINNs model outperforms naive baseline forecasts and various sequence
deep-learning models, such as recurrent neural networks, long short-term
memory networks, gated recurrent units and transformer models. We also
show that the performance of the PINNs model is comparable with that of
a sophisticated Gaussian infection state forecasting model that combines the
compartmental model, a data observation model and a regression model for
inferring parameters in the compartmental model. Nonetheless, the PINN's
model offers a simpler structure and is easier to implement. In summary, we
perform a systematic study of the predictive capability of the PINNs model
in forecasting the dynamics of infectious diseases and our results showcase
the potential of the proposed model as an efficient computational tool to
enhance the current capacity of infectious disease forecasting.

1. Introduction

COVID-19 was the third largest cause of mortality in the United States in
2022 [1] and, in addition to Ebola, Chikungunya, Zika and mPox, was one of
five global outbreaks in the past decade caused by emerging pathogens. Cli-
mate change is expected to exacerbate disease transmission risks, which before
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COVID-19 already accounted for roughly 25% of global mortality [2,3]. In the midst of an exponentially growing outbreak, public
health officials must respond rapidly in the face of intense uncertainty [4]. Recent developments in infectious disease forecast-
ing have sought to improve our ability to anticipate future epidemiological trends, such as the number of reported cases, deaths
or hospitalizations from a disease and are increasingly used during outbreaks. Forecasting provides a concrete way to integrate
data with epidemiological knowledge and can be used to inform the allocation of critical resources, such as antiviral drugs or
ventilators, the implementation of non-pharmaceutical interventions and the design of vaccine trials [4-6].

The compartmental epidemiological models, which divide the population into distinct mutually exclusive subsets based on
individuals’ disease status, have been widely used to represent and forecast the spread of infectious diseases within a population
[7-10]. The most basic compartments include individuals who are susceptible to the infection (Susceptible (S)), those who are cur-
rently infected and capable of transmitting the disease (Infected (I)) and individuals who have recovered from the infection and
are assumed to have acquired immunity or those who have been removed from the susceptible pool due to death (Recovered or
Removed (R)) [11,12]. Numerous extensions of the basic compartmental models have introduced more compartments to account
for other state variables, such as death or variations in disease staging [13-19] or other flows among compartments (e.g. loss of im-
munity [8,20]). The transitions between these compartments are governed by a set of ordinary differential equations that describe
the rates at which individuals move from one compartment to another. Although compartmental epidemiological models have
provided valuable insights into the general dynamics of infectious diseases and inform public health strategies, compartmental
models typically assume parameters such as the transmission and recovery rates are fixed. As has been observed in recent high-
profile outbreaks, this assumption does not adequately capture the dynamic nature of an unfolding epidemic, especially when
factors such as the rollout of new vaccines, public health interventions or virus mutation are involved (see [21-24]).

Over the past decade, alternative approaches to tackling complex social problems have emerged, including artificial intelli-
gence (AI) and machine learning (ML). These approaches have the advantage of efficiently identifying patterns in data and can,
in principle, accommodate multiple disparate data streams. However, conventional AI/ML methods require a large amount of
training and labelled data to ensure good performance [25-28]. Furthermore, AI/ML models may provide unrealistic predictions,
especially for non-stationary systems, as they are not constrained by the mechanisms driving transmission. Furthermore, data-
driven models have historically struggled with predicting epidemics because they often fail to differentiate real trends from noise
in the data collection process [29]. Recently, scientific ML models for solving partial differential equations (PDEs) and ordinary
differential equations (ODEs) have attracted growing attention due to their ability to assimilate the underlying scientific laws rep-
resented by ODEs or PDEs with the learning properties of neural networks (NNs). Combining Al with dynamical systems models
can help to infer unknown model parameters as constants or functions using limited data. This enables learning from ‘small data’
as we explicitly utilize the constraints from the physical or biological laws [30—43].

Physics-informed neural networks (PINNSs) [44], one of the most popular scientific ML models, provide a powerful framework
that integrates data with compartmental models by incorporating both into the loss function. As illustrated in figure 1A, the left
side of the architecture represents a fully connected neural network (FCNN), corresponding to the physics-uninformed compo-
nent, while the right side captures the physics-informed component. The loss function is designed to account for contributions
from both observed data and the underlying compartmental models. PINNs have been successfully applied to a range of scientific
and engineering challenges, encompassing both forward and inverse problems [45-54]. Previous studies have explored param-
eter estimation and forecasting using PINNs [55-59]. Specifically, Kharazmi et al. [55] demonstrated the effectiveness of PINNs
in simultaneously inferring the unknown parameters and the unobserved dynamics using a plurality of epidemiological mod-
els. Subsequent studies [60-64] have built upon this framework, using PINNs or their modified variants to estimate time-varying
parameters and capture epidemic dynamics using data from multiple spatial locations. Despite these advances, there remains a
lack of systematic comparisons between the performance of PINNs and popular data-driven sequence models such as recurrent
neural networks (RNNs), long short-term memory (LSTM) networks, gated recurrent units (GRUs) and transformer models. A
comprehensive evaluation of these approaches would help elucidate the advantages and limitations of PINNs relative to more
conventional ML methods in time-series forecasting.

Here, we introduce a disease forecasting model developed based on PINNs. The compartmental model includes nine state
variables (table 1), with the PINNs architecture comprising two sub-networks that both take time t as input. The upper sub-
network predicts all nine state variables, contributing to the ODE loss Lopg, while three observable variables—reported cases
(C,), hospitalizations (A) and reported deaths (D,)—also contribute to the data loss Lg,t,. The lower sub-network predicts three
variables—mobility, cumulative vaccine doses and transmission rate. Since these three outputs share the same network weights,
the training of transmission rate is indirectly influenced by the training of mobility and cumulative vaccine doses. The transmission
rate feeds into Lopg and the other two inform Lgy,t,. This design allows for seamless integration of mechanistic modelling with
observed data, enhancing forecasting performance. To demonstrate the capability of this approach, we evaluated the performance
of the model by comparing one-, two-, three- and four-week-ahead forecasts of COVID-19 cases, deaths and hospitalizations in
the state of California using reports of COVID-19, Google’s mobility reports and vaccination data available each week. We as-
sessed model accuracy on both point forecasting and quantile forecasting [65]. We compared the score of our model with a naive
baseline forecast, various sequence deep-learning models, including RNNs, LSTMs, GRUs, transformer models and a traditional
mathematical model.
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Figure 1. (A) Schematic of the proposed PINNs model for infectious disease forecasting. The model comprises two sub-networks: the upper sub-network predicts the
state variables in the compartmental model, while the lower sub-network estimates the time-dependent model parameters. The input of the NN is time t in the form of
a vector, and it contains all the residual points where the ODE loss is computed. The output y represents the nine compartmental state variables, including S (uninfected
and susceptible individuals), L (individuals with latent infections who are not yet infectious), / (individuals who are infectious), € (individuals who have been diagnosed
and will be reported as cases but have not yet been reported), C, (this compartment keeps track of the number of cases reported each day), H (individuals who have
been hospitalized), A (individuals who are new hospital admissions), D (individuals who have died from the infection but whose death has not yet been reported), D,
(the number of newly reported deaths each week). The output z represents factors including mobility, cumulative vaccine doses and transmission rate. The data loss
L, is @ weighted sum of observable state variables and factors. (B) Schematic of the rolling window approach. As training data accumulate over time, the PINNs model
continuously updates and generates forecasts for the subsequent one to four weeks.

Table 1. State variables in the used compartmental model by 0'Dea & Drake [22].

S uninfected and susceptible individuals

L » ‘ individuals with latent infections who are nbtyetihfectious ‘

/ individuals who are infectious
Cindividualswho have been diagnosed and will be reported as cases but have not yet been reported
. C, i compartment kée‘ps'traﬁbck'ofbth»e S rép‘brfédbeébchbd‘éy“ B

H individuals who have been hospitalized

A individuals who are new hospital admissions
0  individuals who have died from the infection but whose death has not yet been reported
. D, e hbuhbwbber‘df‘héWIyr‘épdr{edbd‘éa‘tbhs“eéchbWeék A
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2. Data and methods

2.1. Data
2.1.1. Input data

To facilitate a comparison of our model’s forecasting performance with that of various other models, we used the forecasting tar-
gets defined by the COVID-19 Forecast Hub [22,66], including COVID-19 case and death data sourced from the COVID-19 Data
Repository available at https://github.com/CSSEGISandData/COVID-19, which is maintained by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA (JHU) [67]. Furthermore, we used information on hos-
pitalizations from the COVID-19 Reported Patient Impact and Hospital Capacity by State Time series and COVID-19 Reported
Patient Impact and Hospital Capacity by State datasets compiled by the US Department of Health and Human Services (HHS)
available on healthdata.gov. Access to these datasets was facilitated through the Delphi Epidata AP, as detailed by Reinhart et
al. [68]. For our analysis, the time series of hospitalizations is the sum of the fields labelled previous_day_admission_adult_covid
_confirmed and previous_day_admission_pediatric_covid_confirmed in the tables provided by HHS.

We used data on mobility and cumulative vaccine doses due to their association with the transmission rate, a critical time-
dependent parameter in epidemiological forecasting. In particular, mobility can be measured by the amount of time individuals
spend in residential areas, as quantified in Google’s community mobility reports [69]. For a given forecast date, we obtained the
latest snapshot of Google’s Global_Mobility_Report.csv file on http://web.archive.org that was made before the beginning forecast
date in the UTC time zone.

Cumulative vaccine doses represent the total number of vaccine doses administered within a given state. Our modelling
assumes that the average susceptibility of individuals who have not been previously infected decreases as the number of admin-
istered doses increases. Rather than modelling the number of susceptible individuals directly, we model the effect of vaccination
on average susceptibility, acknowledging that a single dose of a COVID-19 vaccine typically does not confer full immunity. We
obtained the time series data on administered vaccine doses from the GitHub repository maintained by Johns Hopkins University
(https://github.com/govex/COVID). This dataset compiles information from state public dashboards and the Centers for Disease
Control and Prevention (CDC) Vaccine Tracker. For each day, the dataset reports the higher value between the two sources to pro-
vide the most current estimate. To generate a covariate without missing values, we assumed all values prior to the first reported
entry were zero and any missing values within the series were imputed using linear interpolation.

2.1.2. Data pre-processing

The time-series data for cases, deaths, hospitalizations, mobility and cumulative vaccine doses were originally provided at a daily
resolution, whereas our prediction targets are weekly totals for cases, deaths and hospitalizations. To ensure consistency with the
prediction targets, we pre-processed these datasets by computing a 7-day moving average and aggregating the daily values into a
weekly time series. This smoothing strategy not only aligns the temporal resolution with the forecasting targets but also reduces
short-term fluctuations in the original data.

The hospitalization data differ from the other time series in several key aspects. First, the hospitalization records were made
available later than the case and death data, with reliable reporting beginning in July 2020. Second, the initial portion of the hospi-
talization time series is affected by an artificial upward trend caused by the gradual increase in the number of hospitals reporting
data. To mitigate this bias, we excluded the first 20 weeks of hospitalization data from our analysis.

Towards the end of the time series, a small, incomplete peak appears following two major peaks. To maintain focus on well-
characterized dynamics, we chose to model only the two major peaks and discarded data after week 110. These two peaks
correspond to different viral variants (Beta and Delta), each associated with distinct transmission dynamics and sufficient for
evaluating the performance of our forecasting model.

Figure 2 illustrates both the original (upper panel) and pre-processed (lower panel) time-series data. To address the large differ-
ences in scale across variables, we applied linear scaling to normalize each time series to a similar range, approximately between
0 and 1. This normalization is also reflected in the lower panel of figure 2, facilitating better visualization and more stable model
training.

2.2. Compartmental model

The compartmental model for COVID-19, adopted from [22], is based on a structured framework that captures the dynamics of
COVID-19 transmission, hospitalization and death, incorporating both reported and unreported cases. It accounts for time-varying
transmission and progression rates through semi-parametric smoothing splines, allowing for flexible adaptation to real-world data
and policy changes. The model introduces nonlinearities primarily through the infection term, which is a product of the susceptible
and infectious populations scaled by a time-dependent contact rate. The contact structure implicitly incorporates behavioural and
intervention-related effects without explicitly modelling population mixing patterns. A key mathematical property established
is the positivity of the solution, ensuring all state variables remain non-negative over time, which is critical for epidemiological
interpretability. This well-posedness, along with the model’s flexible design, supports robust short- and medium-term forecasts
of cases, hospitalizations and deaths.
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Figure 2. Original dataset (upper panel) and pre-processed (lower panel) dataset used for training and testing the proposed PINNs model.

Table 2. Model parameters used in the compartmental model by 0'Dea & Drake [22].
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The compartmental model is governed by a system of nine ODEs involving nine state variables and 11 parameters:
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The definitions of the state variables are provided in table 1. Definitions and values for each model parameter are provided in

table 2.
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2.3. Physics-informed neural networks

PINNSs, which combine traditional compartmental models with observational data through NNs, have emerged as one of the most
influential approaches in scientific ML. In this work, we incorporate the epidemiological model proposed in [22] —a compartmen-
tal model for COVID-19 with time-dependent parameters—into our PINNs framework. This model is governed by a system of
nine ODEs involving nine state variables and 11 parameters. Among these, three state variables— C,, D, and A—are observable
and used as targets for model training and evaluation. The remaining six state variables are unobservable and are treated as latent
variables within the PINNs framework.

The system of ODEs is incorporated into the physics-informed component of the model, as illustrated in figure 1A. For con-
sistency and comparability, we generally adopt the parameter settings from [22]: seven parameters are treated as known and
constant, while three are estimated during training. Among them, the transmission rate 3; is considered a critical time-dependent
parameter and is predicted by the lower sub-network, as depicted in figure 1A. The remaining two parameters, p, and p; , are
assumed to be constant and are integrated into the model parameters to be estimated during the training process.

As depicted in figure 1A, the PINNs architecture comprises two sub-networks, both taking time t as input. Each sub-network
consists of three hidden layers with 50 neurons in each layer. The upper sub-network predicts the values of the nine state variables,
all of which are used to compute the ODE loss, denoted as Lopg. The exponential transformation is applied to the output of the
upper and lower sub-networks to enforce positivity. Among these, three variables—C,, A and D, —are observable and contribute
to the Lyata-

The lower sub-network is designed to implicitly capture the relationship between the transmission rate and two closely as-
sociated factors: mobility and cumulative vaccine doses. It is trained to predict multiple outputs from the same input t. Each
output at inference depends solely on f and does not directly incorporate the others. However, since all outputs share the same
network weights, the transmission rate is indirectly affected by the training of mobility and cumulative vaccine doses. This sub-
network outputs predictions for mobility, cumulative vaccine doses and the transmission rate. The transmission rate is a key
time-dependent parameter in the compartmental model and is involved in the computation of Lopg, while mobility and cumu-
lative vaccine doses have corresponding reported data and contribute to £4y,¢,. This PINNs framework enables the integration of
mechanistic modelling with real-world data for improved forecasting accuracy.

The constraint imposed by the compartmental model was integrated into the PINNs training process by combining the ODE
loss with the data loss. Specifically, the total loss is defined as a weighted sum of the data loss and the ODE loss:

L(6) = Lgata(®) + wope LoDE®), (22)

where 6 denotes the full set of parameters in PINNSs, including the networks” parameters and the physics parameters, i.e. p, and
Pd- Ldata Tepresents data loss, Lopg represents ODE loss and wopg represents the weight for ODE loss.
We denote the upper and lower sub-networks (illustrated in figure 1A) by Yo () and zg_(#), respectively, where Gy and 6, are the
Yy

parameters of the upper and lower networks. The variable ¢ denotes time as the input. The output yey(t) = [yéy(t), yéy ®, ..., ygy(t)]

approximates the vector of the nine state variables ordered as in table 1, evaluated at time ¢, while zg_(¢) = [zé ), zé (b), zg (®)] ap-
proximates the vector comprising mobility, cumulative vaccine doses and the transmission rate 8; at f. The PINNs were trained
by minimizing the loss function £(6) using the mean squared error as the training metric, with the data loss component defined
as

1 Ne, c 1 Ny 1 Np, D

Laaa® =57 25 I, (17 = Cril? + 5= 2 g, (D) = Ail* + = 2 1w (4 = Dril?
G =1 A =1 ’ D, j=1 ’
(2.3)
1 Ny 1 Ny
+ 5 2z (D) = Mil* + == > 125 () = Vi,
Nuig % Nyiq &

N, N,
where {tz.c’, Cr,i}i;{/ {t?,Ai}ﬁq, {tiD', Dr,i},-:? are measurements for C,, A, D,, respectively. Similarly, {tﬁw ,Mz’}fiA{ and {ty, Vi}ﬁ"l cor-
respond to the measurements for mobility and cumulative vaccine doses. Here, N¢ , N4, Np , Njj, Ny represent the sizes of these
measurements. We emphasize that these measurements may be collected at distinct time points, and the PINNs framework

naturally accommodates such asynchronous data sampling [44].
The ODE loss is defined as the sum of the initial condition loss and the residual loss:

Lope(8) = Ly(6) + L(6), (2.4)

where £((8) denotes the loss associated with the initial conditions and £,(6) represents the residual loss corresponding to the
system dynamics. The initial condition loss quantifies the discrepancy between the model’s prediction at the initial time fy = 0 and
the initial values of the nine state variables (denoted by [I1, 5, ..., Ig]) given by [22]. It is defined as

o . 2
£0(®)= 3w} ko) =1 - 25)
j=1

The residual loss measures the extent to which the model predictions satisfy the governing compartmental ODE system and is

given by
9  w. Nope
7 2
L,(6)= Ri(t;;0)| 2.6
, j:leonE,-ﬂ"" (2.6)
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where Nopg is the number of collocation points (denoted as t;,1 =1, ..., Nopg) used to enforce the ODE system defined in equation
(2.1), w; denotes the weighting coefficient for the jth equation and Rj(t; 6) represents the residual of the jth ODE, computed as the
difference between the left- and right-hand sides of equation (2.1), with the state variables and physics parameters approximated
by the PINNSs. For instance, consider the first equation in the system, dS/dt = —3;5I/N. The corresponding residual is defined as

dyg, 25 (D, (O O

Ry(£6) := dt” )+ N ,

2.7)

where yé B, yg (f) and zg (t) approximate the variables S, I and the time-dependent transmission rate 3, respectively.
Y Yy z

Overfitting is a common challenge in time series forecasting involving real-world data. To address this issue, we apply L, reg-
ularization, a widely adopted technique that augments the original loss function with a penalty term proportional to the sum of
the squared network parameters. This regularization term is defined as

L© =Y ", 28)
j=1

where 6, for j=1,...,n, denotes the full set of parameters in the PINNs, including the parameters of the two sub-networks as well
as the physics-related parameters p;, and p;. The total number of parameters is denoted by n. By penalizing large parameter val-
ues, L, regularization discourages overly complex models and promotes generalization. In practice, this technique is conveniently
implemented in PyTorch through the weight_decay argument in the optimizer settings.

We used the Adam optimizer [70] with a learning rate of 1x 1073 for 50000 epochs. L, regularization with a coefficient of
1 x 10~° was applied to reduce overfitting. To balance the scales between L., and Lopg, we set the weight wopg = 0.1. All hy-
perparameters were manually tuned to optimize predictive accuracy. Specifically, we tuned the learning rate in the range from 1 x
1075 to 1 x 107!, the number of layers in the range of 2-5, the neurons per layer in the range from 20 to 100, the number of training
epochs in the range from 10000 to 200 000, regularization weight in the range from 1 x 10719 to 1 x 107! and the weights assigned
to each loss component in the range from 1 x 1075 to 1. We evaluated different hyperparameter combinations by calculating the
corresponding mean absolute scaled error (MASE) for point forecasting and the weighted interval score (WIS) for quantile fore-
casting, selecting the set that achieved the overall best predictive accuracy. Training and testing were conducted on an NVIDIA
GeForce RTX 3090 GPU.

We trained the PINNs model using historical data from July 2020 to April 2022, using a rolling window approach, as illustrated
in figure 1B, to enable continuous predictions for the subsequent 1-4 weeks. Initially, PINNs were trained on data from weeks 1
to 17, with predictions made for weeks 18-21. The training window was then extended by one week, retraining the model on data
from weeks 1 to 18 and forecasting weeks 19-22. This process was repeated until PINNs were trained using data from weeks 1 to
89 and predictions were made for weeks 90-93. As a result, each week from 21 to 90 was treated as the subsequent 1-, 2-, 3- and
4-week forecast in the rolling window procedure.

2.4. Evaluation metrics

We used two metrics to assess predictive performance: the MASE [71] for point forecasting and the WIS for quantile forecasting.
MASE was calculated by dividing the mean absolute error (MAE) of the model’s predictions by the MAE of a naive model of the
same forecast horizon:

MAE
MASE = ——LINNs (2.9)
MAEpaive
MAE was calculated as the mean absolute difference between model predictions 1j; and empirical observations y;:
1 X
MAE = NZ v = vil, (2.10)
i=1

where N is the number of data.

The naive model uses data from the previous weeks as predictions for the following weeks. Specifically, when the forecast hori-
zon is one week, the naive model uses data from the past week to predict the following week. Similarly, for a two-week forecast
horizon, the naive model uses data from the past two weeks to predict the subsequent two weeks. A MASE value smaller than
1.0 indicates that our PINNs model outperforms the naive model in terms of predictive accuracy. Moreover, a lower MASE value
corresponds to more accurate predictions.

In infectious disease forecasting, quantile predictions, namely probabilistic predictions, are typically required to account for
error propagation. We assume that the prediction distribution follows a Gaussian distribution, with mean y; equal to the point
forecast at time ¢ and s.d. o, which represents the s.d. of all prediction errors and is constant across time. The prediction quantiles
at time f are then given by u; + cr\/E erf_l(2p — 1), where erf ! denotes the inverse error function and p represents the desired
quantile.

To evaluate probabilistic predictions using the WIS, we used the ‘interval-scoring’ Python package (https://github.com/adrian-
lison/interval-scoring), based on [65]. We calculated the WIS with quantile bins as required by the COVID-19 Forecast Hub, specif-
ically oy =0.02, oty =0.05, a3 =0.1, ..., a1 = 0.9 and quantiles including 0.010, 0.025, 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350,
0.400, 0.450, 0.500, 0.550, 0.600, 0.650, 0.700, 0.750, 0.800, 0.850, 0.900, 0.950, 0.975 and 0.990.
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2.5. Ablation study

In contrast to traditional NNs, we incorporated epidemiological knowledge into our model by adding the ODE loss to the over-
all loss function. To assess the impact of embedding domain-specific epidemiological knowledge into the NN, we also trained
a traditional neural network (denoted as NN) and compared its performance with our PINNs model. The NN shares the same
architecture as the NN component in the upper left part of figure 1A, but it is purely data-driven and does not integrate the
compartmental model.

In contrast to traditional mathematical methods, we used a NN and integrated it with the compartmental model. To evaluate
the advantages of PINNs over the compartmental model, we compared the performance of our PINNs with that of the Gaussian
infection state space with time dependence (GISST) model [23]. GISST is a conventional mathematical model that solves the same
compartmental model.

It is important to note that early historical data may not accurately capture the dynamics of current virus variants due to mu-
tations and may even negatively impact future predictions. To assess this, we investigated the effect of the training data window
size on prediction accuracy. While PINNs were originally trained using all available historical data, we also trained models using
only recent data and compared their predictive performance. The results are presented in appendix A.1.

Additionally, we conducted an analysis of the impact of L, regularization on model performance and evaluated its necessity
in our forecasting tasks. This analysis helps to assess whether regularization significantly contributes to improving general-
ization and preventing overfitting. The results of these experiments, including performance comparisons with and without L,
regularization, are presented in appendix A.2.

3. Results

3.1. Point forecasts on the number of cases, deaths and hospitalizations for the following one to four weeks

At each time point ¢, we trained PINNs using historical data from July 2020 up to f and generated forecasts for the subsequent
one to four weeks. The predictions, shown in figure 3, demonstrate that the outputs from PINNs are consistently aligned with
the observed target values and are more accurate than those from the naive model across all forecasting horizons. Additionally,
PINNSs outperform most of the corresponding forecasts produced by GISST. The results also indicate that one-week-ahead predic-
tions are the most reliable, with accuracy gradually declining for forecasts on the subsequent two-, three- and four-week horizons.
As the forecasting horizon increases, the predicted values tend to diverge more from the ground truth, accompanied by greater
fluctuations in the predicted curves.

Quantitative comparisons are reported in table 3. In the column labelled ‘method’, the name before the colon indicates the
forecasting approach, while the number denotes the forecast horizon. Scores highlighted in bold represent the best-performing
model (the lowest score) for a given forecast horizon within each metric column. For example, ‘PINNs: one week’ refers to PINNs
predictions for the subsequent first week, while ‘PINNs: two weeks’ refers to forecasts for the second week ahead. We observe
that all of PINNs” MASE scores are no more than 1.0, indicating that PINNs consistently outperform the naive model across all
forecast horizons. Among the three state variables, the MASE scores for deaths are generally higher than those for cases and
hospitalizations, probably due to greater variability and fluctuations in the original death data.

3.2. Quantile forecasts on the number of cases, deaths and hospitalizations for the following one to four weeks

Similarly, at each time point f, we trained PINNs using historical data from July 2020 up to t and generated predictions for the
subsequent one to four weeks. In this case, we visualized the continuous forecasts along with the associated uncertainty in figure
4. For each group of one- to four-week predictions, the points (representing the median predictions at quantile = 0.5) progres-
sively deviate from the ground truth as the forecast horizon extends. Correspondingly, the light blue region, which represents
predictive uncertainty, expands with longer horizons. This pattern highlights a common trend: as the forecast horizon increases,
prediction accuracy decreases while uncertainty grows. In this study, we assume the s.d. o of the predictive Gaussian distribution
is different for different prediction horizons. o is computed as the s.d. of the errors of the 70 predictions for the one-, two-, three-
and four-week predictions, respectively. The values for o are provided in table 4.

Quantitative comparisons of WIS are presented in table 3. The scaled WIS was computed by dividing the WIS of each model
by the WIS of the naive model for the corresponding forecast horizon. We observe that PINNs achieve scaled WIS scores that are
generally below 1.0, indicating superior performance over the naive baseline across most forecasting horizons. The only excep-
tion occurs in the one-week-ahead quantile predictions for death, where the PINNs” WIS score slightly exceeds 1.0. However, this
deviation is minor and still significantly lower than the scores of other models.

3.3. Comparison with sequence deep-learning models and traditional mathematical model

We first compared our PINNs’ predictions with results obtained from the NN without incorporating the compartmental model,
as well as with the results of a traditional mathematical model named GISST [22]. As shown in table 3, both MASE and WIS scores
for PINNs are lower than the corresponding scores of NN for each forecast horizon, which demonstrates the absolute advan-
tage of PINNs over NN for both point forecasting and quantile forecasting. This is probably due to the regularizing effect of the
compartmental model.
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Table 3. MASE and WIS comparison of different methods for point forecasting and quantile forecasting, respectively. Column ‘hosp’ denotes hospitalizations. Scaled WIS
is computed by dividing the WIS by the WIS of naive models of the same forecast horizon. Scores in bold denote the lowest score of the same forecast horizon in that
column.
method MASE WIS scaled WIS
cases deaths hosp cases deaths hosp cases deaths hosp
PINNs: one week  0.75 1.00 0.58 16247 103 250 0.70 1.04 0.57
PINNs: two week  0.77 0.92 0.62 32954 146 556 0.79 1.00 0.66

PINNs: three 0.81 0.86 0.68 49272 176 882 0.87 0.91 0.72
week

. p|NNSfourweek ...,0.85 039 B 074 B G311 217 1232 004 089 079

ewek 0ot 1m0 e s s w1 60 08
NN: two week 1.27 1.76 0.79 52761 298 729 1.27 2.04 0.86

NN:threeweek 156 186 089 88920 42 181 157 2.29 1,05

. N'N;'fodrw'ee'k . 165 184 B 097 e 1851s 558.. B "18'85" I 6 228 1.22....

GISST:-oneweek 085  0.88 091 15346 163 400 0.66 165 092
GISST: twoweek ~ 0.75 0.64 078 26233 185 798 0.63 127 0.94

GISSTthree . 071 s 045 e 077 B ...3.7041 187 B 1300 e o6 0o o
week

 GISST: four week ~ 0.76 034 08 58148 181 2159 086 0.74 139
RNN:oneweek  0.91 128 070 17653 126 278 076 127 0.64
RNN: twoweek  0.92 117 0.82 33544 168 642 081 115 076

CRNN:threeweek 094 109 094 46641 205 1105 0.82 1.06 0.90

*RNN:fourweek 092 099 103 53964 1) 1554 0.80 0.99 1.00
LSTM: oneweek ~ 1.00 129 079 19622 124 325 085 1.25 0.74
LSTM: two week  1.00 139 093 35249 194 786 085 133 093

LSTM:three 098 16 103 49661 226 1249 0.87 117 102
week

CLSTM:fourweek 094 109 104 56474 268 1624 0.84 109 1.05
GRU:oneweek  0.89 122 0.77 16952 115 324 0.73 116 0.74
GRU:twoweek 090 124 0.88 33573 178 749 081 1.2 0.88

. GRUthreeweek 093 ”4 B 098 o 267 225 B 1198 - 063 - 008

GRUfourweek 090 R 103 I 101 B 55 By 262 R 1603 — 08 o7 Lot

transformer:one  0.96 1.14 0.81 22155 m 356 0.96 1.12 0.81
week
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week

. tfénéfdfmér:n . 105 097 B 094 s 5o 1§3 B ..11..79.. e -~ o0 0,96""
three week

‘transformer-four  1.08 091 104 69297  B5 169 103 0.96 1.05
week

Table 4. Standard deviations (o) of forecast errors by week for cases, deaths and hospitalizations.

week cases deaths hosp
1 0.3715 0.3303 0.1739
0.7732 0.4997 0.4598
09658 0628 06126 '

el W oN
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Figure 3. PINNs’ point predictions on the number of cases, deaths and hospitalizations for the following one to four weeks. GISST represents a mathematical model
named the Gaussian infection state space with time dependence [22]. The naive model uses data from the previous weeks as predictions for the following weeks.

Additionally, PINNs typically outperformed GISST when forecasting hospitalizations. GISST outperformed PINNs for cases
and forecasting performance for deaths, which depended on whether the evaluation was for point forecasts (GISST superior) or
quantile forecasts (PINNs superior). These results demonstrate the important role of epidemiological domain knowledge as a
constraint to avoid unreasonable predictions that may arise in purely data-driven modelling.

To further evaluate the performance of PINNs, we compared them against several state-of-the-art NN architectures commonly
used for sequential data processing. Specifically, we implemented RNNs [72], LSTMs [73], GRUs [74] and transformer models [75]
to address the same forecasting task. The RNN, LSTM and GRU models share a similar architecture configuration. Each model
consists of an input layer with three neurons, two hidden layers with 50 neurons each and an output layer with three neurons.
The transformer model is composed of an input layer with three neurons, followed by two encoder layers, each with a hidden
dimensionality of 64 and four attention heads and an output layer with three neurons. These models take weekly data on cases,
deaths and hospitalizations as input features and generate corresponding predictions for each of the three variables. A window
size of seven weeks was used for input. Training was conducted using the Adam optimizer with a learning rate of 1 x 1073 over
10000 epochs.

The window size is a crucial hyperparameter for these models. Thus, we evaluated the models using window sizes of 3, 5, 7,
10, 12 and 15 weeks and the results are presented in figure 5. The findings align with our expectations: a window that is too short
does not adequately capture the temporal dependencies of the data, whereas an excessively long window introduces redundancy.
A window size of seven weeks strikes an optimal balance and is well suited for this forecasting task.

The predictions for one- two-, three- and four-week forecasts are shown in figure 6A. In comparison with PINNS, the forecasts
generated by RNNs, LSTMs, GRUs and transformers exhibit noticeable fluctuations, indicating a higher degree of overfitting.
These fluctuations are more clearly observed in figure 6B, which provides a zoomed-in view of the four-week predictions for
deaths. This contrast underscores the advantage of incorporating physical information into PINNs, which contributes to more
stable and reliable predictions. A quantitative comparison is provided in table 3, where PINNSs consistently outperform all other
prominent NN models commonly used for time-series forecasting, in terms of both MASE for point forecasting and WIS for
quantile forecasting. Despite architectural advances in RNNs, LSTMs, GRUs and transformers, none of these models demon-
strates substantial performance gains on this task. These findings emphasize the importance of integrating physics-based domain
knowledge into NN models for improved generalization and predictive accuracy.
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Figure 4. PINNs’ quantile predictions on the number of cases, deaths and hospitalizations for the following one to four weeks. The red dots represent the ground truth.
The blue points indicate PINNs’ predictions and the light blue region represents the associated uncertainty in the forecasts. Each polygon spans a continuous four-week
prediction interval, encompassing the one-, two-, three- and four-week forecasts made from a time point one week prior to the start of the polygon.
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Figure 5. A MASE comparison of RNNs, LSTM networks, GRUs and transformer models, with training window sizes ranging from 3 to 15 weeks.

4. Discussion and summary

Epidemic forecasting can traditionally be framed as an inverse-forward problem, wherein model parameters must first be inferred
before generating future predictions. In many scenarios, the mechanisms underlying disease transmission are partially understood
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Figure 6. MASE comparison with RNNs, LSTM networks, GRUs and transformers. (A) An overview comparison of the number of cases, deaths and hospitalizations for the
following one to four weeks. (B) A focused comparison of deaths for the four-week predictions.

and represented using compartmental models in the form of ODEs. However, several model parameters remain unknown and
must be estimated by fitting the model to observational data. Once the parameters are identified, these compartmental models
can be used to forecast future trends in disease spread and evaluate the impact of public health interventions or the emergence of
new variants.

Despite their utility, traditional mathematical models suffer from inherent limitations due to model misspecification. For ex-
ample, they often assume fixed transition rates, which makes it challenging to adapt to evolving conditions, such as changes
in transmission dynamics caused by new variants. Moreover, forecasting is not feasible unless all relevant parameters are accu-
rately estimated. In contrast, data-driven NN models have emerged as powerful tools for addressing complex social and scientific
problems in recent years. However, conventional NNs typically require large volumes of training data and labelled examples to
perform effectively, and they often disregard prior domain knowledge. As a result, ML models may produce unrealistic or unreli-
able forecasts, particularly in extrapolative scenarios, due to their lack of grounding in the underlying physical or epidemiological
processes.

In this work, we used PINNSs to integrate epidemiological knowledge, as described by compartmental models, with observed
data to enhance the accuracy of infectious disease forecasts. Our results demonstrate that the proposed approach offers several
key advantages that contribute to its superior performance. First, the PINNs framework leverages NNs to model complex and
nonlinear patterns inherent in infectious disease dynamics, enabling the system to capture intricate relationships that traditional
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models may miss. Second, PINNs incorporate domain-specific knowledge by embedding the compartmental models into the loss
function. This integration ensures that the learnt representations conform to the underlying principles and constraints of dis-
ease transmission. Moreover, the inclusion of mechanistic models in the training process helps mitigate overfitting, a common
issue when relying solely on data-driven ML approaches. By constraining the learning process with known epidemiological laws,
PINNSs achieve a balanced trade-off between flexibility and generalizability.

Additionally, PINNs can be used to estimate key epidemiological parameters—such as transmission and recovery rates—
directly from data, thereby enhancing the model’s adaptability to evolving disease dynamics. In particular, PINNs treat these
parameters as outputs of the NN, allowing them to vary over time. This enables the model to capture temporal changes in trans-
mission behaviour, such as those driven by viral mutations or shifts in public health interventions. Furthermore, PINNs are capable
of continuously incorporating newly acquired data, allowing for real-time model updates and progressively improved forecasts
as more information becomes available during an ongoing outbreak. This adaptability makes PINNs particularly well suited
for real-world epidemic surveillance and response. In addition, PINNs can integrate heterogeneous data sources—including
social, environmental and demographic factors—offering a more comprehensive and holistic framework for infectious disease
forecasting.

Recently, several PINNs-based models have been developed for infectious disease forecasting, including applications to
COVID-19 [62,76,77] and measles [78]. Compared with these existing approaches, our proposed model incorporates a more com-
plex compartmental framework with nine state variables embedded into the NN architecture. This significantly increases the
challenge of ensuring consistency with the underlying physics described by the ODE system, thereby demonstrating the flexibil-
ity and robustness of our model. Notably, our model achieved better performance metrics —normalized root mean squared error
(NR1 and NR2) and normal deviation (ND), as defined in [76] —compared with the EINNs [76] in forecasting COVID-19 deaths,
which is the only predicted state variable in EINNSs. Specifically, our model achieved 0.53 (EINNSs: 0.54) on NR1, 0.15 (EINNSs: 0.24)
on NR2 and 0.33 (EINNs: 0.38) on ND, while simultaneously predicting two additional state variables. Furthermore, while prior
models primarily offer point forecasts, we extend our approach to quantile forecasts, which allows us to quantify uncertainty in
the predictions.

Despite the strengths of the PINNs framework in handling noisy and limited data, we note that while the estimated transmis-
sion rate f3; falls within the reasonable scale as in observation data, it did not correlate well with the observed variables, namely
cases, deaths and hospitalizations. This is probably due to the highly underdetermined nature of the problem: our ODE system in-
cludes nine state variables, yet only three of them have associated observational data. These three observation data do not directly
impact the ODEs that contain ;. As a result, the PINNs model struggles to infer transmission rates that align with the reference
values, as illustrated in blue dots in figure 8. To further understand this limitation, we performed additional experiments in which
an increased number of sparse ground-truth data points of the transmission rate were provided to guide the PINNs model. Figure
9 shows that with even a small number of such data points, the model was able to capture the dynamic changes in the transmission
rate. These results suggest that when applying PINNSs to high-dimensional ODE systems with limited observation data, the model
may still produce reliable predictions for the variables with observation data, even if it cannot accurately infer all the unknown
parameters in the ODE system.

The current model also lacks a built-in mechanism for quantifying the uncertainty of its predictions in the presence of input
noise. A well-established method for regression with uncertainty estimation is Gaussian process regression (GPR), which, rooted in
the Bayesian framework, provides a principled way to quantify uncertainty in the solution of differential equations. However, GPR
is typically limited to small, linear problems due to its high computational complexity, which scales poorly with large datasets. A
promising direction to address this limitation involves the use of Bayesian PINNs, as proposed by [38]. These models combine the
physics-informed learning capability of PINNs with the probabilistic nature of Bayesian inference, allowing for uncertainty-aware
solutions even in ill-posed settings, such as those with incomplete or under-specified boundary conditions. Future research should
investigate the applicability and effectiveness of Bayesian PINNSs in the context of infectious disease forecasting, particularly in
scenarios involving high uncertainty, evolving dynamics or limited data availability.

In summary, the application of PINNSs in infectious disease forecasting offers a synergistic approach that combines the power
of data-driven deep learning with the interpretability and constraints provided by underlying epidemiological principles, leading
to more accurate, interpretable and adaptable models for predicting the spread of infectious diseases.
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Figure 7. MASE for the predictions of PINNs models on cases, deaths and hospitalizations when trained with varied lengths of historical data ranging from 4 to 24 weeks.

Appendix A.
A.1. Impact of training data length

We trained PINNs using datasets comprising the most recent 4, 8, 12, 16, 20 and 24 weeks of observations and evaluated their
forecasting performance over the period spanning weeks 48-110. The results, shown in figure 7, illustrate the MASE scores for
predictions of cases, deaths and hospitalizations across one-, two-, and four-week horizons using different training data lengths.

For all three targets, we observe a consistent trend: as the length of training data increases, the MASE scores generally de-
crease and then stabilize. Models trained on only four or eight weeks of data tend to underperform, probably due to insufficient
information to accurately capture the underlying disease dynamics. In contrast, models trained on 12 or 16 weeks of data achieve
predictive accuracy comparable to those trained on the full historical dataset. Notably, further increasing the training window to
20 or 24 weeks yields only marginal improvements in accuracy. This suggests that data beyond 16 weeks—spanning nearly half
a year —may be less relevant to current epidemiological conditions and contribute less to near-term forecasting performance.

A.2. Impact of L, reqularization

We further demonstrate that the absence of L, regularization leads to a substantial decline in model accuracy. Specifically, remov-
ing L, regularization results in average performance drops of 22.48% for cases, 9.16% for deaths and 42.54% for hospitalizations
over the one- to four-week forecasting horizons. These results highlight the importance of incorporating L, regularization in the
PINNSs framework, as it contributes to improved generalization and prediction stability across multiple epidemiological targets.

A.3. Estimates of transmission rate

In the current study, we treat the transmission rate as a time-dependent variable of the ODE system, and it is associated with
mobility and cumulative vaccine dose information. We adapt original statistical data from https://data.cdc.gov/Public-Health-
Surveillance/United-States-COVID-19-County-Level-of-Community-T/nra9-vzzn/data and get the transmission rate after process-
ing the original data. According to [80], we mapped community transmission level to specific values and calculated average
transmission rate among communities in California. These data, shown as blue dots in figures 8 and 9, will act as additional in-
formation in the training process as well as references for inferred 8; from PINNSs. As illustrated in the upper panel of figure 8,
when no real transmission data are used to inform the PINNs model, the inferred §; did not capture the trend of the real trans-
mission rate. On the other hand, figure 9 shows that when training data are gradually added from one to six data points, PINNs
can roughly capture the tendency of transmission rate.

Recall that in the main text, the transmission rate §; is modelled as the third output of the lower sub-network. To ensure posi-
tivity, an exponential transformation is applied, i.e. z‘;’ = exp(a), where a denotes the third output of the fully connected network
within the lower sub-network. In this section, we exzplore two alternative output transformations for modelling §; within the
PINNSs framework:

(1) zg = (arctan(a) + g) x 1073,

) z‘;’ = exp(min(log(1000), & + Bresz

o, t ﬁdoseszéz)), according to eqn (2.4) of [22].

In the second transformation Bres and Byoses are additional trainable physical parameters determined during the PINNs training
process, while ze and z approximate mobility and cumulative vaccine doses, respectively. The prediction performance of the
model based on these two ways of involving the auxiliary variables is summarized in table 5 and figure 8, which shows no sig-
nificant difference in model performance compared with the exponential transformation used in the main text. This is probably
due to the highly underdetermined nature of the problem: our ODE system includes nine state variables, yet only three of them
have associated observational data. These three observation data do not directly impact the ODEs that contain ;. As a result, the
PINNSs model struggles to infer transmission rates that align with the reference values.
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Figure 8. The transmission rate is estimated by the proposed PINNs model without observation points. Blue dots represent data collected from CDC United States COVID-
19 County Level of Community Transmission Historical Changes. The upper panel corresponds to the PINNs model in the main text, whereas the middle and lower panels
correspond to PINNs with the two alternative output transformations as defined in §3.3.

Table 5. MASE and WIS comparison of PINNs methods with different formulation of transmission rate (3, In PINNs, 3, is modelled byzgl = (arctan(axx) + %) X 1073,

while in PINNs,, 3, is modelled by zgz = exp(min(log(1000), o + /3resléz + ,Bdoseszéz)) according to [22], where o denotes the third output of the fully connected
network within the lower sub-network. Column ‘hosp’ denotes hospitalizations. Scaled WIS is computed by dividing the WIS by the WIS of naive models of the same

forecast horizon.
method MASE WIS scaled WIS
cases deaths hosp cases deaths hosp cases deaths hosp

PINNs, : one 0.78 1.03 0.59 16716 104 254 0.72 1.05 0.58
week

PINNs,: two 0.79 0.95 0.64 33 465 150 564 0.80 1.03 0.67
week

PINNs;: three 0.81 0.88 0.70 49 666 179 894 0.87 0.93 0.73
week

PINNs, : four 0.86 0.90 0.75 63 474 219 1246 0.94 0.89 0.80
week

PINNs,: one 0.76 1.00 0.60 16336 103 254 0.71 1.04 0.58
week

PINNs,: two 0.78 0.95 0.64 33155 148 562 0.80 1.01 0.66
week

PINNs,: three 0.82 0.88 0.69 49 621 179 889 0.87 0.93 0.73
week

PINNs,: four 0.86 0.89 0.75 63 894 218 1241 0.95 0.89 0.80
week
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Figure 9. The transmission rate is estimated by the proposed PINNs model with a varied number of observation points. One, three and five data points are examined,
respectively, and the results are plotted from top to bottom. Blue dots represent data collected from CDC United States COVID-19 County Level of Community Transmission
Historical Changes.
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